2023-07-11 16:50:02 +00:00
/**
2023-08-03 18:49:58 +00:00
* llama . cpp - git 8183159 cf3def112f6d1fe94815fce70e1bffa12
2023-07-11 16:50:02 +00:00
*
* MIT License
*
* Copyright ( c ) 2023 Georgi Gerganov
*
* Permission is hereby granted , free of charge , to any person obtaining a copy
* of this software and associated documentation files ( the " Software " ) , to deal
* in the Software without restriction , including without limitation the rights
* to use , copy , modify , merge , publish , distribute , sublicense , and / or sell
* copies of the Software , and to permit persons to whom the Software is
* furnished to do so , subject to the following conditions :
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software .
*
* THE SOFTWARE IS PROVIDED " AS IS " , WITHOUT WARRANTY OF ANY KIND , EXPRESS OR
* IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY ,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT . IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM , DAMAGES OR OTHER
* LIABILITY , WHETHER IN AN ACTION OF CONTRACT , TORT OR OTHERWISE , ARISING FROM ,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE .
*/
# ifndef LLAMA_H
# define LLAMA_H
# include "ggml.h"
# ifdef GGML_USE_CUBLAS
# include "ggml-cuda.h"
# define LLAMA_MAX_DEVICES GGML_CUDA_MAX_DEVICES
# else
# define LLAMA_MAX_DEVICES 1
# endif // GGML_USE_CUBLAS
# include <stddef.h>
# include <stdint.h>
# include <stdbool.h>
# ifdef LLAMA_SHARED
# if defined(_WIN32) && !defined(__MINGW32__)
# ifdef LLAMA_BUILD
# define LLAMA_API __declspec(dllexport)
# else
# define LLAMA_API __declspec(dllimport)
# endif
# else
# define LLAMA_API __attribute__ ((visibility ("default")))
# endif
# else
# define LLAMA_API
# endif
# ifdef __GNUC__
# define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
# elif defined(_MSC_VER)
# define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
# else
# define DEPRECATED(func, hint) func
# endif
# define LLAMA_FILE_MAGIC_GGJT 0x67676a74u // 'ggjt'
# define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
# define LLAMA_FILE_MAGIC_GGMF 0x67676d66u // 'ggmf'
# define LLAMA_FILE_MAGIC_GGML 0x67676d6cu // 'ggml'
# define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
# define LLAMA_FILE_VERSION 3
# define LLAMA_FILE_MAGIC LLAMA_FILE_MAGIC_GGJT
# define LLAMA_FILE_MAGIC_UNVERSIONED LLAMA_FILE_MAGIC_GGML
# define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
# define LLAMA_SESSION_VERSION 1
# define LLAMA_DEFAULT_SEED 0xFFFFFFFF
# if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL)
// Defined when llama.cpp is compiled with support for offloading model layers to GPU.
# define LLAMA_SUPPORTS_GPU_OFFLOAD
# endif
2023-07-25 17:49:30 +00:00
# ifndef LLAMA_DEFAULT_RMS_EPS
# define LLAMA_DEFAULT_RMS_EPS 5e-6f
# endif
2023-07-11 16:50:02 +00:00
# ifdef __cplusplus
extern " C " {
# endif
//
// C interface
//
// TODO: show sample usage
//
struct llama_model ;
struct llama_context ;
typedef int llama_token ;
typedef struct llama_token_data {
llama_token id ; // token id
float logit ; // log-odds of the token
float p ; // probability of the token
} llama_token_data ;
typedef struct llama_token_data_array {
llama_token_data * data ;
size_t size ;
bool sorted ;
} llama_token_data_array ;
typedef void ( * llama_progress_callback ) ( float progress , void * ctx ) ;
struct llama_context_params {
2023-07-25 17:49:30 +00:00
uint32_t seed ; // RNG seed, -1 for random
int32_t n_ctx ; // text context
int32_t n_batch ; // prompt processing batch size
int32_t n_gqa ; // grouped-query attention (TEMP - will be moved to model hparams)
float rms_norm_eps ; // rms norm epsilon (TEMP - will be moved to model hparams)
int32_t n_gpu_layers ; // number of layers to store in VRAM
int32_t main_gpu ; // the GPU that is used for scratch and small tensors
const float * tensor_split ; // how to split layers across multiple GPUs (size: LLAMA_MAX_DEVICES)
2023-07-19 23:47:05 +00:00
// ref: https://github.com/ggerganov/llama.cpp/pull/2054
float rope_freq_base ; // RoPE base frequency
float rope_freq_scale ; // RoPE frequency scaling factor
2023-07-11 16:50:02 +00:00
// called with a progress value between 0 and 1, pass NULL to disable
llama_progress_callback progress_callback ;
// context pointer passed to the progress callback
void * progress_callback_user_data ;
// Keep the booleans together to avoid misalignment during copy-by-value.
