2024-03-26 20:23:23 +00:00
// MIT License
// Copyright (c) 2023 Georgi Gerganov
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
2024-03-12 20:49:47 +00:00
# include "common.h"
# include "llama.h"
2024-10-17 18:59:52 +00:00
# include "log.h"
# include "sampling.h"
2024-03-12 20:49:47 +00:00
# include "utils.hpp"
# include "../llava/clip.h"
# include "../llava/llava.h"
# include "stb_image.h"
# ifndef NDEBUG
// crash the server in debug mode, otherwise send an http 500 error
# define CPPHTTPLIB_NO_EXCEPTIONS 1
# endif
// increase max payload length to allow use of larger context size
# define CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 1048576
# include "httplib.h"
# include "json.hpp"
2024-04-16 21:00:12 +00:00
# if defined(_WIN32)
# include <windows.h>
2024-07-15 16:25:56 +00:00
# include <errhandlingapi.h>
2024-04-16 21:00:12 +00:00
# endif
2024-08-05 23:55:34 +00:00
# include <algorithm>
2024-03-12 20:49:47 +00:00
# include <cstddef>
# include <thread>
# include <chrono>
# include <condition_variable>
# include <atomic>
# include <signal.h>
using json = nlohmann : : json ;
struct server_params {
std : : string hostname = " 127.0.0.1 " ;
std : : vector < std : : string > api_keys ;
std : : string public_path = " examples/server/public " ;
int32_t port = 8080 ;
int32_t read_timeout = 600 ;
int32_t write_timeout = 600 ;
bool slots_endpoint = true ;
bool metrics_endpoint = false ;
int n_threads_http = - 1 ;
} ;
bool server_verbose = false ;
2024-05-09 20:52:56 +00:00
bool server_log_json = false ;
2024-03-12 20:49:47 +00:00
enum stop_type {
STOP_FULL ,
STOP_PARTIAL ,
} ;
// TODO: can become bool if we can't find use of more states
enum slot_state {
IDLE ,
PROCESSING ,
} ;
enum slot_command {
NONE ,
LOAD_PROMPT ,
RELEASE ,
} ;
struct slot_params {
bool stream = true ;
bool cache_prompt = false ; // remember the prompt to avoid reprocessing all prompt
uint32_t seed = - 1 ; // RNG seed
int32_t n_keep = 0 ; // number of tokens to keep from initial prompt
int32_t n_predict = - 1 ; // new tokens to predict
std : : vector < std : : string > antiprompt ;
json input_prefix ;
json input_suffix ;
} ;
struct slot_image {
int32_t id ;
bool request_encode_image = false ;
float * image_embedding = nullptr ;
int32_t image_tokens = 0 ;
clip_image_u8 * img_data ;
std : : string prefix_prompt ; // before of this image
} ;
struct server_slot {
int id ;
int task_id = - 1 ;
struct slot_params params ;
slot_state state = IDLE ;
slot_command command = NONE ;
// used to determine the slot that has been used the longest
int64_t t_last_used = - 1 ;
// generation props
int32_t n_ctx = 0 ; // context size per slot
int32_t n_past = 0 ;
int32_t n_decoded = 0 ;
int32_t n_remaining = - 1 ;
int32_t i_batch = - 1 ;
int32_t n_predict = - 1 ;
int32_t n_prompt_tokens = 0 ;
int32_t n_prompt_tokens_processed = 0 ;
json prompt ;
std : : string generated_text ;
std : : vector < llama_token > cache_tokens ;
std : : vector < completion_token_output > generated_token_probs ;
bool embedding = false ;
bool has_next_token = true ;
bool truncated = false ;
bool stopped_eos = false ;
bool stopped_word = false ;
bool stopped_limit = false ;
std : : string stopping_word ;
// sampling
2024-10-17 18:59:52 +00:00
struct gpt_sampler_params sparams ;
struct gpt_sampler * smpl = nullptr ;
llama_token sampled ;
2024-03-12 20:49:47 +00:00
int32_t ga_i = 0 ; // group-attention state
int32_t ga_n = 1 ; // group-attention factor
int32_t ga_w = 512 ; // group-attention width
int32_t n_past_se = 0 ; // self-extend
// multimodal
std : : vector < slot_image > images ;
// stats
size_t n_sent_text = 0 ; // number of sent text character
size_t n_sent_token_probs = 0 ;
int64_t t_start_process_prompt ;
int64_t t_start_genereration ;
double t_prompt_processing ; // ms
double t_token_generation ; // ms
// multitasks
int multitask_id = - 1 ;
void reset ( ) {
n_prompt_tokens = 0 ;
generated_text = " " ;
truncated = false ;
stopped_eos = false ;
stopped_word = false ;
stopped_limit = false ;
stopping_word = " " ;
n_past = 0 ;
n_sent_text = 0 ;
n_sent_token_probs = 0 ;
ga_i = 0 ;
n_past_se = 0 ;
generated_token_probs . clear ( ) ;
for ( slot_image & img : images ) {
free ( img . image_embedding ) ;
if ( img . img_data ) {
clip_image_u8_free ( img . img_data ) ;
}
img . prefix_prompt = " " ;
}
images . clear ( ) ;
}
bool has_budget ( gpt_params & global_params ) {
if ( params . n_predict = = - 1 & & global_params . n_predict = = - 1 ) {
return true ; // limitless
}
n_remaining = - 1 ;
if ( params . n_predict ! = - 1 ) {
n_remaining = params . n_predict - n_decoded ;
} else if ( global_params . n_predict ! = - 1 ) {
n_remaining = global_params . n_predict - n_decoded ;
}
return n_remaining > 0 ; // no budget
}
bool available ( ) const {
return state = = IDLE & & command = = NONE ;
}
bool is_processing ( ) const {
return ( state = = IDLE & & command = = LOAD_PROMPT ) | | state = = PROCESSING ;
}
void add_token_string ( const completion_token_output & token ) {
if ( command = = RELEASE ) {
return ;
}
cache_tokens . push_back ( token . tok ) ;
generated_token_probs . push_back ( token ) ;
}
void release ( ) {
if ( state = = PROCESSING )
{
t_token_generation = ( ggml_time_us ( ) - t_start_genereration ) / 1e3 ;
command = RELEASE ;
}
}
json get_formated_timings ( ) {
return json
{
{ " prompt_n " , n_prompt_tokens_processed } ,
{ " prompt_ms " , t_prompt_processing } ,
{ " prompt_per_token_ms " , t_prompt_processing / n_prompt_tokens_processed } ,
{ " prompt_per_second " , 1e3 / t_prompt_processing * n_prompt_tokens_processed } ,
{ " predicted_n " , n_decoded } ,
{ " predicted_ms " , t_token_generation } ,
{ " predicted_per_token_ms " , t_token_generation / n_decoded } ,
{ " predicted_per_second " , 1e3 / t_token_generation * n_decoded } ,
} ;
}
void print_timings ( ) const {
char buffer [ 512 ] ;
double t_token = t_prompt_processing / n_prompt_tokens_processed ;
double n_tokens_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed ;
2024-09-03 16:32:59 +00:00
snprintf ( buffer , sizeof ( buffer ) , " prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second) " ,
2024-03-12 20:49:47 +00:00
t_prompt_processing , n_prompt_tokens_processed ,
t_token , n_tokens_second ) ;
2024-05-09 20:52:56 +00:00
LOG_DEBUG ( buffer , {
2024-03-12 20:49:47 +00:00
{ " slot_id " , id } ,
{ " task_id " , task_id } ,
{ " t_prompt_processing " , t_prompt_processing } ,
{ " n_prompt_tokens_processed " , n_prompt_tokens_processed } ,
{ " t_token " , t_token } ,
{ " n_tokens_second " , n_tokens_second } ,
} ) ;
t_token = t_token_generation / n_decoded ;
n_tokens_second = 1e3 / t_token_generation * n_decoded ;
2024-09-03 16:32:59 +00:00
snprintf ( buffer , sizeof ( buffer ) , " generation eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second) " ,
2024-03-12 20:49:47 +00:00
t_token_generation , n_decoded ,
t_token , n_tokens_second ) ;
2024-05-09 20:52:56 +00:00
LOG_DEBUG ( buffer , {
2024-03-12 20:49:47 +00:00
{ " slot_id " , id } ,
{ " task_id " , task_id } ,
{ " t_token_generation " , t_token_generation } ,
{ " n_decoded " , n_decoded } ,
{ " t_token " , t_token } ,
{ " n_tokens_second " , n_tokens_second } ,
} ) ;
2024-09-03 16:32:59 +00:00
snprintf ( buffer , sizeof ( buffer ) , " total time = %10.2f ms " , t_prompt_processing + t_token_generation ) ;
2024-05-09 20:52:56 +00:00
LOG_DEBUG ( buffer , {
2024-03-12 20:49:47 +00:00
{ " slot_id " , id } ,
{ " task_id " , task_id } ,
{ " t_prompt_processing " , t_prompt_processing } ,
{ " t_token_generation " , t_token_generation } ,
{ " t_total " , t_prompt_processing + t_token_generation } ,
} ) ;
}
} ;
struct server_metrics {
uint64_t n_prompt_tokens_processed_total = 0 ;
uint64_t n_tokens_predicted_total = 0 ;
uint64_t n_prompt_tokens_processed = 0 ;
uint64_t t_prompt_processing = 0 ;
uint64_t n_tokens_predicted = 0 ;
uint64_t t_tokens_generation = 0 ;
void on_prompt_eval ( const server_slot & slot ) {
n_prompt_tokens_processed_total + = slot . n_prompt_tokens_processed ;
n_prompt_tokens_processed + = slot . n_prompt_tokens_processed ;
t_prompt_processing + = slot . t_prompt_processing ;
}
void on_prediction ( const server_slot & slot ) {
n_tokens_predicted_total + = slot . n_decoded ;
n_tokens_predicted + = slot . n_decoded ;
t_tokens_generation + = slot . t_token_generation ;
}
void reset_bucket ( ) {
n_prompt_tokens_processed = 0 ;
t_prompt_processing = 0 ;
n_tokens_predicted = 0 ;
t_tokens_generation = 0 ;
}
} ;
struct llama_server_context
{
llama_model * model = nullptr ;
2024-05-20 23:41:43 +00:00
float modelProgress = 0.0 ;
2024-03-12 20:49:47 +00:00
llama_context * ctx = nullptr ;
clip_ctx * clp_ctx = nullptr ;
gpt_params params ;
llama_batch batch ;
bool multimodal = false ;
bool clean_kv_cache = true ;
bool all_slots_are_idle = false ;
bool add_bos_token = true ;
int32_t n_ctx ; // total context for all clients / slots
// system prompt
bool system_need_update = false ;
std : : string system_prompt ;
std : : vector < llama_token > system_tokens ;
std : : string name_user ; // this should be the antiprompt
std : : string name_assistant ;
// slots / clients
std : : vector < server_slot > slots ;
llama_server_queue queue_tasks ;
llama_server_response queue_results ;
server_metrics metrics ;
~ llama_server_context ( )
{
2024-03-23 08:54:56 +00:00
if ( clp_ctx )
{
2024-05-09 20:52:56 +00:00
LOG_DEBUG ( " freeing clip model " , { } ) ;
2024-03-23 08:54:56 +00:00
clip_free ( clp_ctx ) ;
clp_ctx = nullptr ;
}
2024-03-12 20:49:47 +00:00
if ( ctx )
{
llama_free ( ctx ) ;
ctx = nullptr ;
}
if ( model )
{
llama_free_model ( model ) ;
model = nullptr ;
}
}
bool load_model ( const gpt_params & params_ )
{
params = params_ ;
if ( ! params . mmproj . empty ( ) ) {
multimodal = true ;
2024-05-09 20:52:56 +00:00
LOG_DEBUG ( " Multi Modal Mode Enabled " , { } ) ;
2024-03-12 20:49:47 +00:00
clp_ctx = clip_model_load ( params . mmproj . c_str ( ) , /*verbosity=*/ 1 ) ;
if ( clp_ctx = = nullptr ) {
LOG_ERROR ( " unable to load clip model " , { { " model " , params . mmproj } } ) ;
return false ;
}
if ( params . n_ctx < 2048 ) { // request larger context for the image embedding
params . n_ctx = 2048 ;
}
}
2024-08-06 19:11:45 +00:00
auto init_result = llama_init_from_gpt_params ( params ) ;
model = init_result . model ;
ctx = init_result . context ;
2024-03-12 20:49:47 +00:00
if ( model = = nullptr )
{
LOG_ERROR ( " unable to load model " , { { " model " , params . model } } ) ;
return false ;
}
if ( multimodal ) {
const int n_embd_clip = clip_n_mmproj_embd ( clp_ctx ) ;
const int n_embd_llm = llama_n_embd ( model ) ;
if ( n_embd_clip ! = n_embd_llm ) {
2024-10-17 18:59:52 +00:00
LOG_WRN ( " %s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file. \n " , __func__ , n_embd_clip , n_embd_llm ) ;
2024-03-12 20:49:47 +00:00
llama_free ( ctx ) ;
llama_free_model ( model ) ;
return false ;
}
}
n_ctx = llama_n_ctx ( ctx ) ;
2024-09-04 01:12:39 +00:00
add_bos_token = llama_add_bos_token ( model ) ;
2024-03-12 20:49:47 +00:00
return true ;
}
void initialize ( ) {
// create slots
all_slots_are_idle = true ;
const int32_t n_ctx_slot = n_ctx / params . n_parallel ;
2024-05-09 20:52:56 +00:00
LOG_DEBUG ( " initializing slots " , { { " n_slots " , params . n_parallel } } ) ;
2024-03-12 20:49:47 +00:00
for ( int i = 0 ; i < params . n_parallel ; i + + )
{
server_slot slot ;
slot . id = i ;
slot . n_ctx = n_ctx_slot ;
slot . n_predict = params . n_predict ;
2024-05-09 20:52:56 +00:00
LOG_DEBUG ( " new slot " , {
2024-03-12 20:49:47 +00:00
{ " slot_id " , slot . id } ,
{ " n_ctx_slot " , slot . n_ctx }
} ) ;
const int ga_n = params . grp_attn_n ;
const int ga_w = params . grp_attn_w ;
if ( ga_n ! = 1 ) {
GGML_ASSERT ( ga_n > 0 & & " ga_n must be positive " ) ; // NOLINT
GGML_ASSERT ( ga_w % ga_n = = 0 & & " ga_w must be a multiple of ga_n " ) ; // NOLINT
//GGML_ASSERT(n_ctx_train % ga_w == 0 && "n_ctx_train must be a multiple of ga_w"); // NOLINT
//GGML_ASSERT(n_ctx >= n_ctx_train * ga_n && "n_ctx must be at least n_ctx_train * ga_n"); // NOLINT
2024-05-09 20:52:56 +00:00
LOG_DEBUG ( " slot self-extend " , {
2024-03-12 20:49:47 +00:00
{ " slot_id " , slot . id } ,
{ " ga_n " , ga_n } ,
{ " ga_w " , ga_w }
} ) ;
}
slot . ga_i = 0 ;
slot . ga_n = ga_n ;
slot . ga_w = ga_w ;
slot . reset ( ) ;
slots . push_back ( slot ) ;
}
batch = llama_batch_init ( n_ctx , 0 , params . n_parallel ) ;
}
std : : vector < llama_token > tokenize ( const json & json_prompt , bool add_bos ) const
{
// TODO: currently, we tokenize using special tokens by default
// this is not always correct (see https://github.com/ggerganov/llama.cpp/pull/4160#issuecomment-1824826216)
// but it's better compared to completely ignoring ChatML and other chat templates
const bool TMP_FORCE_SPECIAL = true ;
// If `add_bos` is true, we only add BOS, when json_prompt is a string,
// or the first element of the json_prompt array is a string.
