server: parallelize embeddings in API web handler instead of in subprocess runner (#6220)
For simplicity, perform parallelization of embedding requests in the API handler instead of offloading this to the subprocess runner. This keeps the scheduling story simpler as it builds on existing parallel requests, similar to existing text completion functionality.
This commit is contained in:
parent
25906d72d1
commit
15c2d8fe14
4 changed files with 53 additions and 71 deletions
42
llm/ext_server/server.cpp
vendored
42
llm/ext_server/server.cpp
vendored
|
@ -1223,9 +1223,7 @@ struct llama_server_context
|
|||
|
||||
res.result_json = json
|
||||
{
|
||||
{"id", res.id},
|
||||
{"embedding", std::vector<float>(embd, embd + n_embd)},
|
||||
{"timings", slot.get_formated_timings()},
|
||||
};
|
||||
}
|
||||
}
|
||||
|
@ -3194,41 +3192,17 @@ int main(int argc, char **argv) {
|
|||
prompt = "";
|
||||
}
|
||||
|
||||
if (prompt.size() == 1) {
|
||||
prompt = prompt[0];
|
||||
}
|
||||
|
||||
// create and queue the task
|
||||
json responses;
|
||||
{
|
||||
const int id_task = llama.queue_tasks.get_new_id();
|
||||
llama.queue_results.add_waiting_task_id(id_task);
|
||||
llama.request_completion(id_task, {{"prompt", prompt}}, true, -1);
|
||||
const int task_id = llama.queue_tasks.get_new_id();
|
||||
llama.queue_results.add_waiting_task_id(task_id);
|
||||
llama.request_completion(task_id, {{"prompt", prompt}}, true, -1);
|
||||
|
||||
// get the result
|
||||
task_result result = llama.queue_results.recv(id_task);
|
||||
llama.queue_results.remove_waiting_task_id(id_task);
|
||||
if (result.error) {
|
||||
return res.set_content(result.result_json.dump(), "application/json; charset=utf-8");
|
||||
}
|
||||
// get the result
|
||||
task_result result = llama.queue_results.recv(task_id);
|
||||
llama.queue_results.remove_waiting_task_id(task_id);
|
||||
|
||||
responses = result.result_json.value("results", std::vector<json>{result.result_json});
|
||||
std::sort(responses.begin(), responses.end(), [](const json& a, const json& b) {
|
||||
return a["id"] < b["id"];
|
||||
});
|
||||
|
||||
json embeddings = json::array();
|
||||
|
||||
int prompt_n = 0;
|
||||
for (auto & elem : responses) {
|
||||
embeddings.push_back(elem.at("embedding"));
|
||||
prompt_n += elem.at("timings").at("prompt_n").get<int>();
|
||||
}
|
||||
|
||||
// send the result
|
||||
json embedding_res = json{{"embedding", embeddings}, {"prompt_n", prompt_n}};
|
||||
return res.set_content(embedding_res.dump(), "application/json; charset=utf-8");
|
||||
}
|
||||
// send the result
|
||||
return res.set_content(result.result_json.dump(), "application/json; charset=utf-8");
|
||||
});
|
||||
|
||||
// GG: if I put the main loop inside a thread, it crashes on the first request when build in Debug!?