bool low_vram ; // if true, reduce VRAM usage at the cost of performance
2023-08-01 23:22:03 +00:00
bool mul_mat_q ; // if true, use experimental mul_mat_q kernels
2023-07-11 16:50:02 +00:00
bool f16_kv ; // use fp16 for KV cache
bool logits_all ; // the llama_eval() call computes all logits, not just the last one
bool vocab_only ; // only load the vocabulary, no weights
bool use_mmap ; // use mmap if possible
bool use_mlock ; // force system to keep model in RAM
bool embedding ; // embedding mode only
} ;
// model file types
enum llama_ftype {
LLAMA_FTYPE_ALL_F32 = 0 ,
LLAMA_FTYPE_MOSTLY_F16 = 1 , // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_0 = 2 , // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_1 = 3 , // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4 , // tok_embeddings.weight and output.weight are F16
// LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
// LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
LLAMA_FTYPE_MOSTLY_Q8_0 = 7 , // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_0 = 8 , // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_1 = 9 , // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q2_K = 10 , // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q3_K_S = 11 , // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q3_K_M = 12 , // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q3_K_L = 13 , // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_K_S = 14 , // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_K_M = 15 , // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_K_S = 16 , // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_K_M = 17 , // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q6_K = 18 , // except 1d tensors
} ;
// model quantization parameters
typedef struct llama_model_quantize_params {
int nthread ; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
enum llama_ftype ftype ; // quantize to this llama_ftype
bool allow_requantize ; // allow quantizing non-f32/f16 tensors
bool quantize_output_tensor ; // quantize output.weight
} llama_model_quantize_params ;
2023-07-25 17:49:30 +00:00
// grammar types
struct llama_grammar ;
// grammar element type
enum llama_gretype {
// end of rule definition
LLAMA_GRETYPE_END = 0 ,
// start of alternate definition for rule
LLAMA_GRETYPE_ALT = 1 ,
// non-terminal element: reference to rule
LLAMA_GRETYPE_RULE_REF = 2 ,
// terminal element: character (code point)
LLAMA_GRETYPE_CHAR = 3 ,
// inverse char(s) ([^a], [^a-b] [^abc])
LLAMA_GRETYPE_CHAR_NOT = 4 ,
// modifies a preceding LLAMA_GRETYPE_CHAR or LLAMA_GRETYPE_CHAR_ALT to
// be an inclusive range ([a-z])
LLAMA_GRETYPE_CHAR_RNG_UPPER = 5 ,
// modifies a preceding LLAMA_GRETYPE_CHAR or
// LLAMA_GRETYPE_CHAR_RNG_UPPER to add an alternate char to match ([ab], [a-zA])
LLAMA_GRETYPE_CHAR_ALT = 6 ,
} ;
typedef struct llama_grammar_element {
enum llama_gretype type ;
uint32_t value ; // Unicode code point or rule ID
} llama_grammar_element ;
2023-07-11 16:50:02 +00:00
// performance timing information
struct llama_timings {
double t_start_ms ;
double t_end_ms ;
double t_load_ms ;
double t_sample_ms ;
double t_p_eval_ms ;
double t_eval_ms ;
int32_t n_sample ;
int32_t n_p_eval ;
int32_t n_eval ;
} ;
2023-07-19 23:47:05 +00:00
LLAMA_API int llama_max_devices ( ) ;
2023-07-11 16:50:02 +00:00
LLAMA_API struct llama_context_params llama_context_default_params ( ) ;
LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params ( ) ;