std : : vector < llama_token > prompt_tokens ;
if ( json_prompt . is_array ( ) )
{
bool first = true ;
for ( const auto & p : json_prompt )
{
if ( p . is_string ( ) )
{
auto s = p . template get < std : : string > ( ) ;
std : : vector < llama_token > p ;
if ( first )
{
p = : : llama_tokenize ( ctx , s , add_bos , TMP_FORCE_SPECIAL ) ;
first = false ;
}
else
{
p = : : llama_tokenize ( ctx , s , false , TMP_FORCE_SPECIAL ) ;
}
prompt_tokens . insert ( prompt_tokens . end ( ) , p . begin ( ) , p . end ( ) ) ;
}
else
{
if ( first )
{
first = false ;
}
prompt_tokens . push_back ( p . template get < llama_token > ( ) ) ;
}
}
}
else
{
auto s = json_prompt . template get < std : : string > ( ) ;
prompt_tokens = : : llama_tokenize ( ctx , s , add_bos , TMP_FORCE_SPECIAL ) ;
}
return prompt_tokens ;
}
server_slot * get_slot ( int id ) {
int64_t t_last = ggml_time_us ( ) ;
server_slot * last_used = nullptr ;
for ( server_slot & slot : slots )
{
if ( slot . id = = id & & slot . available ( ) )
{
return & slot ;
}
if ( slot . available ( ) & & slot . t_last_used < t_last )
{
last_used = & slot ;
t_last = slot . t_last_used ;
}
}
return last_used ;
}
bool launch_slot_with_data ( server_slot * & slot , json data ) {
slot_params default_params ;
2024-10-17 18:59:52 +00:00
gpt_sampler_params default_sparams ;
2024-03-12 20:49:47 +00:00
slot - > params . stream = json_value ( data , " stream " , false ) ;
slot - > params . cache_prompt = json_value ( data , " cache_prompt " , false ) ;
slot - > params . n_predict = json_value ( data , " n_predict " , default_params . n_predict ) ;
slot - > sparams . top_k = json_value ( data , " top_k " , default_sparams . top_k ) ;
slot - > sparams . top_p = json_value ( data , " top_p " , default_sparams . top_p ) ;
slot - > sparams . min_p = json_value ( data , " min_p " , default_sparams . min_p ) ;
slot - > sparams . tfs_z = json_value ( data , " tfs_z " , default_sparams . tfs_z ) ;
2024-10-17 18:59:52 +00:00
slot - > sparams . typ_p = json_value ( data , " typ_p " , default_sparams . typ_p ) ;
2024-03-12 20:49:47 +00:00
slot - > sparams . temp = json_value ( data , " temperature " , default_sparams . temp ) ;
slot - > sparams . dynatemp_range = json_value ( data , " dynatemp_range " , default_sparams . dynatemp_range ) ;
slot - > sparams . dynatemp_exponent = json_value ( data , " dynatemp_exponent " , default_sparams . dynatemp_exponent ) ;
slot - > sparams . penalty_last_n = json_value ( data , " repeat_last_n " , default_sparams . penalty_last_n ) ;
slot - > sparams . penalty_repeat = json_value ( data , " repeat_penalty " , default_sparams . penalty_repeat ) ;
slot - > sparams . penalty_freq = json_value ( data , " frequency_penalty " , default_sparams . penalty_freq ) ;
slot - > sparams . penalty_present = json_value ( data , " presence_penalty " , default_sparams . penalty_present ) ;
slot - > sparams . mirostat = json_value ( data , " mirostat " , default_sparams . mirostat ) ;
slot - > sparams . mirostat_tau = json_value ( data , " mirostat_tau " , default_sparams . mirostat_tau ) ;
slot - > sparams . mirostat_eta = json_value ( data , " mirostat_eta " , default_sparams . mirostat_eta ) ;
slot - > sparams . penalize_nl = json_value ( data , " penalize_nl " , default_sparams . penalize_nl ) ;
slot - > params . n_keep = json_value ( data , " n_keep " , slot - > params . n_keep ) ;
2024-06-11 21:24:41 +00:00
slot - > sparams . seed = json_value ( data , " seed " , default_params . seed ) ;
2024-03-12 20:49:47 +00:00
slot - > sparams . grammar = json_value ( data , " grammar " , default_sparams . grammar ) ;
slot - > sparams . n_probs = json_value ( data , " n_probs " , default_sparams . n_probs ) ;
slot - > sparams . min_keep = json_value ( data , " min_keep " , default_sparams . min_keep ) ;
if ( slot - > n_predict > 0 & & slot - > params . n_predict > slot - > n_predict ) {
// Might be better to reject the request with a 400 ?
LOG_WARNING ( " Max tokens to predict exceeds server configuration " , {
{ " params.n_predict " , slot - > params . n_predict } ,
{ " slot.n_predict " , slot - > n_predict } ,
} ) ;
slot - > params . n_predict = slot - > n_predict ;
}
if ( data . count ( " input_suffix " ) ! = 0 )
{
slot - > params . input_suffix = data [ " input_suffix " ] ;
}
else
{
slot - > params . input_suffix = " " ;
}
if ( data . count ( " prompt " ) ! = 0 )
{
slot - > prompt = data [ " prompt " ] ;
}
else
{
slot - > prompt = " " ;
}
slot - > sparams . logit_bias . clear ( ) ;
if ( json_value ( data , " ignore_eos " , false ) )
{
2024-10-17 18:59:52 +00:00
slot - > sparams . logit_bias . push_back ( { llama_token_eos ( model ) , - INFINITY } ) ;
2024-03-12 20:49:47 +00:00
}
const auto & logit_bias = data . find ( " logit_bias " ) ;
if ( logit_bias ! = data . end ( ) & & logit_bias - > is_array ( ) )
{
const int n_vocab = llama_n_vocab ( model ) ;
for ( const auto & el : * logit_bias )
{
if ( el . is_array ( ) & & el . size ( ) = = 2 )
{
float bias ;
if ( el [ 1 ] . is_number ( ) )
{
bias = el [ 1 ] . get < float > ( ) ;
}
else if ( el [ 1 ] . is_boolean ( ) & & ! el [ 1 ] . get < bool > ( ) )
{
bias = - INFINITY ;
}
else
{
continue ;
}
if ( el [ 0 ] . is_number_integer ( ) )
{
llama_token tok = el [ 0 ] . get < llama_token > ( ) ;
if ( tok > = 0 & & tok < n_vocab )
{
2024-10-17 18:59:52 +00:00
slot - > sparams . logit_bias . push_back ( { tok , bias } ) ;
2024-03-12 20:49:47 +00:00
}
}
else if ( el [ 0 ] . is_string ( ) )
{
auto toks = llama_tokenize ( model , el [ 0 ] . get < std : : string > ( ) , false ) ;
for ( auto tok : toks )
{
2024-10-17 18:59:52 +00:00
slot - > sparams . logit_bias . push_back ( { tok , bias } ) ;
2024-03-12 20:49:47 +00:00
}
}
}
}
}
slot - > params . antiprompt . clear ( ) ;
const auto & stop = data . find ( " stop " ) ;
if ( stop ! = data . end ( ) & & stop - > is_array ( ) )
{
for ( const auto & word : * stop )
{
if ( ! word . empty ( ) )
{
slot - > params . antiprompt . push_back ( word ) ;
}
}
}
2024-10-17 18:59:52 +00:00
const auto & samplers = data . find ( " samplers " ) ;
if ( samplers ! = data . end ( ) & & samplers - > is_array ( ) )
2024-03-12 20:49:47 +00:00
{
std : : vector < std : : string > sampler_names ;
2024-10-17 18:59:52 +00:00
for ( const auto & name : * samplers )
2024-03-12 20:49:47 +00:00
{
2024-10-17 18:59:52 +00:00
if ( name . is_string ( ) )
2024-03-12 20:49:47 +00:00
{
2024-10-17 18:59:52 +00:00
sampler_names . emplace_back ( name ) ;
2024-03-12 20:49:47 +00:00
}
}
2024-10-17 18:59:52 +00:00
slot - > sparams . samplers = gpt_sampler_types_from_names ( sampler_names , false ) ;
2024-03-12 20:49:47 +00:00
}
else
{
2024-10-17 18:59:52 +00:00
slot - > sparams . samplers = default_sparams . samplers ;
2024-03-12 20:49:47 +00:00
}
if ( multimodal )
{
const auto & images_data = data . find ( " image_data " ) ;
if ( images_data ! = data . end ( ) & & images_data - > is_array ( ) )
{
for ( const auto & img : * images_data )
{
const std : : vector < uint8_t > image_buffer = base64_decode ( img [ " data " ] . get < std : : string > ( ) ) ;
slot_image img_sl ;
img_sl . id = img . count ( " id " ) ! = 0 ? img [ " id " ] . get < int > ( ) : slot - > images . size ( ) ;
img_sl . img_data = clip_image_u8_init ( ) ;
if ( ! clip_image_load_from_bytes ( image_buffer . data ( ) , image_buffer . size ( ) , img_sl . img_data ) )
{
LOG_ERROR ( " failed to load image " , {
{ " slot_id " , slot - > id } ,
{ " img_sl_id " , img_sl . id }
} ) ;
return false ;
}
LOG_VERBOSE ( " image loaded " , {
{ " slot_id " , slot - > id } ,
{ " img_sl_id " , img_sl . id }
} ) ;
img_sl . request_encode_image = true ;
slot - > images . push_back ( img_sl ) ;
}
// process prompt
// example: system prompt [img-102] user [img-103] describe [img-134] -> [{id: 102, prefix: 'system prompt '}, {id: 103, prefix: ' user '}, {id: 134, prefix: ' describe '}]}
if ( slot - > images . size ( ) > 0 & & ! slot - > prompt . is_array ( ) )
{
std : : string prompt = slot - > prompt . get < std : : string > ( ) ;
size_t pos = 0 , begin_prefix = 0 ;
std : : string pattern = " [img- " ;
while ( ( pos = prompt . find ( pattern , pos ) ) ! = std : : string : : npos ) {
size_t end_prefix = pos ;
pos + = pattern . length ( ) ;
size_t end_pos = prompt . find ( ' ] ' , pos ) ;
if ( end_pos ! = std : : string : : npos )
{
std : : string image_id = prompt . substr ( pos , end_pos - pos ) ;
try
{
int img_id = std : : stoi ( image_id ) ;
bool found = false ;
for ( slot_image & img : slot - > images )
{
if ( img . id = = img_id ) {
found = true ;
img . prefix_prompt = prompt . substr ( begin_prefix , end_prefix - begin_prefix ) ;
begin_prefix = end_pos + 1 ;
break ;
}
}
if ( ! found ) {
2024-10-17 18:59:52 +00:00
LOG_WRN ( " ERROR: Image with id: %i, not found. \n " , img_id ) ;
2024-03-12 20:49:47 +00:00
slot - > images . clear ( ) ;
return false ;
}
} catch ( const std : : invalid_argument & e ) {
2024-10-17 18:59:52 +00:00
LOG_WRN ( " Invalid image number id in prompt \n " ) ;
2024-03-12 20:49:47 +00:00
slot - > images . clear ( ) ;
return false ;
}
}
}
slot - > prompt = " " ;
slot - > params . input_suffix = prompt . substr ( begin_prefix ) ;
slot - > params . cache_prompt = false ; // multimodal doesn't support cache prompt
}
}
}
2024-10-17 18:59:52 +00:00
if ( slot - > smpl ! = nullptr )
2024-03-12 20:49:47 +00:00
{
2024-10-17 18:59:52 +00:00
gpt_sampler_free ( slot - > smpl ) ;
2024-03-12 20:49:47 +00:00
}
2024-10-17 18:59:52 +00:00
slot - > smpl = gpt_sampler_init ( model , slot - > sparams ) ;
2024-03-12 20:49:47 +00:00
slot - > command = LOAD_PROMPT ;
all_slots_are_idle = false ;
2024-05-09 20:52:56 +00:00
LOG_DEBUG ( " slot is processing task " , {
2024-03-12 20:49:47 +00:00
{ " slot_id " , slot - > id } ,
{ " task_id " , slot - > task_id } ,
} ) ;
return true ;
}
void kv_cache_clear ( ) {
// clear the entire KV cache
llama_kv_cache_clear ( ctx ) ;
clean_kv_cache = false ;
}
void system_prompt_update ( ) {
kv_cache_clear ( ) ;
system_tokens . clear ( ) ;
if ( ! system_prompt . empty ( ) ) {
2024-06-09 01:47:10 +00:00
system_tokens = : : llama_tokenize ( ctx , system_prompt , true ) ;
2024-03-12 20:49:47 +00:00
llama_batch_clear ( batch ) ;
for ( int i = 0 ; i < ( int ) system_tokens . size ( ) ; + + i )
{
llama_batch_add ( batch , system_tokens [ i ] , i , { 0 } , false ) ;
}
for ( int32_t i = 0 ; i < ( int32_t ) batch . n_tokens ; i + = params . n_batch )
{
const int32_t n_tokens = std : : min ( params . n_batch , ( int32_t ) ( batch . n_tokens - i ) ) ;
llama_batch batch_view = {
n_tokens ,
batch . token + i ,
nullptr ,
batch . pos + i ,
batch . n_seq_id + i ,
batch . seq_id + i ,
batch . logits + i ,
0 , 0 , 0 , // unused
} ;
if ( llama_decode ( ctx , batch_view ) ! = 0 )
{
2024-10-17 18:59:52 +00:00
LOG_WRN ( " %s: llama_decode() failed \n " , __func__ ) ;
2024-03-12 20:49:47 +00:00
return ;
}
}
// assign the system KV cache to all parallel sequences
for ( int32_t i = 1 ; i < params . n_parallel ; + + i )
{
llama_kv_cache_seq_cp ( ctx , 0 , i , 0 , system_tokens . size ( ) ) ;
}
}
2024-10-17 18:59:52 +00:00
LOG_INF ( " system prompt updated \n " ) ;
2024-03-12 20:49:47 +00:00
system_need_update = false ;
}
void system_prompt_notify ( ) {
// release all slots
for ( server_slot & slot : slots )
{
slot . release ( ) ;
}
system_need_update = true ;
}
static size_t find_stopping_strings ( const std : : string & text , const size_t last_token_size ,
const stop_type type , server_slot & slot )
{
size_t stop_pos = std : : string : : npos ;
for ( const std : : string & word : slot . params . antiprompt )
{
size_t pos ;
if ( type = = STOP_FULL )
{
const size_t tmp = word . size ( ) + last_token_size ;
const size_t from_pos = text . size ( ) > tmp ? text . size ( ) - tmp : 0 ;
pos = text . find ( word , from_pos ) ;
}
else
{
pos = find_partial_stop_string ( word , text ) ;
}
if ( pos ! = std : : string : : npos & &
( stop_pos = = std : : string : : npos | | pos < stop_pos ) )
{
if ( type = = STOP_FULL )
{
slot . stopped_word = true ;
slot . stopping_word = word ;
slot . has_next_token = false ;
}
stop_pos = pos ;
}
}
return stop_pos ;
}
bool process_token ( completion_token_output & result , server_slot & slot ) {
// remember which tokens were sampled - used for repetition penalties during sampling
const std : : string token_str = llama_token_to_piece ( ctx , result . tok ) ;
slot . sampled = result . tok ;
// search stop word and delete it
2024-09-11 21:00:20 +00:00
if ( ! llama_token_is_eog ( model , result . tok ) )
slot . generated_text + = token_str ;
2024-03-12 20:49:47 +00:00
slot . has_next_token = true ;
// check if there is incomplete UTF-8 character at the end
bool incomplete = false ;
for ( unsigned i = 1 ; i < 5 & & i < = slot . generated_text . size ( ) ; + + i )
{
unsigned char c = slot . generated_text [ slot . generated_text . size ( ) - i ] ;
if ( ( c & 0xC0 ) = = 0x80 )
{
// continuation byte: 10xxxxxx
continue ;
}
if ( ( c & 0xE0 ) = = 0xC0 )
{
// 2-byte character: 110xxxxx ...
incomplete = i < 2 ;
}
else if ( ( c & 0xF0 ) = = 0xE0 )
{
// 3-byte character: 1110xxxx ...
incomplete = i < 3 ;
}
else if ( ( c & 0xF8 ) = = 0xF0 )
{
// 4-byte character: 11110xxx ...