|
||||
|
|
|
@ -33,7 +33,7 @@ type LlamaServer interface {
|
|||
Ping(ctx context.Context) error
|
||||
WaitUntilRunning(ctx context.Context) error
|
||||
Completion(ctx context.Context, req CompletionRequest, fn func(CompletionResponse)) error
|
||||
Embed(ctx context.Context, input []string) (*EmbedResponse, error)
|
||||
Embedding(ctx context.Context, input string) ([]float32, error)
|
||||
Tokenize(ctx context.Context, content string) ([]int, error)
|
||||
Detokenize(ctx context.Context, tokens []int) (string, error)
|
||||
Close() error
|
||||
|
@ -883,24 +883,20 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
|
|||
return nil
|
||||
}
|
||||
|
||||
type EmbedRequest struct {
|
||||
Content []string `json:"content"`
|
||||
type EmbeddingRequest struct {
|
||||
Content string `json:"content"`
|
||||
}
|
||||
|
||||
type EmbedResponse struct {
|
||||
Embedding [][]float32 `json:"embedding"`
|
||||
PromptEvalCount int `json:"prompt_n"`
|
||||
type EmbeddingResponse struct {
|
||||
Embedding []float32 `json:"embedding"`
|
||||
}
|
||||
|
||||
func (s *llmServer) Embed(ctx context.Context, input []string) (*EmbedResponse, error) {
|
||||
// each input will use a slot, so we need to acquire the semaphore for
|
||||
// the number of inputs up to numParallel
|
||||
slots := int64(min(len(input), s.numParallel))
|
||||
if err := s.sem.Acquire(ctx, slots); err != nil {
|
||||
func (s *llmServer) Embedding(ctx context.Context, input string) ([]float32, error) {
|
||||
if err := s.sem.Acquire(ctx, 1); err != nil {
|
||||
slog.Error("Failed to acquire semaphore", "error", err)
|
||||
return nil, err
|
||||
}
|
||||
defer s.sem.Release(slots)
|
||||
defer s.sem.Release(1)
|
||||
|
||||
// Make sure the server is ready
|
||||
status, err := s.getServerStatusRetry(ctx)
|
||||
|
@ -910,18 +906,18 @@ func (s *llmServer) Embed(ctx context.Context, input []string) (*EmbedResponse,
|
|||
return nil, fmt.Errorf("unexpected server status: %s", status.ToString())
|
||||
}
|
||||
|
||||
data, err := json.Marshal(EmbedRequest{Content: input})
|
||||
data, err := json.Marshal(EmbeddingRequest{Content: input})
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("error marshaling embed data: %w", err)
|
||||
}
|
||||
|
||||
req, err := http.NewRequestWithContext(ctx, http.MethodPost, fmt.Sprintf("http://127.0.0.1:%d/embedding", s.port), bytes.NewBuffer(data))
|
||||
r, err := http.NewRequestWithContext(ctx, http.MethodPost, fmt.Sprintf("http://127.0.0.1:%d/embedding", s.port), bytes.NewBuffer(data))
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("error creating embed request: %w", err)
|
||||
}
|
||||
req.Header.Set("Content-Type", "application/json")
|
||||
r.Header.Set("Content-Type", "application/json")
|
||||
|
||||
resp, err := http.DefaultClient.Do(req)
|
||||
resp, err := http.DefaultClient.Do(r)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("do embedding request: %w", err)
|
||||
}
|
||||
|
@ -937,12 +933,12 @@ func (s *llmServer) Embed(ctx context.Context, input []string) (*EmbedResponse,
|
|||
return nil, fmt.Errorf("%s", body)
|
||||
}
|
||||
|
||||
var e EmbedResponse
|
||||
var e EmbeddingResponse
|
||||
if err := json.Unmarshal(body, &e); err != nil {
|
||||
return nil, fmt.Errorf("unmarshal tokenize response: %w", err)
|
||||
}
|
||||
|
||||
return &e, nil
|
||||
return e.Embedding, nil
|
||||
}
|
||||
|
||||
type TokenizeRequest struct {
|
||||
|
|
|
@ -23,6 +23,7 @@ import (
|
|||
|
||||
"github.com/gin-contrib/cors"
|
||||
"github.com/gin-gonic/gin"
|
||||