LLAMA_API bool llama_mmap_supported ( ) ;
LLAMA_API bool llama_mlock_supported ( ) ;
// TODO: not great API - very likely to change
// Initialize the llama + ggml backend
// If numa is true, use NUMA optimizations
// Call once at the start of the program
LLAMA_API void llama_backend_init ( bool numa ) ;
// Call once at the end of the program - currently only used for MPI
LLAMA_API void llama_backend_free ( ) ;
LLAMA_API int64_t llama_time_us ( ) ;
LLAMA_API struct llama_model * llama_load_model_from_file (
const char * path_model ,
struct llama_context_params params ) ;
LLAMA_API void llama_free_model ( struct llama_model * model ) ;
LLAMA_API struct llama_context * llama_new_context_with_model (
struct llama_model * model ,
struct llama_context_params params ) ;
// Various functions for loading a ggml llama model.
// Allocate (almost) all memory needed for the model.
// Return NULL on failure
LLAMA_API DEPRECATED ( struct llama_context * llama_init_from_file (
const char * path_model ,
struct llama_context_params params ) ,
" please use llama_load_model_from_file combined with llama_new_context_with_model instead " ) ;
// Frees all allocated memory
LLAMA_API void llama_free ( struct llama_context * ctx ) ;
// Returns 0 on success
LLAMA_API int llama_model_quantize (
const char * fname_inp ,
const char * fname_out ,
const llama_model_quantize_params * params ) ;
// Apply a LoRA adapter to a loaded model
// path_base_model is the path to a higher quality model to use as a base for
// the layers modified by the adapter. Can be NULL to use the current loaded model.
// The model needs to be reloaded before applying a new adapter, otherwise the adapter
// will be applied on top of the previous one
// Returns 0 on success
LLAMA_API DEPRECATED ( int llama_apply_lora_from_file (
struct llama_context * ctx ,
const char * path_lora ,
const char * path_base_model ,
int n_threads ) ,
" please use llama_model_apply_lora_from_file instead " ) ;
LLAMA_API int llama_model_apply_lora_from_file (
const struct llama_model * model ,
const char * path_lora ,
const char * path_base_model ,
int n_threads ) ;
// Returns the number of tokens in the KV cache
LLAMA_API int llama_get_kv_cache_token_count ( const struct llama_context * ctx ) ;
// Sets the current rng seed.
LLAMA_API void llama_set_rng_seed ( struct llama_context * ctx , uint32_t seed ) ;
// Returns the maximum size in bytes of the state (rng, logits, embedding
// and kv_cache) - will often be smaller after compacting tokens
LLAMA_API size_t llama_get_state_size ( const struct llama_context * ctx ) ;
// Copies the state to the specified destination address.
// Destination needs to have allocated enough memory.
// Returns the number of bytes copied
LLAMA_API size_t llama_copy_state_data ( struct llama_context * ctx , uint8_t * dst ) ;
// Set the state reading from the specified address
// Returns the number of bytes read
LLAMA_API size_t llama_set_state_data ( struct llama_context * ctx , uint8_t * src ) ;
// Save/load session file
LLAMA_API bool llama_load_session_file ( struct llama_context * ctx , const char * path_session , llama_token * tokens_out , size_t n_token_capacity , size_t * n_token_count_out ) ;
LLAMA_API bool llama_save_session_file ( struct llama_context * ctx , const char * path_session , const llama_token * tokens , size_t n_token_count ) ;
// Run the llama inference to obtain the logits and probabilities for the next token.