incomplete = i < 4 ;
}
// else 1-byte character or invalid byte
break ;
}
if ( ! incomplete )
{
size_t pos = std : : min ( slot . n_sent_text , slot . generated_text . size ( ) ) ;
2024-09-11 21:00:20 +00:00
if ( ! llama_token_is_eog ( model , result . tok ) ) {
const std : : string str_test = slot . generated_text . substr ( pos ) ;
bool is_stop_full = false ;
size_t stop_pos = find_stopping_strings ( str_test , token_str . size ( ) , STOP_FULL , slot ) ;
if ( stop_pos ! = std : : string : : npos )
{
is_stop_full = true ;
slot . generated_text . erase (
slot . generated_text . begin ( ) + pos + stop_pos ,
slot . generated_text . end ( ) ) ;
pos = std : : min ( slot . n_sent_text , slot . generated_text . size ( ) ) ;
}
else
{
is_stop_full = false ;
stop_pos = find_stopping_strings ( str_test , token_str . size ( ) , STOP_PARTIAL , slot ) ;
}
// check if there is any token to predict
if ( stop_pos = = std : : string : : npos | | ( ! slot . has_next_token & & ! is_stop_full & & stop_pos > 0 ) )
{
// no send the stop word in the response
result . text_to_send = slot . generated_text . substr ( pos , std : : string : : npos ) ;
slot . n_sent_text + = result . text_to_send . size ( ) ;
// add the token to slot queue and cache
}
} else {
result . text_to_send = slot . generated_text . substr ( pos , std : : string : : npos ) ;
slot . n_sent_text + = result . text_to_send . size ( ) ;
2024-03-12 20:49:47 +00:00
}
2024-03-19 08:49:24 +00:00
2024-03-12 20:49:47 +00:00
if ( slot . params . stream )
{
send_partial_response ( slot , result ) ;
}
}
2024-03-19 08:49:24 +00:00
slot . add_token_string ( result ) ;
2024-03-12 20:49:47 +00:00
if ( incomplete )
{
slot . has_next_token = true ;
}
// check the limits
if ( slot . n_decoded > 0 & & slot . has_next_token & & ! slot . has_budget ( params ) )
{
slot . stopped_limit = true ;
slot . has_next_token = false ;
}
2024-04-30 21:38:44 +00:00
if ( ! slot . cache_tokens . empty ( ) & & llama_token_is_eog ( model , result . tok ) )
2024-03-12 20:49:47 +00:00
{
slot . stopped_eos = true ;
slot . has_next_token = false ;
LOG_VERBOSE ( " eos token found " , { } ) ;
}
LOG_VERBOSE ( " next token " , {
{ " token " , result . tok } ,
{ " token_text " , tokens_to_output_formatted_string ( ctx , result . tok ) } ,
{ " has_next_token " , slot . has_next_token } ,
{ " n_remain " , slot . n_remaining } ,
{ " num_tokens_predicted " , slot . n_decoded } ,
{ " stopped_eos " , slot . stopped_eos } ,
{ " stopped_word " , slot . stopped_word } ,
{ " stopped_limit " , slot . stopped_limit } ,
{ " stopping_word " , slot . stopping_word } ,
} ) ;
return slot . has_next_token ; // continue
}
bool process_images ( server_slot & slot ) const
{
for ( slot_image & img : slot . images )
{
if ( ! img . request_encode_image )
{
continue ;
}
2024-09-04 01:12:39 +00:00
if ( ! llava_image_embed_make_with_clip_img ( clp_ctx , params . cpuparams . n_threads , img . img_data , & img . image_embedding , & img . image_tokens ) ) {
2024-10-17 18:59:52 +00:00
LOG_WRN ( " Error processing the given image " ) ;
2024-03-12 20:49:47 +00:00
return false ;
}
img . request_encode_image = false ;
}
return slot . images . size ( ) > 0 ;
}
void send_error ( task_server & task , const std : : string & error )
{
2024-10-17 18:59:52 +00:00
LOG_WRN ( " task %i - error: %s \n " , task . id , error . c_str ( ) ) ;
2024-03-12 20:49:47 +00:00
task_result res ;
res . id = task . id ;
res . multitask_id = task . multitask_id ;
res . stop = false ;
res . error = true ;
res . result_json = { { " content " , error } } ;
queue_results . send ( res ) ;
}
json get_formated_generation ( server_slot & slot )
{
2024-10-17 18:59:52 +00:00
std : : vector < std : : string > samplers ;
samplers . reserve ( slot . sparams . samplers . size ( ) ) ;
for ( const auto & sampler : slot . sparams . samplers ) {
samplers . emplace_back ( gpt_sampler_type_to_str ( sampler ) ) ;
2024-03-12 20:49:47 +00:00
}
return json {
{ " n_ctx " , slot . n_ctx } ,
{ " n_predict " , slot . n_predict } ,
{ " model " , params . model_alias } ,
{ " seed " , slot . params . seed } ,
{ " temperature " , slot . sparams . temp } ,
{ " dynatemp_range " , slot . sparams . dynatemp_range } ,
{ " dynatemp_exponent " , slot . sparams . dynatemp_exponent } ,
{ " top_k " , slot . sparams . top_k } ,
{ " top_p " , slot . sparams . top_p } ,
{ " min_p " , slot . sparams . min_p } ,
{ " tfs_z " , slot . sparams . tfs_z } ,
2024-10-17 18:59:52 +00:00
{ " typical_p " , slot . sparams . typ_p } ,
2024-03-12 20:49:47 +00:00
{ " repeat_last_n " , slot . sparams . penalty_last_n } ,
{ " repeat_penalty " , slot . sparams . penalty_repeat } ,
{ " presence_penalty " , slot . sparams . penalty_present } ,
{ " frequency_penalty " , slot . sparams . penalty_freq } ,
{ " mirostat " , slot . sparams . mirostat } ,
{ " mirostat_tau " , slot . sparams . mirostat_tau } ,
{ " mirostat_eta " , slot . sparams . mirostat_eta } ,
{ " penalize_nl " , slot . sparams . penalize_nl } ,
{ " stop " , slot . params . antiprompt } ,
{ " n_predict " , slot . params . n_predict } ,
{ " n_keep " , params . n_keep } ,
2024-10-17 18:59:52 +00:00
{ " ignore_eos " , slot . sparams . ignore_eos } ,
2024-03-12 20:49:47 +00:00
{ " stream " , slot . params . stream } ,
2024-10-17 18:59:52 +00:00
//{"logit_bias", slot.sparams.logit_bias},
2024-03-12 20:49:47 +00:00
{ " n_probs " , slot . sparams . n_probs } ,
{ " min_keep " , slot . sparams . min_keep } ,
{ " grammar " , slot . sparams . grammar } ,
2024-10-17 18:59:52 +00:00
{ " samplers " , samplers }
2024-03-12 20:49:47 +00:00
} ;
}
void send_partial_response ( server_slot & slot , completion_token_output tkn )
{
task_result res ;
res . id = slot . task_id ;
res . multitask_id = slot . multitask_id ;
res . error = false ;
res . stop = false ;
res . result_json = json
{
{ " stop " , false } ,
{ " slot_id " , slot . id } ,
{ " multimodal " , multimodal }
} ;
2024-09-11 21:00:20 +00:00
res . result_json [ " content " ] = tkn . text_to_send ;
2024-04-30 21:25:39 +00:00
2024-03-12 20:49:47 +00:00
if ( slot . sparams . n_probs > 0 )
{
std : : vector < completion_token_output > probs_output = { } ;
const std : : vector < llama_token > to_send_toks = llama_tokenize ( ctx , tkn . text_to_send , false ) ;
size_t probs_pos = std : : min ( slot . n_sent_token_probs , slot . generated_token_probs . size ( ) ) ;
size_t probs_stop_pos = std : : min ( slot . n_sent_token_probs + to_send_toks . size ( ) , slot . generated_token_probs . size ( ) ) ;
if ( probs_pos < probs_stop_pos )
{
probs_output = std : : vector < completion_token_output > ( slot . generated_token_probs . begin ( ) + probs_pos , slot . generated_token_probs . begin ( ) + probs_stop_pos ) ;
}
slot . n_sent_token_probs = probs_stop_pos ;
res . result_json [ " completion_probabilities " ] = probs_vector_to_json ( ctx , probs_output ) ;
}
queue_results . send ( res ) ;
}
void send_final_response ( server_slot & slot )
{
task_result res ;
res . id = slot . task_id ;
res . multitask_id = slot . multitask_id ;
res . error = false ;
res . stop = true ;
res . result_json = json
{
{ " content " , ! slot . params . stream ? slot . generated_text : " " } ,
{ " slot_id " , slot . id } ,
{ " stop " , true } ,
{ " model " , params . model_alias } ,
{ " tokens_predicted " , slot . n_decoded } ,
{ " tokens_evaluated " , slot . n_prompt_tokens } ,
{ " truncated " , slot . truncated } ,
{ " stopped_eos " , slot . stopped_eos } ,
{ " stopped_word " , slot . stopped_word } ,
{ " stopped_limit " , slot . stopped_limit } ,
{ " stopping_word " , slot . stopping_word } ,
{ " tokens_cached " , slot . n_past } ,
{ " timings " , slot . get_formated_timings ( ) }
} ;
if ( slot . sparams . n_probs > 0 )
{
std : : vector < completion_token_output > probs = { } ;
if ( ! slot . params . stream & & slot . stopped_word )
{
const std : : vector < llama_token > stop_word_toks = llama_tokenize ( ctx , slot . stopping_word , false ) ;
probs = std : : vector < completion_token_output > ( slot . generated_token_probs . begin ( ) , slot . generated_token_probs . end ( ) - stop_word_toks . size ( ) ) ;
}
else
{
probs = std : : vector < completion_token_output > (
slot . generated_token_probs . begin ( ) ,
slot . generated_token_probs . end ( ) ) ;
}
res . result_json [ " completion_probabilities " ] = probs_vector_to_json ( ctx , probs ) ;
}
queue_results . send ( res ) ;
}
void send_embedding ( server_slot & slot , const llama_batch & batch )
{
task_result res ;
res . id = slot . task_id ;
res . multitask_id = slot . multitask_id ;
res . error = false ;
res . stop = true ;
const int n_embd = llama_n_embd ( model ) ;
if ( ! params . embedding )
{
LOG_WARNING ( " embedding disabled " , { { " params.embedding " , params . embedding } } ) ;
res . result_json = json
{
{ " embedding " , std : : vector < float > ( n_embd , 0.0f ) } ,
} ;
}
else
{
for ( int i = 0 ; i < batch . n_tokens ; + + i ) {
if ( ! batch . logits [ i ] | | batch . seq_id [ i ] [ 0 ] ! = slot . id ) {
continue ;
}
const float * embd = llama_get_embeddings_seq ( ctx , batch . seq_id [ i ] [ 0 ] ) ;
if ( embd = = NULL ) {
embd = llama_get_embeddings_ith ( ctx , i ) ;
if ( embd = = NULL ) {
LOG_ERROR ( " failed to get embeddings for token " , { { " token " , batch . token [ i ] } , { " seq_id " , batch . seq_id [ i ] [ 0 ] } } ) ;
res . result_json = json
{
{ " embedding " , std : : vector < float > ( n_embd , 0.0f ) } ,
} ;
continue ;
}
}
res . result_json = json
{
{ " embedding " , std : : vector < float > ( embd , embd + n_embd ) } ,
} ;
}
}
queue_results . send ( res ) ;
}
2024-05-12 16:21:35 +00:00
void request_completion ( int task_id , json data , bool embedding , int multitask_id )
2024-03-12 20:49:47 +00:00
{
task_server task ;
task . id = task_id ;
task . target_id = 0 ;
task . data = std : : move ( data ) ;
task . embedding_mode = embedding ;
task . type = TASK_TYPE_COMPLETION ;
task . multitask_id = multitask_id ;
// when a completion task's prompt array is not a singleton, we split it into multiple requests
// otherwise, it's a single-prompt task, we actually queue it
// if there's numbers in the prompt array it will be treated as an array of tokens
if ( task . data . count ( " prompt " ) ! = 0 & & task . data . at ( " prompt " ) . size ( ) > 1 ) {
bool numbers = false ;
for ( const auto & e : task . data . at ( " prompt " ) ) {
if ( e . is_number ( ) ) {
numbers = true ;
break ;
}
}
// NOTE: split_multiprompt_task() does not handle a mix of strings and numbers,
// it will completely stall the server. I don't know where the bug for this is.
//
// if there are numbers, it needs to be treated like a single prompt,
// queue_tasks handles a mix of strings and numbers just fine.
if ( numbers ) {
queue_tasks . post ( task ) ;
} else {
split_multiprompt_task ( task_id , task ) ;
}
} else {
// an empty prompt can make slot become buggy
if ( task . data . contains ( " prompt " ) & & task . data [ " prompt " ] . is_string ( ) & & task . data [ " prompt " ] . get < std : : string > ( ) . empty ( ) ) {
task . data [ " prompt " ] = " " ; // add a space so that we have one token
}
queue_tasks . post ( task ) ;
}
}
// for multiple images processing
bool ingest_images ( server_slot & slot , int n_batch )
{
int image_idx = 0 ;
while ( image_idx < ( int ) slot . images . size ( ) )
{
slot_image & img = slot . images [ image_idx ] ;
// process prefix prompt
for ( int32_t i = 0 ; i < ( int32_t ) batch . n_tokens ; i + = n_batch )
{
const int32_t n_tokens = std : : min ( n_batch , ( int32_t ) ( batch . n_tokens - i ) ) ;
llama_batch batch_view = {
n_tokens ,
batch . token + i ,
nullptr ,
batch . pos + i ,
batch . n_seq_id + i ,
batch . seq_id + i ,
batch . logits + i ,
0 , 0 , 0 , // unused
} ;
if ( llama_decode ( ctx , batch_view ) )
{
2024-10-17 18:59:52 +00:00
LOG_WRN ( " %s : failed to eval \n " , __func__ ) ;
2024-03-12 20:49:47 +00:00
return false ;
}
}
// process image with llm
for ( int i = 0 ; i < img . image_tokens ; i + = n_batch )
{
int n_eval = img . image_tokens - i ;
if ( n_eval > n_batch )
{
n_eval = n_batch ;
}
const int n_embd = llama_n_embd ( model ) ;
llama_batch batch_img = {
n_eval ,
nullptr ,
( img . image_embedding + i * n_embd ) ,
nullptr ,
nullptr ,
nullptr ,
nullptr ,
slot . n_past ,
1 , 0
} ;
if ( llama_decode ( ctx , batch_img ) )
{
2024-10-17 18:59:52 +00:00
LOG_WRN ( " %s : failed to eval image \n " , __func__ ) ;
2024-03-12 20:49:47 +00:00
return false ;
}
slot . n_past + = n_eval ;
}
image_idx + + ;
llama_batch_clear ( batch ) ;
// append prefix of next image
const auto json_prompt = ( image_idx > = ( int ) slot . images . size ( ) ) ?
slot . params . input_suffix : // no more images, then process suffix prompt
( json ) ( slot . images [ image_idx ] . prefix_prompt ) ;
std : : vector < llama_token > append_tokens = tokenize ( json_prompt , false ) ; // has next image
for ( int i = 0 ; i < ( int ) append_tokens . size ( ) ; + + i )
{
llama_batch_add ( batch , append_tokens [ i ] , system_tokens . size ( ) + slot . n_past , { slot . id } , true ) ;
slot . n_past + = 1 ;
}
}
return true ;
}
void request_cancel ( int task_id )
{
task_server task ;
task . type = TASK_TYPE_CANCEL ;
task . target_id = task_id ;
queue_tasks . post ( task ) ;
}
void split_multiprompt_task ( int multitask_id , task_server & multiprompt_task )
{
int prompt_count = multiprompt_task . data . at ( " prompt " ) . size ( ) ;
if ( prompt_count < = 1 ) {
send_error ( multiprompt_task , " error while handling multiple prompts " ) ;
return ;
}
// generate all the ID for subtask
std : : vector < int > subtask_ids ( prompt_count ) ;
for ( int i = 0 ; i < prompt_count ; i + + )
{
subtask_ids [ i ] = queue_tasks . get_new_id ( ) ;
}
// queue up the multitask so we can track its subtask progression
queue_tasks . add_multitask ( multitask_id , subtask_ids ) ;
// add subtasks
for ( int i = 0 ; i < prompt_count ; i + + )
{
json subtask_data = multiprompt_task . data ;
subtask_data [ " prompt " ] = subtask_data [ " prompt " ] [ i ] ;
2024-05-12 16:21:35 +00:00
// subtasks inherit everything else (embedding mode, etc.)