"golang.org/x/sync/errgroup"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
|
@ -346,6 +347,7 @@ func (s *Server) EmbedHandler(c *gin.Context) {
|
|||
return
|
||||
}
|
||||
|
||||
var count int
|
||||
for i, s := range input {
|
||||
tokens, err := r.Tokenize(c.Request.Context(), s)
|
||||
if err != nil {
|
||||
|
@ -368,25 +370,36 @@ func (s *Server) EmbedHandler(c *gin.Context) {
|
|||
}
|
||||
}
|
||||
|
||||
count += len(tokens)
|
||||
|
||||
input[i] = s
|
||||
}
|
||||
embeddings, err := r.Embed(c.Request.Context(), input)
|
||||
if err != nil {
|
||||
slog.Error("embedding generation failed", "error", err)
|
||||
c.JSON(http.StatusInternalServerError, gin.H{"error": "failed to generate embedding"})
|
||||
return
|
||||
|
||||
var g errgroup.Group
|
||||
embeddings := make([][]float32, len(input))
|
||||
for i, text := range input {
|
||||
g.Go(func() error {
|
||||
embedding, err := r.Embedding(c.Request.Context(), text)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
embeddings[i] = normalize(embedding)
|
||||
return nil
|
||||
})
|
||||
}
|
||||
|
||||
for i, e := range embeddings.Embedding {
|
||||
embeddings.Embedding[i] = normalize(e)
|
||||
if err := g.Wait(); err != nil {
|
||||
slog.Error("embedding generation failed", "error", err)
|
||||
c.JSON(http.StatusInternalServerError, gin.H{"error": fmt.Errorf("failed to generate embeddings: %v", err)})
|
||||
return
|
||||
}
|
||||
|
||||
resp := api.EmbedResponse{
|
||||
Model: req.Model,
|
||||
Embeddings: embeddings.Embedding,
|
||||
Embeddings: embeddings,
|
||||
TotalDuration: time.Since(checkpointStart),
|
||||
LoadDuration: checkpointLoaded.Sub(checkpointStart),
|
||||
PromptEvalCount: embeddings.PromptEvalCount,
|
||||
PromptEvalCount: count,
|
||||
}
|
||||
c.JSON(http.StatusOK, resp)
|
||||
}
|
||||
|
@ -430,21 +443,20 @@ func (s *Server) EmbeddingsHandler(c *gin.Context) {
|
|||
return
|
||||
}
|
||||
|
||||
embeddings, err := r.Embed(c.Request.Context(), []string{req.Prompt})
|
||||
embedding, err := r.Embedding(c.Request.Context(), req.Prompt)
|
||||
if err != nil {
|
||||
slog.Info(fmt.Sprintf("embedding generation failed: %v", err))
|
||||
c.JSON(http.StatusInternalServerError, gin.H{"error": "failed to generate embedding"})
|
||||
return
|
||||
}
|
||||
|
||||
embedding := make([]float64, len(embeddings.Embedding[0]))
|
||||
|
||||
for i, v := range embeddings.Embedding[0] {
|
||||
embedding[i] = float64(v)
|
||||
var e []float64
|
||||
for _, v := range embedding {
|
||||
e = append(e, float64(v))
|
||||
}
|
||||
|
||||
resp := api.EmbeddingResponse{
|
||||
Embedding: embedding,
|
||||
Embedding: e,
|
||||
}
|
||||
c.JSON(http.StatusOK, resp)
|
||||
}
|
||||
|
|
|
@ -708,8 +708,8 @@ type mockLlm struct {
|
|||
pingResp error
|
||||
waitResp error
|
||||
completionResp error
|
||||
embedResp *llm.EmbedResponse
|
||||
embedRespErr error
|
||||
embeddingResp []float32
|
||||
embeddingRespErr error
|
||||
tokenizeResp []int
|
||||
tokenizeRespErr error
|
||||
detokenizeResp string
|
||||
|
@ -727,8 +727,8 @@ func (s *mockLlm) Completion(ctx context.Context, req llm.CompletionRequest, fn
|
|||
return s.completionResp
|
||||
}
|
||||
|
||||
func (s *mockLlm) Embed(ctx context.Context, input []string) (*llm.EmbedResponse, error) {
|
||||
return s.embedResp, s.embedRespErr
|
||||
func (s *mockLlm) Embedding(ctx context.Context, input string) ([]float32, error) {
|
||||
return s.embeddingResp, s.embeddingRespErr
|
||||
}
|
||||
|
||||
func (s *mockLlm) Tokenize(ctx context.Context, content string) ([]int, error) {
|
||||
|
|
Loading…
Add table
Reference in a new issue