request_completion ( subtask_ids [ i ] , subtask_data , multiprompt_task . embedding_mode , multitask_id ) ;
2024-03-12 20:49:47 +00:00
}
}
2024-07-05 16:32:47 +00:00
std : : string common_prefix ( const std : : string & str1 , const std : : string & str2 ) {
auto mismatch_pair = std : : mismatch ( str1 . begin ( ) , str1 . end ( ) , str2 . begin ( ) ) ;
return std : : string ( str1 . begin ( ) , mismatch_pair . first ) ;
}
// Find the slot that has the greatest common prefix
server_slot * prefix_slot ( const json & prompt ) {
if ( ! prompt . is_string ( ) ) {
return nullptr ;
}
std : : string prompt_str = prompt . get < std : : string > ( ) ;
server_slot * slot = nullptr ;
size_t longest = 0 ;
for ( server_slot & s : slots ) {
if ( s . available ( ) & & s . prompt . is_string ( ) ) {
std : : string s_prompt = s . prompt . get < std : : string > ( ) ;
std : : string prefix = common_prefix ( s_prompt , prompt_str ) ;
if ( prefix . size ( ) > longest ) {
slot = & s ;
longest = prefix . size ( ) ;
}
}
}
if ( ! slot ) {
return get_slot ( - 1 ) ;
}
2024-07-07 16:38:04 +00:00
LOG_DEBUG ( " slot with common prefix found " , { {
2024-07-05 16:32:47 +00:00
" slot_id " , slot - > id ,
" characters " , longest
} } ) ;
return slot ;
}
2024-03-12 20:49:47 +00:00
void process_single_task ( task_server & task )
{
switch ( task . type )
{
case TASK_TYPE_COMPLETION : {
2024-08-22 21:51:42 +00:00
server_slot * slot = nullptr ;
if ( task . embedding_mode ) {
// Embedding seq_id (aka slot id) must always be <= token length, so always use slot 0
slot = slots [ 0 ] . available ( ) ? & slots [ 0 ] : nullptr ;
} else {
slot = prefix_slot ( task . data [ " prompt " ] ) ;
}
2024-03-12 20:49:47 +00:00
if ( slot = = nullptr )
{
// if no slot is available, we defer this task for processing later
LOG_VERBOSE ( " no slot is available " , { { " task_id " , task . id } } ) ;
queue_tasks . defer ( task ) ;
break ;
}
slot - > reset ( ) ;
slot - > embedding = task . embedding_mode ;
slot - > task_id = task . id ;
slot - > multitask_id = task . multitask_id ;
if ( ! launch_slot_with_data ( slot , task . data ) )
{
// send error result
send_error ( task , " internal_error " ) ;
break ;
}
} break ;
case TASK_TYPE_CANCEL : { // release slot linked with the task id
for ( auto & slot : slots )
{
if ( slot . task_id = = task . target_id )
{
slot . release ( ) ;
break ;
}
}
} break ;
case TASK_TYPE_NEXT_RESPONSE : {
// do nothing
} break ;
case TASK_TYPE_METRICS : {
json slots_data = json : : array ( ) ;
int n_idle_slots = 0 ;
int n_processing_slots = 0 ;
for ( server_slot & slot : slots ) {
json slot_data = get_formated_generation ( slot ) ;
slot_data [ " id " ] = slot . id ;
slot_data [ " task_id " ] = slot . task_id ;
slot_data [ " state " ] = slot . state ;
slot_data [ " prompt " ] = slot . prompt ;
slot_data [ " next_token " ] = {
{ " has_next_token " , slot . has_next_token } ,
{ " n_remain " , slot . n_remaining } ,
{ " num_tokens_predicted " , slot . n_decoded } ,
{ " stopped_eos " , slot . stopped_eos } ,
{ " stopped_word " , slot . stopped_word } ,
{ " stopped_limit " , slot . stopped_limit } ,
{ " stopping_word " , slot . stopping_word } ,
} ;
if ( slot_data [ " state " ] = = IDLE ) {
n_idle_slots + + ;
} else {
n_processing_slots + + ;
}
slots_data . push_back ( slot_data ) ;
}
2024-05-09 20:52:56 +00:00
LOG_DEBUG ( " slot data " , {
2024-03-12 20:49:47 +00:00
{ " task_id " , task . id } ,
{ " n_idle_slots " , n_idle_slots } ,
{ " n_processing_slots " , n_processing_slots }
} ) ;
LOG_VERBOSE ( " slot data " , {
{ " task_id " , task . id } ,
{ " n_idle_slots " , n_idle_slots } ,
{ " n_processing_slots " , n_processing_slots } ,
{ " slots " , slots_data }
} ) ;
task_result res ;
res . id = task . id ;
res . multitask_id = task . multitask_id ;
res . stop = true ;
res . error = false ;
res . result_json = {
{ " idle " , n_idle_slots } ,
{ " processing " , n_processing_slots } ,
{ " deferred " , queue_tasks . queue_tasks_deferred . size ( ) } ,
{ " n_prompt_tokens_processed_total " , metrics . n_prompt_tokens_processed_total } ,
{ " n_tokens_predicted_total " , metrics . n_tokens_predicted_total } ,
{ " n_prompt_tokens_processed " , metrics . n_prompt_tokens_processed } ,
{ " t_prompt_processing " , metrics . t_prompt_processing } ,
{ " n_tokens_predicted " , metrics . n_tokens_predicted } ,
{ " t_tokens_generation " , metrics . t_tokens_generation } ,
{ " kv_cache_tokens_count " , llama_get_kv_cache_token_count ( ctx ) } ,
{ " kv_cache_used_cells " , llama_get_kv_cache_used_cells ( ctx ) } ,
{ " slots " , slots_data } ,
} ;
metrics . reset_bucket ( ) ;
queue_results . send ( res ) ;
} break ;
}
}
void on_finish_multitask ( task_multi & multitask )
{
// all subtasks done == multitask is done
task_result result ;
result . id = multitask . id ;
result . stop = true ;
result . error = false ;
// collect json results into one json result
std : : vector < json > result_jsons ;
for ( auto & subres : multitask . results )
{
result_jsons . push_back ( subres . result_json ) ;
result . error = result . error & & subres . error ;
}
result . result_json = json { { " results " , result_jsons } } ;
queue_results . send ( result ) ;
}
bool update_slots ( ) {
if ( system_need_update )
{
2024-05-09 20:52:56 +00:00
LOG_DEBUG ( " updating system prompt " , { } ) ;
2024-03-12 20:49:47 +00:00
system_prompt_update ( ) ;
}
llama_batch_clear ( batch ) ;
if ( all_slots_are_idle )
{
if ( system_prompt . empty ( ) & & clean_kv_cache )
{
2024-05-09 20:52:56 +00:00
LOG_DEBUG ( " all slots are idle and system prompt is empty, clear the KV cache " , { } ) ;
2024-03-12 20:49:47 +00:00
kv_cache_clear ( ) ;
}
return true ;
}
LOG_VERBOSE ( " posting NEXT_RESPONSE " , { } ) ;
task_server task ;
task . type = TASK_TYPE_NEXT_RESPONSE ;
task . target_id = - 1 ;
queue_tasks . post ( task ) ;
for ( server_slot & slot : slots )
{
if ( slot . ga_n = = 1 )
{
if ( slot . is_processing ( ) & & system_tokens . size ( ) + slot . cache_tokens . size ( ) > = ( size_t ) slot . n_ctx )
{
// Shift context
const int n_keep = slot . params . n_keep + add_bos_token ;
const int n_left = ( int ) system_tokens . size ( ) + slot . n_past - n_keep ;
const int n_discard = n_left / 2 ;
2024-05-09 20:52:56 +00:00
LOG_DEBUG ( " slot context shift " , {
2024-03-12 20:49:47 +00:00
{ " slot_id " , slot . id } ,
{ " task_id " , slot . task_id } ,
{ " n_keep " , n_keep } ,
{ " n_left " , n_left } ,
{ " n_discard " , n_discard } ,
{ " n_ctx " , n_ctx } ,
{ " n_past " , slot . n_past } ,
{ " n_system_tokens " , system_tokens . size ( ) } ,
{ " n_cache_tokens " , slot . cache_tokens . size ( ) }
} ) ;
llama_kv_cache_seq_rm ( ctx , slot . id , n_keep , n_keep + n_discard ) ;
llama_kv_cache_seq_add ( ctx , slot . id , n_keep + n_discard , system_tokens . size ( ) + slot . n_past , - n_discard ) ;
for ( size_t i = n_keep + n_discard ; i < slot . cache_tokens . size ( ) ; i + + )
{
slot . cache_tokens [ i - n_discard ] = slot . cache_tokens [ i ] ;
}
slot . cache_tokens . resize ( slot . cache_tokens . size ( ) - n_discard ) ;
slot . n_past - = n_discard ;
slot . truncated = true ;
}
}
}
// decode any currently ongoing sequences
LOG_VERBOSE ( " decoding ongoing sequences " , { } ) ;
for ( auto & slot : slots )
{
// release the slot
if ( slot . command = = RELEASE )
{
slot . state = IDLE ;
slot . command = NONE ;
slot . t_last_used = ggml_time_us ( ) ;
2024-05-09 20:52:56 +00:00
LOG_DEBUG ( " slot released " , {
2024-03-12 20:49:47 +00:00
{ " slot_id " , slot . id } ,
{ " task_id " , slot . task_id } ,
{ " n_ctx " , n_ctx } ,
{ " n_past " , slot . n_past } ,
{ " n_system_tokens " , system_tokens . size ( ) } ,
{ " n_cache_tokens " , slot . cache_tokens . size ( ) } ,
{ " truncated " , slot . truncated }
} ) ;
queue_tasks . notify_slot_changed ( ) ;
continue ;
}
if ( slot . state = = IDLE )
{
continue ;
}
slot . i_batch = batch . n_tokens ;
const int32_t slot_npast = slot . n_past_se > 0 ? slot . n_past_se : slot . n_past ;
// TODO: we always have to take into account the "system_tokens"
// this is not great and needs to be improved somehow
llama_batch_add ( batch , slot . sampled , system_tokens . size ( ) + slot_npast , { slot . id } , true ) ;
slot . n_past + = 1 ;
}
// process in chunks of params.n_batch
int32_t n_batch = params . n_batch ;
// assign workload to the slots
if ( params . cont_batching | | batch . n_tokens = = 0 )
{
for ( auto & slot : slots )
{
const bool has_prompt = slot . prompt . is_array ( ) | | ( slot . prompt . is_string ( ) & & ! slot . prompt . get < std : : string > ( ) . empty ( ) ) | | ! slot . images . empty ( ) ;
// empty prompt passed -> release the slot and send empty response
2024-05-12 16:21:35 +00:00
if ( slot . state = = IDLE & & slot . command = = LOAD_PROMPT & & ! has_prompt )
2024-03-12 20:49:47 +00:00
{
slot . release ( ) ;
slot . print_timings ( ) ;
send_final_response ( slot ) ;
continue ;
}
// need process the prompt
if ( slot . state = = IDLE & & slot . command = = LOAD_PROMPT )
{
slot . state = PROCESSING ;
slot . command = NONE ;
std : : vector < llama_token > prompt_tokens ;
slot . t_start_process_prompt = ggml_time_us ( ) ;
slot . t_start_genereration = 0 ;
2024-06-09 01:47:10 +00:00
prompt_tokens = tokenize ( slot . prompt , system_prompt . empty ( ) ) ; // add BOS if there isn't system prompt
2024-03-12 20:49:47 +00:00
slot . n_prompt_tokens = prompt_tokens . size ( ) ;
if ( slot . params . n_keep < 0 )
{
slot . params . n_keep = slot . n_prompt_tokens ;
}
slot . params . n_keep = std : : min ( slot . n_ctx - 4 , slot . params . n_keep ) ;
// if input prompt is too big, truncate it, if group attention self-extend is disabled
2024-07-07 17:41:51 +00:00
if ( slot . ga_n = = 1 & & slot . n_prompt_tokens > = slot . n_ctx )
2024-03-12 20:49:47 +00:00
{
const int n_left = slot . n_ctx - slot . params . n_keep ;
2024-06-29 02:39:31 +00:00
const int n_shift = n_left / 2 ;
const int n_erase = slot . n_prompt_tokens - slot . params . n_keep - n_shift ;
2024-03-12 20:49:47 +00:00
std : : vector < llama_token > new_tokens (
prompt_tokens . begin ( ) ,
prompt_tokens . begin ( ) + slot . params . n_keep ) ;
new_tokens . insert (
new_tokens . end ( ) ,
2024-06-29 02:39:31 +00:00
prompt_tokens . begin ( ) + slot . params . n_keep + n_erase ,
2024-03-12 20:49:47 +00:00
prompt_tokens . end ( ) ) ;
2024-06-29 02:39:31 +00:00
LOG_INFO ( " input truncated " , {
{ " n_ctx " , slot . n_ctx } ,
{ " n_keep " , slot . params . n_keep } ,
{ " n_left " , n_left } ,
{ " n_shift " , n_shift } ,
{ " n_erase " , n_erase } ,
2024-03-12 20:49:47 +00:00
} ) ;
slot . truncated = true ;
prompt_tokens = new_tokens ;
slot . n_prompt_tokens = prompt_tokens . size ( ) ;
GGML_ASSERT ( slot . n_prompt_tokens < slot . n_ctx ) ;
}
if ( ! slot . params . cache_prompt )
{
2024-10-17 18:59:52 +00:00
gpt_sampler_reset ( slot . smpl ) ;
2024-03-12 20:49:47 +00:00
slot . n_past = 0 ;
slot . n_past_se = 0 ;
slot . ga_i = 0 ;
slot . n_prompt_tokens_processed = slot . n_prompt_tokens ;
}
else
{
// push the prompt into the sampling context (do not apply grammar)
for ( auto & token : prompt_tokens )
{
2024-10-17 18:59:52 +00:00
gpt_sampler_accept ( slot . smpl , token , false ) ;
2024-03-12 20:49:47 +00:00
}
slot . n_past = common_part ( slot . cache_tokens , prompt_tokens ) ;
// the last token of the cache is not in the KV cache until the next call to llama_decode
// (it was sampled, pushed into the "cache_tokens", but not yet put in the context)
if ( slot . n_past > 0 & & slot . n_past = = ( int32_t ) slot . cache_tokens . size ( ) )
{
slot . n_past - = 1 ;
}
2024-07-03 20:46:23 +00:00
slot . n_prompt_tokens_processed = slot . n_prompt_tokens ;
2024-03-12 20:49:47 +00:00
if ( slot . ga_n ! = 1 )
{
int ga_i = 0 ;
int32_t ga_n = slot . ga_n ;
int32_t ga_w = slot . ga_w ;
int32_t slot_npast = 0 ;
for ( int k = 0 ; k < slot . n_past ; + + k )
{
while ( slot_npast > = ga_i + ga_w ) {
const int bd = ( ga_w / ga_n ) * ( ga_n - 1 ) ;
slot_npast - = bd ;
ga_i + = ga_w / ga_n ;
}
slot_npast + + ;
}
slot . n_past_se = slot_npast ;
slot . ga_i = ga_i ;
}
2024-05-09 20:52:56 +00:00
LOG_DEBUG ( " slot progression " , {
2024-03-12 20:49:47 +00:00
{ " slot_id " , slot . id } ,
{ " task_id " , slot . task_id } ,
{ " n_past " , slot . n_past } ,
{ " n_past_se " , slot . n_past_se } ,
{ " ga_i " , slot . ga_i } ,
{ " n_prompt_tokens_processed " , slot . n_prompt_tokens_processed }
} ) ;
}
slot . cache_tokens = prompt_tokens ;
if ( slot . n_past = = slot . n_prompt_tokens & & slot . n_past > 0 )
{
// we have to evaluate at least 1 token to generate logits.
2024-05-09 20:52:56 +00:00
LOG_DEBUG ( " we have to evaluate at least 1 token to generate logits " , {
2024-03-12 20:49:47 +00:00
{ " slot_id " , slot . id } ,
{ " task_id " , slot . task_id }
} ) ;
slot . n_past - - ;
if ( slot . ga_i > 0 )
{
slot . n_past_se - - ;
}
}
int p0 = ( int ) system_tokens . size ( ) + slot . n_past ;
2024-05-09 20:52:56 +00:00
LOG_DEBUG ( " kv cache rm [p0, end) " , {
2024-03-12 20:49:47 +00:00
{ " slot_id " , slot . id } ,
{ " task_id " , slot . task_id } ,
{ " p0 " , p0 }
} ) ;
llama_kv_cache_seq_rm ( ctx , slot . id , p0 , - 1 ) ;
LOG_VERBOSE ( " prompt ingested " , {
{ " n_past " , slot . n_past } ,
{ " cached " , tokens_to_str ( ctx , slot . cache_tokens . cbegin ( ) , slot . cache_tokens . cbegin ( ) + slot . n_past ) } ,
{ " to_eval " , tokens_to_str ( ctx , slot . cache_tokens . cbegin ( ) + slot . n_past , slot . cache_tokens . cend ( ) ) } ,
} ) ;
const bool has_images = process_images ( slot ) ;
// process the prefix of first image
std : : vector < llama_token > prefix_tokens = has_images ? tokenize ( slot . images [ 0 ] . prefix_prompt , add_bos_token ) : prompt_tokens ;
int32_t slot_npast = slot . n_past_se > 0 ? slot . n_past_se : slot . n_past ;
int32_t ga_i = slot . ga_i ;
int32_t ga_n = slot . ga_n ;
int32_t ga_w = slot . ga_w ;
for ( ; slot . n_past < ( int ) prefix_tokens . size ( ) ; + + slot . n_past )
{
if ( slot . ga_n ! = 1 )
{
while ( slot_npast > = ga_i + ga_w ) {
const int bd = ( ga_w / ga_n ) * ( ga_n - 1 ) ;
slot_npast - = bd ;
ga_i + = ga_w / ga_n ;
}
}
llama_batch_add ( batch , prefix_tokens [ slot . n_past ] , system_tokens . size ( ) + slot_npast , { slot . id } , false ) ;
slot_npast + + ;
}
if ( has_images & & ! ingest_images ( slot , n_batch ) )
{
LOG_ERROR ( " failed processing images " , {
{ " slot_id " , slot . id } ,
{ " task_id " , slot . task_id } ,
} ) ;
// FIXME @phymbert: to be properly tested
// early returning without changing the slot state will block the slot for ever
// no one at the moment is checking the return value
return false ;
}
// extract the logits only for the last token
if ( batch . n_tokens > 0 )
{
batch . logits [ batch . n_tokens - 1 ] = true ;
}
slot . n_decoded = 0 ;
slot . i_batch = batch . n_tokens - 1 ;
}
}
}
if ( batch . n_tokens = = 0 )
{
all_slots_are_idle = true ;
return true ;
}
for ( int32_t i = 0 ; i < ( int32_t ) batch . n_tokens ; i + = n_batch )
{
const int32_t n_tokens = std : : min ( n_batch , batch . n_tokens - i ) ;
for ( auto & slot : slots )
{
if ( slot . ga_n ! = 1 )
{
// context extension via Self-Extend
while ( slot . n_past_se > = slot . ga_i + slot . ga_w )
{
const int ib = ( slot . ga_n * slot . ga_i ) / slot . ga_w ;
const int bd = ( slot . ga_w / slot . ga_n ) * ( slot . ga_n - 1 ) ;
const int dd = ( slot . ga_w / slot . ga_n ) - ib * bd - slot . ga_w ;
2024-10-17 18:59:52 +00:00
LOG_DBG ( " \n " ) ;
LOG_DBG ( " shift: [%6d, %6d] + %6d -> [%6d, %6d] \n " , slot . ga_i , slot . n_past_se , ib * bd , slot . ga_i + ib * bd , slot . n_past_se + ib * bd ) ;
LOG_DBG ( " div: [%6d, %6d] / %6d -> [%6d, %6d] \n " , slot . ga_i + ib * bd , slot . ga_i + ib * bd + slot . ga_w , slot . ga_n , ( slot . ga_i + ib * bd ) / slot . ga_n , ( slot . ga_i + ib * bd + slot . ga_w ) / slot . ga_n ) ;
LOG_DBG ( " shift: [%6d, %6d] + %6d -> [%6d, %6d] \n " , slot . ga_i + ib * bd + slot . ga_w , slot . n_past_se + ib * bd , dd , slot . ga_i + ib * bd + slot . ga_w + dd , slot . n_past_se + ib * bd + dd ) ;
2024-03-12 20:49:47 +00:00
llama_kv_cache_seq_add ( ctx , slot . id , slot . ga_i , slot . n_past_se , ib * bd ) ;
llama_kv_cache_seq_div ( ctx , slot . id , slot . ga_i + ib * bd , slot . ga_i + ib * bd + slot . ga_w , slot . ga_n ) ;
llama_kv_cache_seq_add ( ctx , slot . id , slot . ga_i + ib * bd + slot . ga_w , slot . n_past_se + ib * bd , dd ) ;
slot . n_past_se - = bd ;
slot . ga_i + = slot . ga_w / slot . ga_n ;
2024-10-17 18:59:52 +00:00
LOG_DBG ( " \n n_past_old = %d, n_past = %d, ga_i = %d \n \n " , slot . n_past_se + bd , slot . n_past_se , slot . ga_i ) ;
2024-03-12 20:49:47 +00:00
}
slot . n_past_se + = n_tokens ;
}
}
llama_batch batch_view =
{
n_tokens ,
batch . token + i ,
nullptr ,
batch . pos + i ,
batch . n_seq_id + i ,
batch . seq_id + i ,
batch . logits + i ,
0 , 0 , 0 , // unused
} ;
const int ret = llama_decode ( ctx , batch_view ) ;
if ( ret ! = 0 )
{
if ( n_batch = = 1 | | ret < 0 )
{
// if you get here, it means the KV cache is full - try increasing it via the context size
2024-10-17 18:59:52 +00:00
LOG_WRN ( " %s : failed to decode the batch, n_batch = %d, ret = %d \n " , __func__ , n_batch , ret ) ;
2024-03-12 20:49:47 +00:00
return false ;
}
2024-10-17 18:59:52 +00:00
LOG_WRN ( " %s : failed to find free space in the KV cache, retrying with smaller n_batch = %d \n " , __func__ , n_batch / 2 ) ;
2024-03-12 20:49:47 +00:00
// retry with half the batch size to try to find a free slot in the KV cache
n_batch / = 2 ;
i - = n_batch ;
continue ;
}
for ( auto & slot : slots )
{
if ( slot . i_batch < ( int ) i | | slot . i_batch > = ( int ) ( i + n_tokens ) )
{
continue ;
}
// prompt evaluated for embedding
if ( slot . embedding )
{
send_embedding ( slot , batch_view ) ;
slot . release ( ) ;
slot . i_batch = - 1 ;
continue ;
}
completion_token_output result ;
2024-10-17 18:59:52 +00:00
const llama_token id = gpt_sampler_sample ( slot . smpl , ctx , slot . i_batch - i ) ;
2024-03-12 20:49:47 +00:00
2024-10-17 18:59:52 +00:00
gpt_sampler_accept ( slot . smpl , id , true ) ;
2024-03-12 20:49:47 +00:00
slot . n_decoded + = 1 ;
if ( slot . n_decoded = = 1 )
{
slot . t_start_genereration = ggml_time_us ( ) ;
slot . t_prompt_processing = ( slot . t_start_genereration - slot . t_start_process_prompt ) / 1e3 ;
metrics . on_prompt_eval ( slot ) ;
}
result . tok = id ;
2024-10-17 18:59:52 +00:00
const auto * cur_p = gpt_sampler_get_candidates ( slot . smpl ) ;
2024-03-12 20:49:47 +00:00
2024-10-17 18:59:52 +00:00
for ( size_t i = 0 ; i < ( size_t ) slot . sparams . n_probs ; + + i ) {
result . probs . push_back ( {
cur_p - > data [ i ] . id ,
i > = cur_p - > size ? 0.0f : cur_p - > data [ i ] . p ,
} ) ;
}
2024-03-12 20:49:47 +00:00
if ( ! process_token ( result , slot ) )
{
slot . release ( ) ;
slot . print_timings ( ) ;
send_final_response ( slot ) ;
metrics . on_prediction ( slot ) ;
}
slot . i_batch = - 1 ;
}
}
LOG_VERBOSE ( " slots updated " , { } ) ;
return true ;
}
json model_meta ( ) {
return json {
{ " vocab_type " , llama_vocab_type ( model ) } ,
{ " n_vocab " , llama_n_vocab ( model ) } ,
{ " n_ctx_train " , llama_n_ctx_train ( model ) } ,
{ " n_embd " , llama_n_embd ( model ) } ,
{ " n_params " , llama_model_n_params ( model ) } ,
{ " size " , llama_model_size ( model ) } ,
} ;
}
} ;
static void server_print_usage ( const char * argv0 , const gpt_params & params ,
const server_params & sparams )
{
printf ( " usage: %s [options] \n " , argv0 ) ;
printf ( " \n " ) ;
printf ( " options: \n " ) ;
printf ( " -h, --help show this help message and exit \n " ) ;
printf ( " -v, --verbose verbose output (default: %s) \n " , server_verbose ? " enabled " : " disabled " ) ;
2024-09-04 01:12:39 +00:00
printf ( " -t N, --threads N number of threads to use during computation (default: %d) \n " , params . cpuparams . n_threads ) ;
2024-03-12 20:49:47 +00:00
printf ( " -tb N, --threads-batch N number of threads to use during batch and prompt processing (default: same as --threads) \n " ) ;
printf ( " --threads-http N number of threads in the http server pool to process requests (default: max(hardware concurrency - 1, --parallel N + 2)) \n " ) ;
printf ( " -c N, --ctx-size N size of the prompt context (default: %d) \n " , params . n_ctx ) ;
printf ( " --rope-scaling {none,linear,yarn} \n " ) ;
printf ( " RoPE frequency scaling method, defaults to linear unless specified by the model \n " ) ;
printf ( " --rope-freq-base N RoPE base frequency (default: loaded from model) \n " ) ;
printf ( " --rope-freq-scale N RoPE frequency scaling factor, expands context by a factor of 1/N \n " ) ;
printf ( " --yarn-ext-factor N YaRN: extrapolation mix factor (default: 1.0, 0.0 = full interpolation) \n " ) ;
printf ( " --yarn-attn-factor N YaRN: scale sqrt(t) or attention magnitude (default: 1.0) \n " ) ;
printf ( " --yarn-beta-slow N YaRN: high correction dim or alpha (default: %.1f) \n " , params . yarn_beta_slow ) ;
printf ( " --yarn-beta-fast N YaRN: low correction dim or beta (default: %.1f) \n " , params . yarn_beta_fast ) ;
printf ( " --pooling {none,mean,cls} \n " ) ;
printf ( " pooling type for embeddings, use model default if unspecified \n " ) ;
printf ( " -b N, --batch-size N batch size for prompt processing (default: %d) \n " , params . n_batch ) ;
printf ( " --memory-f32 use f32 instead of f16 for memory key+value (default: disabled) \n " ) ;
printf ( " not recommended: doubles context memory required and no measurable increase in quality \n " ) ;
if ( llama_supports_mlock ( ) )
{
printf ( " --mlock force system to keep model in RAM rather than swapping or compressing \n " ) ;
}
if ( llama_supports_mmap ( ) )
{
printf ( " --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock) \n " ) ;
}
printf ( " --numa TYPE attempt optimizations that help on some NUMA systems \n " ) ;
printf ( " - distribute: spread execution evenly over all nodes \n " ) ;
printf ( " - isolate: only spawn threads on CPUs on the node that execution started on \n " ) ;
printf ( " - numactl: use the CPU map provided my numactl \n " ) ;
if ( llama_supports_gpu_offload ( ) ) {
printf ( " -ngl N, --n-gpu-layers N \n " ) ;
printf ( " number of layers to store in VRAM \n " ) ;
printf ( " -sm SPLIT_MODE, --split-mode SPLIT_MODE \n " ) ;
printf ( " how to split the model across multiple GPUs, one of: \n " ) ;
printf ( " - none: use one GPU only \n " ) ;
printf ( " - layer (default): split layers and KV across GPUs \n " ) ;
printf ( " - row: split rows across GPUs \n " ) ;
printf ( " -ts SPLIT --tensor-split SPLIT \n " ) ;
printf ( " fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1 \n " ) ;
printf ( " -mg i, --main-gpu i the GPU to use for the model (with split-mode = none), \n " ) ;
printf ( " or for intermediate results and KV (with split-mode = row) \n " ) ;
}
printf ( " -m FNAME, --model FNAME \n " ) ;
printf ( " model path (default: %s) \n " , params . model . c_str ( ) ) ;
printf ( " -a ALIAS, --alias ALIAS \n " ) ;
printf ( " set an alias for the model, will be added as `model` field in completion response \n " ) ;
printf ( " --lora FNAME apply LoRA adapter (implies --no-mmap) \n " ) ;
printf ( " --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter \n " ) ;
printf ( " --host ip address to listen (default (default: %s) \n " , sparams . hostname . c_str ( ) ) ;
printf ( " --port PORT port to listen (default (default: %d) \n " , sparams . port ) ;
printf ( " --path PUBLIC_PATH path from which to serve static files (default %s) \n " , sparams . public_path . c_str ( ) ) ;
printf ( " --api-key API_KEY optional api key to enhance server security. If set, requests must include this key for access. \n " ) ;
printf ( " --api-key-file FNAME path to file containing api keys delimited by new lines. If set, requests must include one of the keys for access. \n " ) ;
printf ( " -to N, --timeout N server read/write timeout in seconds (default: %d) \n " , sparams . read_timeout ) ;
printf ( " --embedding enable embedding vector output (default: %s) \n " , params . embedding ? " enabled " : " disabled " ) ;
printf ( " -np N, --parallel N number of slots for process requests (default: %d) \n " , params . n_parallel ) ;
printf ( " -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled) \n " ) ;
2024-05-20 20:36:03 +00:00
printf ( " -fa, --flash-attn enable Flash Attention (default: %s) \n " , params . flash_attn ? " enabled " : " disabled " ) ;
2024-03-12 20:49:47 +00:00
printf ( " -spf FNAME, --system-prompt-file FNAME \n " ) ;
printf ( " set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications. \n " ) ;
printf ( " -ctk TYPE, --cache-type-k TYPE \n " ) ;
printf ( " KV cache data type for K (default: f16) \n " ) ;
printf ( " -ctv TYPE, --cache-type-v TYPE \n " ) ;
printf ( " KV cache data type for V (default: f16) \n " ) ;
printf ( " --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA. \n " ) ;
printf ( " --log-format log output format: json or text (default: json) \n " ) ;
printf ( " --log-disable disables logging to a file. \n " ) ;
printf ( " --slots-endpoint-disable disables slots monitoring endpoint. \n " ) ;
printf ( " --metrics enable prometheus compatible metrics endpoint (default: %s). \n " , sparams . metrics_endpoint ? " enabled " : " disabled " ) ;
printf ( " \n " ) ;
printf ( " -n, --n-predict maximum tokens to predict (default: %d) \n " , params . n_predict ) ;
printf ( " --override-kv KEY=TYPE:VALUE \n " ) ;
printf ( " advanced option to override model metadata by key. may be specified multiple times. \n " ) ;
printf ( " types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false \n " ) ;
printf ( " -gan N, --grp-attn-n N set the group attention factor to extend context size through self-extend(default: 1=disabled), used together with group attention width `--grp-attn-w` \n " ) ;
printf ( " -gaw N, --grp-attn-w N set the group attention width to extend context size through self-extend(default: 512), used together with group attention factor `--grp-attn-n` \n " ) ;
printf ( " --chat-template JINJA_TEMPLATE \n " ) ;
printf ( " set custom jinja chat template (default: template taken from model's metadata) \n " ) ;
printf ( " Note: only commonly used templates are accepted, since we don't have jinja parser \n " ) ;
printf ( " \n " ) ;
}
2024-05-12 16:20:39 +00:00
static void server_params_parse ( int argc , char * * argv , server_params & sparams , gpt_params & params )
2024-03-12 20:49:47 +00:00
{
gpt_params default_params ;
server_params default_sparams ;
std : : string arg ;
bool invalid_param = false ;
for ( int i = 1 ; i < argc ; i + + )
{
arg = argv [ i ] ;
if ( arg = = " --port " )
{
if ( + + i > = argc )
{
invalid_param = true ;
break ;
}
sparams . port = std : : stoi ( argv [ i ] ) ;
}
else if ( arg = = " --host " )
{
if ( + + i > = argc )
{
invalid_param = true ;
break ;
}
sparams . hostname = argv [ i ] ;
}
else if ( arg = = " --path " )
{
if ( + + i > = argc )
{
invalid_param = true ;
break ;
}
sparams . public_path = argv [ i ] ;
}
else if ( arg = = " --api-key " )
{
if ( + + i > = argc )
{
invalid_param = true ;
break ;
}
sparams . api_keys . emplace_back ( argv [ i ] ) ;
}
else if ( arg = = " --api-key-file " )
{
if ( + + i > = argc )
{
invalid_param = true ;
break ;
}
std : : ifstream key_file ( argv [ i ] ) ;
if ( ! key_file ) {
fprintf ( stderr , " error: failed to open file '%s' \n " , argv [ i ] ) ;
invalid_param = true ;
break ;
}
std : : string key ;
while ( std : : getline ( key_file , key ) ) {
if ( key . size ( ) > 0 ) {
sparams . api_keys . push_back ( key ) ;
}
}
key_file . close ( ) ;
}
else if ( arg = = " --timeout " | | arg = = " -to " )
{
if ( + + i > = argc )
{
invalid_param = true ;
break ;
}
sparams . read_timeout = std : : stoi ( argv [ i ] ) ;
sparams . write_timeout = std : : stoi ( argv [ i ] ) ;
}
else if ( arg = = " -m " | | arg = = " --model " )
{
if ( + + i > = argc )
{
invalid_param = true ;
break ;
}
params . model = argv [ i ] ;
}
else if ( arg = = " -a " | | arg = = " --alias " )
{
if ( + + i > = argc )
{
invalid_param = true ;
break ;
}
params . model_alias = argv [ i ] ;
}
else if ( arg = = " -h " | | arg = = " --help " )
{
server_print_usage ( argv [ 0 ] , default_params , default_sparams ) ;
exit ( 0 ) ;
}
else if ( arg = = " -c " | | arg = = " --ctx-size " | | arg = = " --ctx_size " )
{
if ( + + i > = argc )
{
invalid_param = true ;
break ;
}
params . n_ctx = std : : stoi ( argv [ i ] ) ;
}
else if ( arg = = " --rope-scaling " )
{
if ( + + i > = argc )
{
invalid_param = true ;
break ;
}
std : : string value ( argv [ i ] ) ;
/**/ if ( value = = " none " ) { params . rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE ; }
else if ( value = = " linear " ) { params . rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR ; }
else if ( value = = " yarn " ) { params . rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN ; }
else { invalid_param = true ; break ; }
}
else if ( arg = = " --rope-freq-base " )
{
if ( + + i > = argc )
{
invalid_param = true ;
break ;
}
params . rope_freq_base = std : : stof ( argv [ i ] ) ;
}
else if ( arg = = " --rope-freq-scale " )
{
if ( + + i > = argc )
{
invalid_param = true ;
break ;
}
params . rope_freq_scale = std : : stof ( argv [ i ] ) ;
}
else if ( arg = = " --yarn-ext-factor " )
{
if ( + + i > = argc ) {
invalid_param = true ;
break ;
}
params . yarn_ext_factor = std : : stof ( argv [ i ] ) ;
}
else if ( arg = = " --yarn-attn-factor " )
{
if ( + + i > = argc ) {
invalid_param = true ;
break ;
}
params . yarn_attn_factor = std : : stof ( argv [ i ] ) ;
}
else if ( arg = = " --yarn-beta-fast " )
{
if ( + + i > = argc ) {
invalid_param = true ;
break ;
}
params . yarn_beta_fast = std : : stof ( argv [ i ] ) ;
}
else if ( arg = = " --yarn-beta-slow " )
{
if ( + + i > = argc ) {
invalid_param = true ;
break ;
}
params . yarn_beta_slow = std : : stof ( argv [ i ] ) ;
}
else if ( arg = = " --pooling " )
{
if ( + + i > = argc ) {
invalid_param = true ;
break ;
}
std : : string value ( argv [ i ] ) ;
/**/ if ( value = = " none " ) { params . pooling_type = LLAMA_POOLING_TYPE_NONE ; }
else if ( value = = " mean " ) { params . pooling_type = LLAMA_POOLING_TYPE_MEAN ; }
else if ( value = = " cls " ) { params . pooling_type = LLAMA_POOLING_TYPE_CLS ; }
else { invalid_param = true ; break ; }
}
else if ( arg = = " --threads " | | arg = = " -t " )
{
if ( + + i > = argc )
{
invalid_param = true ;
break ;
}
2024-09-04 01:12:39 +00:00
params . cpuparams . n_threads = std : : stoi ( argv [ i ] ) ;
2024-03-12 20:49:47 +00:00
}
else if ( arg = = " --grp-attn-n " | | arg = = " -gan " )
{
if ( + + i > = argc ) {
invalid_param = true ;
break ;
}
params . grp_attn_n = std : : stoi ( argv [ i ] ) ;
}
else if ( arg = = " --grp-attn-w " | | arg = = " -gaw " )
{
if ( + + i > = argc )
{
invalid_param = true ;
break ;
}
params . grp_attn_w = std : : stoi ( argv [ i ] ) ;
}
else if ( arg = = " --threads-batch " | | arg = = " -tb " )
{
if ( + + i > = argc )
{
invalid_param = true ;
break ;
}
2024-09-04 01:12:39 +00:00
params . cpuparams_batch . n_threads = std : : stoi ( argv [ i ] ) ;
2024-03-12 20:49:47 +00:00
}
else if ( arg = = " --threads-http " )
{
if ( + + i > = argc )
{
invalid_param = true ;
break ;
}
sparams . n_threads_http = std : : stoi ( argv [ i ] ) ;
}
else if ( arg = = " -b " | | arg = = " --batch-size " )
{
if ( + + i > = argc )
{
invalid_param = true ;
break ;
}
params . n_batch = std : : stoi ( argv [ i ] ) ;
}
else if ( arg = = " --gpu-layers " | | arg = = " -ngl " | | arg = = " --n-gpu-layers " )
{
if ( + + i > = argc )
{
invalid_param = true ;
break ;
}
if ( llama_supports_gpu_offload ( ) ) {
params . n_gpu_layers = std : : stoi ( argv [ i ] ) ;
} else {
LOG_WARNING ( " Not compiled with GPU offload support, --n-gpu-layers option will be ignored. "
" See main README.md for information on enabling GPU BLAS support " ,
{ { " n_gpu_layers " , params . n_gpu_layers } } ) ;
}
}
else if ( arg = = " --split-mode " | | arg = = " -sm " )
{
if ( + + i > = argc ) {
invalid_param = true ;
break ;
}
std : : string arg_next = argv [ i ] ;
if ( arg_next = = " none " )
{
params . split_mode = LLAMA_SPLIT_MODE_NONE ;
}
else if ( arg_next = = " layer " )
{
params . split_mode = LLAMA_SPLIT_MODE_LAYER ;
}
else if ( arg_next = = " row " )
{
params . split_mode = LLAMA_SPLIT_MODE_ROW ;
}
else {
invalid_param = true ;
break ;
}
2024-05-18 23:02:13 +00:00
# ifndef GGML_USE_CUDA
fprintf ( stderr , " warning: llama.cpp was compiled without CUDA. Setting the split mode has no effect. \n " ) ;
# endif // GGML_USE_CUDA
2024-03-12 20:49:47 +00:00
}
else if ( arg = = " --tensor-split " | | arg = = " -ts " )
{
if ( + + i > = argc )
{
invalid_param = true ;
break ;
}
2024-05-18 23:02:13 +00:00
# if defined(GGML_USE_CUDA) || defined(GGML_USE_SYCL)
2024-03-12 20:49:47 +00:00
std : : string arg_next = argv [ i ] ;
// split string by , and /
const std : : regex regex { R " ([,/]+) " } ;
std : : sregex_token_iterator it { arg_next . begin ( ) , arg_next . end ( ) , regex , - 1 } ;
std : : vector < std : : string > split_arg { it , { } } ;
GGML_ASSERT ( split_arg . size ( ) < = llama_max_devices ( ) ) ;
for ( size_t i_device = 0 ; i_device < llama_max_devices ( ) ; + + i_device )
{
if ( i_device < split_arg . size ( ) )
{
params . tensor_split [ i_device ] = std : : stof ( split_arg [ i_device ] ) ;
}
else
{
params . tensor_split [ i_device ] = 0.0f ;
}
}
# else
2024-05-18 23:02:13 +00:00
LOG_WARNING ( " llama.cpp was compiled without CUDA. It is not possible to set a tensor split. \n " , { } ) ;
# endif // GGML_USE_CUDA
2024-03-12 20:49:47 +00:00
}
else if ( arg = = " --main-gpu " | | arg = = " -mg " )
{
if ( + + i > = argc )
{
invalid_param = true ;
break ;
}
2024-05-18 23:02:13 +00:00
# if defined(GGML_USE_CUDA) || defined(GGML_USE_SYCL)
2024-03-12 20:49:47 +00:00
params . main_gpu = std : : stoi ( argv [ i ] ) ;
# else
LOG_WARNING ( " llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU. " , { } ) ;
# endif
}
else if ( arg = = " --lora " )
{
if ( + + i > = argc )
{
invalid_param = true ;
break ;
}
2024-08-06 19:11:45 +00:00
params . lora_adapters . push_back ( {
std : : string ( argv [ i ] ) ,
1.0 ,
} ) ;
2024-03-12 20:49:47 +00:00
params . use_mmap = false ;
}
else if ( arg = = " --lora-scaled " )
{
if ( + + i > = argc )
{
invalid_param = true ;
break ;
}
const char * lora_adapter = argv [ i ] ;
if ( + + i > = argc )
{
invalid_param = true ;
break ;
}
2024-08-06 19:11:45 +00:00
params . lora_adapters . push_back ( {
lora_adapter ,
std : : stof ( argv [ i ] )
} ) ;
2024-03-12 20:49:47 +00:00
params . use_mmap = false ;
}
else if ( arg = = " -v " | | arg = = " --verbose " )
{
server_verbose = true ;
}
else if ( arg = = " --mlock " )
{
params . use_mlock = true ;
}
else if ( arg = = " --no-mmap " )
{
params . use_mmap = false ;
}
2024-05-20 20:36:03 +00:00
else if ( arg = = " --numa " )
{
2024-03-12 20:49:47 +00:00
if ( + + i > = argc ) {
invalid_param = true ;
break ;
} else {
std : : string value ( argv [ i ] ) ;
/**/ if ( value = = " distribute " | | value = = " " ) { params . numa = GGML_NUMA_STRATEGY_DISTRIBUTE ; }
else if ( value = = " isolate " ) { params . numa = GGML_NUMA_STRATEGY_ISOLATE ; }
else if ( value = = " numactl " ) { params . numa = GGML_NUMA_STRATEGY_NUMACTL ; }
else { invalid_param = true ; break ; }
}
}
else if ( arg = = " --embedding " )
{
params . embedding = true ;
}
else if ( arg = = " -cb " | | arg = = " --cont-batching " )
{
params . cont_batching = true ;
}
2024-05-20 20:36:03 +00:00
else if ( arg = = " -fa " | | arg = = " --flash-attn " )
{
params . flash_attn = true ;
}
2024-03-12 20:49:47 +00:00
else if ( arg = = " -np " | | arg = = " --parallel " )
{
if ( + + i > = argc )
{
invalid_param = true ;
break ;
}
params . n_parallel = std : : stoi ( argv [ i ] ) ;
2024-05-20 20:36:03 +00:00
}
else if ( arg = = " -n " | | arg = = " --n-predict " )
2024-03-12 20:49:47 +00:00
{
if ( + + i > = argc )
{
invalid_param = true ;
break ;
}
params . n_predict = std : : stoi ( argv [ i ] ) ;
2024-05-20 20:36:03 +00:00
}
2024-03-12 20:49:47 +00:00
else if ( arg = = " -ctk " | | arg = = " --cache-type-k " ) {
params . cache_type_k = argv [ + + i ] ;
}
else if ( arg = = " -ctv " | | arg = = " --cache-type-v " ) {
params . cache_type_v = argv [ + + i ] ;
}
else if ( arg = = " --mmproj " )
{
if ( + + i > = argc )
{
invalid_param = true ;
break ;
}
params . mmproj = argv [ i ] ;
}
else if ( arg = = " --log-format " )
{
if ( + + i > = argc )
{
invalid_param = true ;
break ;
}
if ( std : : strcmp ( argv [ i ] , " json " ) = = 0 )
{
server_log_json = true ;
}
else if ( std : : strcmp ( argv [ i ] , " text " ) = = 0 )
{
server_log_json = false ;
}
else
{
invalid_param = true ;
break ;
}
}
else if ( arg = = " --log-disable " )
{
2024-10-17 18:59:52 +00:00
LOG_WARNING ( " DEPRECATED: --log-disable does nothing anymore " , { } ) ;
2024-03-12 20:49:47 +00:00
}
else if ( arg = = " --slots-endpoint-disable " )
{
sparams . slots_endpoint = false ;
}
else if ( arg = = " --metrics " )
{
sparams . metrics_endpoint = true ;
}
else if ( arg = = " --chat-template " )
{
if ( + + i > = argc )
{
invalid_param = true ;
break ;
}
if ( ! verify_custom_template ( argv [ i ] ) ) {
fprintf ( stderr , " error: the supplied chat template is not supported: %s \n " , argv [ i ] ) ;
fprintf ( stderr , " note: llama.cpp does not use jinja parser, we only support commonly used templates \n " ) ;
invalid_param = true ;
break ;
}
}
else if ( arg = = " --override-kv " )
{
if ( + + i > = argc ) {
invalid_param = true ;
break ;
}
char * sep = strchr ( argv [ i ] , ' = ' ) ;
if ( sep = = nullptr | | sep - argv [ i ] > = 128 ) {
fprintf ( stderr , " error: Malformed KV override: %s \n " , argv [ i ] ) ;
invalid_param = true ;
break ;
}
struct llama_model_kv_override kvo ;
std : : strncpy ( kvo . key , argv [ i ] , sep - argv [ i ] ) ;
kvo . key [ sep - argv [ i ] ] = 0 ;
sep + + ;
if ( strncmp ( sep , " int: " , 4 ) = = 0 ) {
sep + = 4 ;
kvo . tag = LLAMA_KV_OVERRIDE_TYPE_INT ;
2024-04-30 03:18:48 +00:00
kvo . val_i64 = std : : atol ( sep ) ;
2024-03-12 20:49:47 +00:00
} else if ( strncmp ( sep , " float: " , 6 ) = = 0 ) {
sep + = 6 ;
kvo . tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT ;
2024-04-30 03:18:48 +00:00
kvo . val_f64 = std : : atof ( sep ) ;
2024-03-12 20:49:47 +00:00
} else if ( strncmp ( sep , " bool: " , 5 ) = = 0 ) {
sep + = 5 ;
kvo . tag = LLAMA_KV_OVERRIDE_TYPE_BOOL ;
if ( std : : strcmp ( sep , " true " ) = = 0 ) {
2024-04-30 03:18:48 +00:00
kvo . val_bool = true ;
2024-03-12 20:49:47 +00:00
} else if ( std : : strcmp ( sep , " false " ) = = 0 ) {
2024-04-30 03:18:48 +00:00
kvo . val_bool = false ;
2024-03-12 20:49:47 +00:00
} else {
fprintf ( stderr , " error: Invalid boolean value for KV override: %s \n " , argv [ i ] ) ;
invalid_param = true ;
break ;
}
} else {
fprintf ( stderr , " error: Invalid type for KV override: %s \n " , argv [ i ] ) ;
invalid_param = true ;
break ;
}
params . kv_overrides . push_back ( kvo ) ;
}
else
{
fprintf ( stderr , " error: unknown argument: %s \n " , arg . c_str ( ) ) ;
server_print_usage ( argv [ 0 ] , default_params , default_sparams ) ;
exit ( 1 ) ;
}
}
if ( ! params . kv_overrides . empty ( ) ) {
params . kv_overrides . emplace_back ( ) ;
params . kv_overrides . back ( ) . key [ 0 ] = 0 ;
}
2024-09-04 01:12:39 +00:00
postprocess_cpu_params ( params . cpuparams , nullptr ) ;
postprocess_cpu_params ( params . cpuparams_batch , & params . cpuparams ) ;
postprocess_cpu_params ( params . draft_cpuparams , & params . cpuparams ) ;
postprocess_cpu_params ( params . draft_cpuparams_batch , & params . cpuparams_batch ) ;
2024-03-12 20:49:47 +00:00
if ( invalid_param )
{
fprintf ( stderr , " error: invalid parameter for argument: %s \n " , arg . c_str ( ) ) ;
server_print_usage ( argv [ 0 ] , default_params , default_sparams ) ;
exit ( 1 ) ;
}
}
/* llama.cpp completion api semantics */
static json format_partial_response (
llama_server_context & llama , server_slot * slot , const std : : string & content , const std : : vector < completion_token_output > & probs
) {
json res = json
{
{ " content " , content } ,
{ " stop " , false } ,
{ " slot_id " , slot - > id } ,
{ " multimodal " , llama . multimodal }
} ;
if ( slot - > sparams . n_probs > 0 )
{
res [ " completion_probabilities " ] = probs_vector_to_json ( llama . ctx , probs ) ;
}
return res ;
}
2024-06-01 01:54:21 +00:00
static json format_tokenizer_response ( const std : : vector < llama_token > & tokens )
{
return json {
{ " tokens " , tokens }
} ;
}
static json format_detokenized_response ( std : : string content )
{
return json {
{ " content " , content }
} ;
}
2024-03-12 20:49:47 +00:00
static void log_server_request ( const httplib : : Request & req , const httplib : : Response & res )
{
// skip GH copilot requests when using default port
2024-04-17 15:40:32 +00:00
if ( req . path = = " /health " | | req . path = = " /v1/health " | | req . path = = " /v1/completions " )
2024-03-12 20:49:47 +00:00
{
return ;
}
2024-05-09 20:52:56 +00:00
LOG_DEBUG ( " request " , {
2024-03-12 20:49:47 +00:00
{ " remote_addr " , req . remote_addr } ,
{ " remote_port " , req . remote_port } ,
{ " status " , res . status } ,
{ " method " , req . method } ,
{ " path " , req . path } ,
{ " params " , req . params } ,
} ) ;
LOG_VERBOSE ( " request " , {
{ " request " , req . body } ,
{ " response " , res . body } ,
} ) ;
}
static void append_to_generated_text_from_generated_token_probs ( llama_server_context & llama , server_slot * slot )
{
auto & gtps = slot - > generated_token_probs ;
auto translator = token_translator { llama . ctx } ;
auto add_strlen = [ = ] ( size_t sum , const completion_token_output & cto ) { return sum + translator ( cto ) . size ( ) ; } ;
const size_t len = std : : accumulate ( gtps . begin ( ) , gtps . end ( ) , size_t ( 0 ) , add_strlen ) ;
if ( slot - > generated_text . capacity ( ) < slot - > generated_text . size ( ) + len )
{
slot - > generated_text . reserve ( slot - > generated_text . size ( ) + len ) ;
}
for ( const completion_token_output & cto : gtps )
{
slot - > generated_text + = translator ( cto ) ;
}
}
std : : function < void ( int ) > shutdown_handler ;
std : : atomic_flag is_terminating = ATOMIC_FLAG_INIT ;
inline void signal_handler ( int signal ) {
if ( is_terminating . test_and_set ( ) ) {
// in case it hangs, we can force terminate the server by hitting Ctrl+C twice
// this is for better developer experience, we can remove when the server is stable enough
fprintf ( stderr , " Received second interrupt, terminating immediately. \n " ) ;
exit ( 1 ) ;
}
shutdown_handler ( signal ) ;
}
2024-05-20 23:41:43 +00:00
static bool update_load_progress ( float progress , void * data )
{
( ( llama_server_context * ) data ) - > modelProgress = progress ;
return true ;
}
2024-04-16 21:00:12 +00:00
# if defined(_WIN32)
char * wchar_to_char ( const wchar_t * wstr ) {
if ( wstr = = nullptr ) return nullptr ;
// Determine the number of bytes needed for the UTF-8 string
int bytes = WideCharToMultiByte ( CP_UTF8 , 0 , wstr , - 1 , nullptr , 0 , nullptr , nullptr ) ;
char * str = new char [ bytes ] ;
// Convert the wide-character string to a UTF-8 string
WideCharToMultiByte ( CP_UTF8 , 0 , wstr , - 1 , str , bytes , nullptr , nullptr ) ;
return str ;
}
int wmain ( int argc , wchar_t * * wargv ) {
char * * argv = new char * [ argc ] ;
for ( int i = 0 ; i < argc ; + + i ) {
argv [ i ] = wchar_to_char ( wargv [ i ] ) ;
}
2024-07-15 16:25:56 +00:00
// Adjust error mode to avoid error dialog after we start.
SetErrorMode ( SEM_FAILCRITICALERRORS ) ;
2024-04-16 21:00:12 +00:00
# else
int main ( int argc , char * * argv ) {
# endif
2024-03-12 20:49:47 +00:00
# if SERVER_VERBOSE != 1
2024-10-17 18:59:52 +00:00
gpt_log_set_verbosity_thold ( - 1 ) ;
2024-03-12 20:49:47 +00:00
# endif
// own arguments required by this example
gpt_params params ;
server_params sparams ;
// struct that contains llama context and inference
llama_server_context llama ;
2024-05-12 16:20:39 +00:00
server_params_parse ( argc , argv , sparams , params ) ;
2024-03-12 20:49:47 +00:00
if ( params . model_alias = = " unknown " )
{
params . model_alias = params . model ;
}
llama_backend_init ( ) ;
llama_numa_init ( params . numa ) ;
Re-introduce the `llama` package (#5034)
* Re-introduce the llama package
This PR brings back the llama package, making it possible to call llama.cpp and
ggml APIs from Go directly via CGo. This has a few advantages:
- C APIs can be called directly from Go without needing to use the previous
"server" REST API
- On macOS and for CPU builds on Linux and Windows, Ollama can be built without
a go generate ./... step, making it easy to get up and running to hack on
parts of Ollama that don't require fast inference
- Faster build times for AVX,AVX2,CUDA and ROCM (a full build of all runners
takes <5 min on a fast CPU)
- No git submodule making it easier to clone and build from source
This is a big PR, but much of it is vendor code except for:
- llama.go CGo bindings
- example/: a simple example of running inference
- runner/: a subprocess server designed to replace the llm/ext_server package
- Makefile an as minimal as possible Makefile to build the runner package for
different targets (cpu, avx, avx2, cuda, rocm)
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
* cache: Clear old KV cache entries when evicting a slot
When forking a cache entry, if no empty slots are available we
evict the least recently used one and copy over the KV entries
from the closest match. However, this copy does not overwrite
existing values but only adds new ones. Therefore, we need to
clear the old slot first.
This change fixes two issues:
- The KV cache fills up and runs out of space even though we think
we are managing it correctly
- Performance gets worse over time as we use new cache entries that
are not hot in the processor caches
* doc: explain golang objc linker warning (#6830)
* llama: gather transitive dependencies for rocm for dist packaging (#6848)
* Refine go server makefiles to be more DRY (#6924)
This breaks up the monolithic Makefile for the Go based runners into a
set of utility files as well as recursive Makefiles for the runners.
Files starting with the name "Makefile" are buildable, while files that
end with ".make" are utilities to include in other Makefiles. This
reduces the amount of nearly identical targets and helps set a pattern
for future community contributions for new GPU runner architectures.
When we are ready to switch over to the Go runners, these files should
move to the top of the repo, and we should add targets for the main CLI,
as well as a helper "install" (put all the built binaries on the local
system in a runnable state) and "dist" target (generate the various
tar/zip files for distribution) for local developer use.
* llama: don't create extraneous directories (#6988)
* llama: Exercise the new build in CI (#6989)
Wire up some basic sanity testing in CI for the Go runner. GPU runners are not covered yet.
* llama: Refine developer docs for Go server (#6842)
This enhances the documentation for development focusing on the new Go
server. After we complete the transition further doc refinements
can remove the "transition" discussion.
* runner.go: Allocate batches for all sequences during init
We should tell the model that we could have full batches for all
sequences. We already do this when we allocate the batches but it was
missed during initialization.
* llama.go: Don't return nil from Tokenize on zero length input
Potentially receiving nil in a non-error condition is surprising to
most callers - it's better to return an empty slice.
* runner.go: Remove stop tokens from cache
If the last token is EOG then we don't return this and it isn't
present in the cache (because it was never submitted to Decode).
This works well for extending the cache entry with a new sequence.
However, for multi-token stop sequences, we won't return any of the
tokens but all but the last one will be in the cache. This means
when the conversation continues the cache will contain tokens that
don't overlap with the new prompt.
This works (we will pick up the portion where there is overlap) but
it causes unnecessary cache thrashing because we will fork the original
cache entry as it is not a perfect match.
By trimming the cache to the tokens that we actually return this
issue can be avoided.
* runner.go: Simplify flushing of pending tokens
* runner.go: Update TODOs
* runner.go: Don't panic when processing sequences
If there is an error processing a sequence, we should return a
clean HTTP error back to Ollama rather than panicing. This will
make us more resilient to transient failures.
Panics can still occur during startup as there is no way to serve
requests if that fails.
Co-authored-by: jmorganca <jmorganca@gmail.com>
* runner.go: More accurately capture timings
Currently prompt processing time doesn't capture the that it takes
to tokenize the input, only decoding time. We should capture the
full process to more accurately reflect reality. This is especially
true once we start processing images where the initial processing
can take significant time. This is also more consistent with the
existing C++ runner.
* runner.go: Support for vision models
In addition to bringing feature parity with the C++ runner, this also
incorporates several improvements:
- Cache prompting works with images, avoiding the need to re-decode
embeddings for every message in a conversation
- Parallelism is supported, avoiding the need to restrict to one
sequence at a time. (Though for now Ollama will not schedule
them while we might need to fall back to the old runner.)
Co-authored-by: jmorganca <jmorganca@gmail.com>
* runner.go: Move Unicode checking code and add tests
* runner.go: Export external cache members
Runner and cache are in the same package so the change doesn't
affect anything but it is more internally consistent.
* runner.go: Image embedding cache
Generating embeddings from images can take significant time (on
my machine between 100ms and 8s depending on the model). Although
we already cache the result of decoding these images, the embeddings
need to be regenerated every time. This is not necessary if we get
the same image over and over again, for example, during a conversation.
This currently uses a very small cache with a very simple algorithm
but it is easy to improve as is warranted.
* llama: catch up on patches
Carry forward solar-pro and cli-unicode patches
* runner.go: Don't re-allocate memory for every batch
We can reuse memory allocated from batch to batch since batch
size is fixed. This both saves the cost of reallocation as well
keeps the cache lines hot.
This results in a roughly 1% performance improvement for token
generation with Nvidia GPUs on Linux.
* runner.go: Default to classic input cache policy
The input cache as part of the go runner implemented a cache
policy that aims to maximize hit rate in both single and multi-
user scenarios. When there is a cache hit, the response is
very fast.
However, performance is actually slower when there is an input
cache miss due to worse GPU VRAM locality. This means that
performance is generally better overall for multi-user scenarios
(better input cache hit rate, locality was relatively poor already).
But worse for single users (input cache hit rate is about the same,
locality is now worse).
This defaults the policy back to the old one to avoid a regression
but keeps the new one available through an environment variable
OLLAMA_MULTIUSER_CACHE. This is left undocumented as the goal is
to improve this in the future to get the best of both worlds
without user configuration.
For inputs that result in cache misses, on Nvidia/Linux this
change improves performance by 31% for prompt processing and
13% for token generation.
* runner.go: Increase size of response channel
Generally the CPU can easily keep up with handling reponses that
are generated but there's no reason not to let generation continue
and handle things in larger batches if needed.
* llama: Add CI to verify all vendored changes have patches (#7066)
Make sure we don't accidentally merge changes in the vendored code
that aren't also reflected in the patches.
* llama: adjust clip patch for mingw utf-16 (#7065)
* llama: adjust clip patch for mingw utf-16
* llama: ensure static linking of runtime libs
Avoid runtime dependencies on non-standard libraries
* runner.go: Enable llamafile (all platforms) and BLAS (Mac OS)
These are two features that are shown on llama.cpp's system info
that are currently different between the two runners. On my test
systems the performance difference is very small to negligible
but it is probably still good to equalize the features.
* llm: Don't add BOS/EOS for tokenize requests
This is consistent with what server.cpp currently does. It affects
things like token processing counts for embedding requests.
* runner.go: Don't cache prompts for embeddings
Our integration with server.cpp implicitly disables prompt caching
because it is not part of the JSON object being parsed, this makes
the Go runner behavior similarly.
Prompt caching has been seen to affect the results of text completions
on certain hardware. The results are not wrong either way but they
are non-deterministic. However, embeddings seem to be affected even
on hardware that does not show this behavior for completions. For
now, it is best to maintain consistency with the existing behavior.
* runner.go: Adjust debug log levels
Add system info printed at startup and quiet down noisier logging.
* llama: fix compiler flag differences (#7082)
Adjust the flags for the new Go server to more closely match the
generate flow
* llama: refine developer docs (#7121)
* llama: doc and example clean up (#7122)
* llama: doc and example clean up
* llama: Move new dockerfile into llama dir
Temporary home until we fully transition to the Go server
* llama: runner doc cleanup
* llama.go: Add description for Tokenize error case
---------
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
Co-authored-by: Daniel Hiltgen <dhiltgen@users.noreply.github.com>
2024-10-08 15:53:54 +00:00
LOG_INFO ( " starting c++ runner " , { } ) ;
2024-03-12 20:49:47 +00:00
LOG_INFO ( " build info " , { { " build " , LLAMA_BUILD_NUMBER } ,
{ " commit " , LLAMA_COMMIT } } ) ;
LOG_INFO ( " system info " , {
2024-09-04 01:12:39 +00:00
{ " n_threads " , params . cpuparams . n_threads } ,
{ " n_threads_batch " , params . cpuparams_batch . n_threads } ,
2024-03-12 20:49:47 +00:00
{ " total_threads " , std : : thread : : hardware_concurrency ( ) } ,
{ " system_info " , llama_print_system_info ( ) } ,
} ) ;
httplib : : Server svr ;
std : : atomic < server_state > state { SERVER_STATE_LOADING_MODEL } ;
svr . set_default_headers ( { { " Server " , " llama.cpp " } } ) ;
// CORS preflight
svr . Options ( R " (.*) " , [ ] ( const httplib : : Request & req , httplib : : Response & res ) {
res . set_header ( " Access-Control-Allow-Origin " , req . get_header_value ( " Origin " ) ) ;
res . set_header ( " Access-Control-Allow-Credentials " , " true " ) ;
res . set_header ( " Access-Control-Allow-Methods " , " POST " ) ;
res . set_header ( " Access-Control-Allow-Headers " , " * " ) ;
} ) ;
svr . Get ( " /health " , [ & ] ( const httplib : : Request & req , httplib : : Response & res ) {
server_state current_state = state . load ( ) ;
switch ( current_state ) {
case SERVER_STATE_READY : {
// request slots data using task queue
task_server task ;
task . id = llama . queue_tasks . get_new_id ( ) ;
task . type = TASK_TYPE_METRICS ;
task . target_id = - 1 ;
llama . queue_results . add_waiting_task_id ( task . id ) ;
llama . queue_tasks . post ( task ) ;
// get the result
task_result result = llama . queue_results . recv ( task . id ) ;
llama . queue_results . remove_waiting_task_id ( task . id ) ;
int n_idle_slots = result . result_json [ " idle " ] ;
int n_processing_slots = result . result_json [ " processing " ] ;
json health = {
{ " status " , " ok " } ,
{ " slots_idle " , n_idle_slots } ,
{ " slots_processing " , n_processing_slots } } ;
res . status = 200 ; // HTTP OK
if ( sparams . slots_endpoint & & req . has_param ( " include_slots " ) ) {
health [ " slots " ] = result . result_json [ " slots " ] ;
}
if ( n_idle_slots = = 0 ) {
health [ " status " ] = " no slot available " ;
if ( req . has_param ( " fail_on_no_slot " ) ) {
res . status = 503 ; // HTTP Service Unavailable
}
}
res . set_content ( health . dump ( ) , " application/json " ) ;
break ;
}
case SERVER_STATE_LOADING_MODEL :
2024-05-20 23:41:43 +00:00
char buf [ 128 ] ;
snprintf ( & buf [ 0 ] , 128 , R " ({ " status " : " loading model " , " progress " : %0.2f}) " , llama . modelProgress ) ;
res . set_content ( buf , " application/json " ) ;
2024-03-12 20:49:47 +00:00
res . status = 503 ; // HTTP Service Unavailable
break ;
case SERVER_STATE_ERROR :
res . set_content ( R " ({ " status " : " error " , " error " : " Model failed to load " }) " , " application/json " ) ;
res . status = 500 ; // HTTP Internal Server Error
break ;
}
} ) ;
if ( sparams . slots_endpoint ) {
svr . Get ( " /slots " , [ & ] ( const httplib : : Request & , httplib : : Response & res ) {
// request slots data using task queue
task_server task ;
task . id = llama . queue_tasks . get_new_id ( ) ;
task . type = TASK_TYPE_METRICS ;
task . target_id = - 1 ;
llama . queue_results . add_waiting_task_id ( task . id ) ;
llama . queue_tasks . post ( task ) ;
// get the result
task_result result = llama . queue_results . recv ( task . id ) ;
llama . queue_results . remove_waiting_task_id ( task . id ) ;
res . set_content ( result . result_json [ " slots " ] . dump ( ) , " application/json " ) ;
res . status = 200 ; // HTTP OK
} ) ;
}
if ( sparams . metrics_endpoint ) {
svr . Get ( " /metrics " , [ & ] ( const httplib : : Request & , httplib : : Response & res ) {
// request slots data using task queue
task_server task ;
task . id = llama . queue_tasks . get_new_id ( ) ;
task . type = TASK_TYPE_METRICS ;
task . target_id = - 1 ;
llama . queue_results . add_waiting_task_id ( task . id ) ;
llama . queue_tasks . post ( task ) ;
// get the result
task_result result = llama . queue_results . recv ( task . id ) ;
llama . queue_results . remove_waiting_task_id ( task . id ) ;
json data = result . result_json ;
uint64_t n_prompt_tokens_processed = data [ " n_prompt_tokens_processed " ] ;
uint64_t t_prompt_processing = data [ " t_prompt_processing " ] ;
uint64_t n_tokens_predicted = data [ " n_tokens_predicted " ] ;
uint64_t t_tokens_generation = data [ " t_tokens_generation " ] ;
int32_t kv_cache_used_cells = data [ " kv_cache_used_cells " ] ;
// metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
json all_metrics_def = json {
{ " counter " , { {
{ " name " , " prompt_tokens_total " } ,
{ " help " , " Number of prompt tokens processed. " } ,
{ " value " , data [ " n_prompt_tokens_processed_total " ] }
} , {
{ " name " , " tokens_predicted_total " } ,
{ " help " , " Number of generation tokens processed. " } ,
{ " value " , data [ " n_tokens_predicted_total " ] }
} } } ,
{ " gauge " , { {
{ " name " , " prompt_tokens_seconds " } ,
{ " help " , " Average prompt throughput in tokens/s. " } ,
{ " value " , n_prompt_tokens_processed ? 1e3 / t_prompt_processing * n_prompt_tokens_processed : 0 }
} , {
{ " name " , " predicted_tokens_seconds " } ,
{ " help " , " Average generation throughput in tokens/s. " } ,
{ " value " , n_tokens_predicted ? 1e3 / t_tokens_generation * n_tokens_predicted : 0 }
} , {
{ " name " , " kv_cache_usage_ratio " } ,
{ " help " , " KV-cache usage. 1 means 100 percent usage. " } ,
{ " value " , 1. * kv_cache_used_cells / params . n_ctx }
} , {
{ " name " , " kv_cache_tokens " } ,
{ " help " , " KV-cache tokens. " } ,
{ " value " , data [ " kv_cache_tokens_count " ] }
} , {
{ " name " , " requests_processing " } ,
{ " help " , " Number of request processing. " } ,
{ " value " , data [ " processing " ] }
} , {
{ " name " , " requests_deferred " } ,
{ " help " , " Number of request deferred. " } ,
{ " value " , data [ " deferred " ] }
} } }
} ;
std : : stringstream prometheus ;
for ( const auto & el : all_metrics_def . items ( ) ) {
const auto & type = el . key ( ) ;
const auto & metrics_def = el . value ( ) ;
for ( const auto & metric_def : metrics_def ) {
std : : string name = metric_def [ " name " ] ;
std : : string help = metric_def [ " help " ] ;
auto value = json_value ( metric_def , " value " , 0 ) ;
prometheus < < " # HELP llamacpp: " < < name < < " " < < help < < " \n "
< < " # TYPE llamacpp: " < < name < < " " < < type < < " \n "
< < " llamacpp: " < < name < < " " < < value < < " \n " ;
}
}
res . set_content ( prometheus . str ( ) , " text/plain; version=0.0.4 " ) ;
res . status = 200 ; // HTTP OK
} ) ;
}
svr . set_logger ( log_server_request ) ;
svr . set_exception_handler ( [ ] ( const httplib : : Request & , httplib : : Response & res , std : : exception_ptr ep )
{
const char fmt [ ] = " 500 Internal Server Error \n %s " ;
char buf [ BUFSIZ ] ;
try
{
std : : rethrow_exception ( std : : move ( ep ) ) ;
}
catch ( std : : exception & e )
{
snprintf ( buf , sizeof ( buf ) , fmt , e . what ( ) ) ;
}
catch ( . . . )
{
snprintf ( buf , sizeof ( buf ) , fmt , " Unknown Exception " ) ;
}
res . set_content ( buf , " text/plain; charset=utf-8 " ) ;
res . status = 500 ;
} ) ;
svr . set_error_handler ( [ ] ( const httplib : : Request & , httplib : : Response & res )
{
if ( res . status = = 401 )
{
res . set_content ( " Unauthorized " , " text/plain; charset=utf-8 " ) ;
}
if ( res . status = = 400 )
{
res . set_content ( " Invalid request " , " text/plain; charset=utf-8 " ) ;
}
else if ( res . status = = 404 )
{
res . set_content ( " File Not Found " , " text/plain; charset=utf-8 " ) ;
res . status = 404 ;
}
} ) ;
// set timeouts and change hostname and port
svr . set_read_timeout ( sparams . read_timeout ) ;
svr . set_write_timeout ( sparams . write_timeout ) ;
if ( ! svr . bind_to_port ( sparams . hostname , sparams . port ) )
{
fprintf ( stderr , " \n couldn't bind to server socket: hostname=%s port=%d \n \n " , sparams . hostname . c_str ( ) , sparams . port ) ;
return 1 ;
}
// Set the base directory for serving static files
svr . set_base_dir ( sparams . public_path ) ;
std : : unordered_map < std : : string , std : : string > log_data ;
log_data [ " hostname " ] = sparams . hostname ;
log_data [ " port " ] = std : : to_string ( sparams . port ) ;
if ( sparams . api_keys . size ( ) = = 1 ) {
log_data [ " api_key " ] = " api_key: **** " + sparams . api_keys [ 0 ] . substr ( sparams . api_keys [ 0 ] . length ( ) - 4 ) ;
} else if ( sparams . api_keys . size ( ) > 1 ) {
log_data [ " api_key " ] = " api_key: " + std : : to_string ( sparams . api_keys . size ( ) ) + " keys loaded " ;
}
2024-04-17 15:40:32 +00:00
if ( sparams . n_threads_http < 1 ) {
// +2 threads for monitoring endpoints
sparams . n_threads_http = std : : max ( params . n_parallel + 2 , ( int32_t ) std : : thread : : hardware_concurrency ( ) - 1 ) ;
}
log_data [ " n_threads_http " ] = std : : to_string ( sparams . n_threads_http ) ;
svr . new_task_queue = [ & sparams ] { return new httplib : : ThreadPool ( sparams . n_threads_http ) ; } ;
LOG_INFO ( " HTTP server listening " , log_data ) ;
// run the HTTP server in a thread - see comment below
std : : thread t ( [ & ] ( )
{
if ( ! svr . listen_after_bind ( ) )
{
state . store ( SERVER_STATE_ERROR ) ;
return 1 ;
}
return 0 ;
} ) ;
2024-03-12 20:49:47 +00:00
// load the model
2024-05-20 23:41:43 +00:00
params . progress_callback = update_load_progress ;
params . progress_callback_user_data = ( void * ) & llama ;
2024-03-12 20:49:47 +00:00
if ( ! llama . load_model ( params ) )
{
state . store ( SERVER_STATE_ERROR ) ;
return 1 ;
} else {
llama . initialize ( ) ;
state . store ( SERVER_STATE_READY ) ;
LOG_INFO ( " model loaded " , { } ) ;
}
const auto model_meta = llama . model_meta ( ) ;
// Middleware for API key validation
auto validate_api_key = [ & sparams ] ( const httplib : : Request & req , httplib : : Response & res ) - > bool {
// If API key is not set, skip validation
if ( sparams . api_keys . empty ( ) ) {
return true ;
}
// Check for API key in the header
auto auth_header = req . get_header_value ( " Authorization " ) ;
std : : string prefix = " Bearer " ;
if ( auth_header . substr ( 0 , prefix . size ( ) ) = = prefix ) {
std : : string received_api_key = auth_header . substr ( prefix . size ( ) ) ;
if ( std : : find ( sparams . api_keys . begin ( ) , sparams . api_keys . end ( ) , received_api_key ) ! = sparams . api_keys . end ( ) ) {
return true ; // API key is valid
}
}
// API key is invalid or not provided
res . set_content ( " Unauthorized: Invalid API Key " , " text/plain; charset=utf-8 " ) ;
res . status = 401 ; // Unauthorized
LOG_WARNING ( " Unauthorized: Invalid API Key " , { } ) ;
return false ;
} ;
// this is only called if no index.html is found in the public --path
svr . Get ( " / " , [ ] ( const httplib : : Request & , httplib : : Response & res )
{
2024-03-16 02:24:12 +00:00
res . set_content ( " server running " , " text/plain; charset=utf-8 " ) ;
res . status = 200 ; // Unauthorized
return true ;
2024-03-12 20:49:47 +00:00
} ) ;
svr . Post ( " /completion " , [ & llama , & validate_api_key ] ( const httplib : : Request & req , httplib : : Response & res )
{
res . set_header ( " Access-Control-Allow-Origin " , req . get_header_value ( " Origin " ) ) ;
if ( ! validate_api_key ( req , res ) ) {
return ;
}
json data = json : : parse ( req . body ) ;
const int task_id = llama . queue_tasks . get_new_id ( ) ;
llama . queue_results . add_waiting_task_id ( task_id ) ;
2024-05-12 16:21:35 +00:00
llama . request_completion ( task_id , data , false , - 1 ) ;
2024-03-12 20:49:47 +00:00
if ( ! json_value ( data , " stream " , false ) ) {
std : : string completion_text ;
task_result result = llama . queue_results . recv ( task_id ) ;
if ( ! result . error & & result . stop ) {
res . set_content ( result . result_json . dump ( - 1 , ' ' , false , json : : error_handler_t : : replace ) , " application/json; charset=utf-8 " ) ;
}
else
{
res . status = 404 ;
res . set_content ( result . result_json [ " content " ] , " text/plain; charset=utf-8 " ) ;
}
llama . queue_results . remove_waiting_task_id ( task_id ) ;
} else {
const auto chunked_content_provider = [ task_id , & llama ] ( size_t , httplib : : DataSink & sink )
{
while ( true )
{
task_result result = llama . queue_results . recv ( task_id ) ;
if ( ! result . error ) {
const std : : string str =
" data: " +
result . result_json . dump ( - 1 , ' ' , false , json : : error_handler_t : : replace ) +
" \n \n " ;
LOG_VERBOSE ( " data stream " , {
{ " to_send " , str }
} ) ;
if ( ! sink . write ( str . c_str ( ) , str . size ( ) ) )
{
llama . queue_results . remove_waiting_task_id ( task_id ) ;
return false ;
}
if ( result . stop ) {
break ;
}
} else {
const std : : string str =
" error: " +
result . result_json . dump ( - 1 , ' ' , false , json : : error_handler_t : : replace ) +
" \n \n " ;
LOG_VERBOSE ( " data stream " , {
{ " to_send " , str }
} ) ;
if ( ! sink . write ( str . c_str ( ) , str . size ( ) ) )
{
llama . queue_results . remove_waiting_task_id ( task_id ) ;
return false ;
}
break ;
}
}
llama . queue_results . remove_waiting_task_id ( task_id ) ;
sink . done ( ) ;
return true ;
} ;
auto on_complete = [ task_id , & llama ] ( bool )
{
// cancel
llama . request_cancel ( task_id ) ;
llama . queue_results . remove_waiting_task_id ( task_id ) ;
} ;
res . set_chunked_content_provider ( " text/event-stream " , chunked_content_provider , on_complete ) ;
}
} ) ;
2024-06-01 01:54:21 +00:00
svr . Post ( " /tokenize " , [ & llama ] ( const httplib : : Request & req , httplib : : Response & res )
{
res . set_header ( " Access-Control-Allow-Origin " , req . get_header_value ( " Origin " ) ) ;
const json body = json : : parse ( req . body ) ;
std : : vector < llama_token > tokens ;
if ( body . count ( " content " ) ! = 0 )
{
tokens = llama . tokenize ( body [ " content " ] , false ) ;
}
const json data = format_tokenizer_response ( tokens ) ;
return res . set_content ( data . dump ( ) , " application/json; charset=utf-8 " ) ;
} ) ;
svr . Post ( " /detokenize " , [ & llama ] ( const httplib : : Request & req , httplib : : Response & res )
{
res . set_header ( " Access-Control-Allow-Origin " , req . get_header_value ( " Origin " ) ) ;
const json body = json : : parse ( req . body ) ;
std : : string content ;
if ( body . count ( " tokens " ) ! = 0 )
{
const std : : vector < llama_token > tokens = body [ " tokens " ] ;
content = tokens_to_str ( llama . ctx , tokens . cbegin ( ) , tokens . cend ( ) ) ;
}
const json data = format_detokenized_response ( content ) ;
return res . set_content ( data . dump ( ) , " application/json; charset=utf-8 " ) ;
} ) ;
2024-03-12 20:49:47 +00:00
svr . Post ( " /embedding " , [ & llama ] ( const httplib : : Request & req , httplib : : Response & res )
{
res . set_header ( " Access-Control-Allow-Origin " , req . get_header_value ( " Origin " ) ) ;
const json body = json : : parse ( req . body ) ;
json prompt ;
if ( body . count ( " content " ) ! = 0 )
{
prompt = body [ " content " ] ;
}
else
{
prompt = " " ;
}
// create and queue the task
2024-08-11 18:57:10 +00:00
const int task_id = llama . queue_tasks . get_new_id ( ) ;
llama . queue_results . add_waiting_task_id ( task_id ) ;
llama . request_completion ( task_id , { { " prompt " , prompt } } , true , - 1 ) ;
2024-07-30 20:12:21 +00:00
2024-08-11 18:57:10 +00:00
// get the result
task_result result = llama . queue_results . recv ( task_id ) ;
llama . queue_results . remove_waiting_task_id ( task_id ) ;
2024-07-30 20:12:21 +00:00
2024-08-11 18:57:10 +00:00
// send the result
return res . set_content ( result . result_json . dump ( ) , " application/json; charset=utf-8 " ) ;
2024-03-12 20:49:47 +00:00
} ) ;
// GG: if I put the main loop inside a thread, it crashes on the first request when build in Debug!?
// "Bus error: 10" - this is on macOS, it does not crash on Linux
//std::thread t2([&]()
/*{
bool running = true ;
while ( running )
{
running = llama . update_slots ( ) ;
}
} */
//);
llama . queue_tasks . on_new_task ( std : : bind (
& llama_server_context : : process_single_task , & llama , std : : placeholders : : _1 ) ) ;
llama . queue_tasks . on_finish_multitask ( std : : bind (
& llama_server_context : : on_finish_multitask , & llama , std : : placeholders : : _1 ) ) ;
llama . queue_tasks . on_run_slots ( std : : bind (
& llama_server_context : : update_slots , & llama ) ) ;
llama . queue_results . on_multitask_update ( std : : bind (
& llama_server_queue : : update_multitask ,
& llama . queue_tasks ,
std : : placeholders : : _1 ,
std : : placeholders : : _2 ,
std : : placeholders : : _3
) ) ;
shutdown_handler = [ & ] ( int ) {
llama . queue_tasks . terminate ( ) ;
} ;
# if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
struct sigaction sigint_action ;
sigint_action . sa_handler = signal_handler ;
sigemptyset ( & sigint_action . sa_mask ) ;
sigint_action . sa_flags = 0 ;
sigaction ( SIGINT , & sigint_action , NULL ) ;
# elif defined (_WIN32)
auto console_ctrl_handler = + [ ] ( DWORD ctrl_type ) - > BOOL {
return ( ctrl_type = = CTRL_C_EVENT ) ? ( signal_handler ( SIGINT ) , true ) : false ;
} ;
SetConsoleCtrlHandler ( reinterpret_cast < PHANDLER_ROUTINE > ( console_ctrl_handler ) , true ) ;
2024-04-16 21:00:12 +00:00
for ( int i = 0 ; i < argc ; + + i ) {
delete [ ] argv [ i ] ;
}
delete [ ] argv ;
2024-03-12 20:49:47 +00:00
# endif
llama . queue_tasks . start_loop ( ) ;
svr . stop ( ) ;
t . join ( ) ;
llama_backend_free ( ) ;
return 0 ;
}