// tokens + n_tokens is the provided batch of new tokens to process
// n_past is the number of tokens to use from previous eval calls
// Returns 0 on success
LLAMA_API int llama_eval (
struct llama_context * ctx ,
const llama_token * tokens ,
int n_tokens ,
int n_past ,
int n_threads ) ;
// Same as llama_eval, but use float matrix input directly.
LLAMA_API int llama_eval_embd (
struct llama_context * ctx ,
const float * embd ,
int n_tokens ,
int n_past ,
int n_threads ) ;
// Export a static computation graph for context of 511 and batch size of 1
// NOTE: since this functionality is mostly for debugging and demonstration purposes, we hardcode these
// parameters here to keep things simple
// IMPORTANT: do not use for anything else other than debugging and testing!
LLAMA_API int llama_eval_export ( struct llama_context * ctx , const char * fname ) ;
// Convert the provided text into tokens.
// The tokens pointer must be large enough to hold the resulting tokens.
// Returns the number of tokens on success, no more than n_max_tokens
// Returns a negative number on failure - the number of tokens that would have been returned
// TODO: not sure if correct
LLAMA_API int llama_tokenize (
struct llama_context * ctx ,
const char * text ,
llama_token * tokens ,
int n_max_tokens ,
bool add_bos ) ;
2023-07-19 23:47:05 +00:00
LLAMA_API int llama_tokenize_with_model (
const struct llama_model * model ,
const char * text ,
llama_token * tokens ,
int n_max_tokens ,
bool add_bos ) ;
2023-07-11 16:50:02 +00:00
LLAMA_API int llama_n_vocab ( const struct llama_context * ctx ) ;
LLAMA_API int llama_n_ctx ( const struct llama_context * ctx ) ;
LLAMA_API int llama_n_embd ( const struct llama_context * ctx ) ;
2023-07-19 23:47:05 +00:00
LLAMA_API int llama_n_vocab_from_model ( const struct llama_model * model ) ;
LLAMA_API int llama_n_ctx_from_model ( const struct llama_model * model ) ;
LLAMA_API int llama_n_embd_from_model ( const struct llama_model * model ) ;
2023-07-11 16:50:02 +00:00
// Get the vocabulary as output parameters.
// Returns number of results.
LLAMA_API int llama_get_vocab (
const struct llama_context * ctx ,
const char * * strings ,
float * scores ,
int capacity ) ;
2023-07-19 23:47:05 +00:00
LLAMA_API int llama_get_vocab_from_model (
const struct llama_model * model ,
const char * * strings ,
float * scores ,
int capacity ) ;
2023-07-11 16:50:02 +00:00
// Token logits obtained from the last call to llama_eval()
// The logits for the last token are stored in the last row
// Can be mutated in order to change the probabilities of the next token
// Rows: n_tokens
// Cols: n_vocab
LLAMA_API float * llama_get_logits ( struct llama_context * ctx ) ;
// Get the embeddings for the input
// shape: [n_embd] (1-dimensional)
LLAMA_API float * llama_get_embeddings ( struct llama_context * ctx ) ;
// Token Id -> String. Uses the vocabulary in the provided context
2023-07-19 23:47:05 +00:00
LLAMA_API const char * llama_token_to_str (
const struct llama_context * ctx ,
llama_token token ) ;
LLAMA_API const char * llama_token_to_str_with_model (
const struct llama_model * model ,
llama_token token ) ;
2023-07-11 16:50:02 +00:00
// Special tokens
LLAMA_API llama_token llama_token_bos ( ) ; // beginning-of-sentence
LLAMA_API llama_token llama_token_eos ( ) ; // end-of-sentence
LLAMA_API llama_token llama_token_nl ( ) ; // next-line
2023-07-25 17:49:30 +00:00
// Grammar
//
LLAMA_API struct llama_grammar * llama_grammar_init (
const llama_grammar_element * * rules ,
size_t n_rules ,
size_t start_rule_index ) ;
LLAMA_API void llama_grammar_free ( struct llama_grammar * grammar ) ;
2023-07-11 16:50:02 +00:00
// Sampling functions
/// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
LLAMA_API void llama_sample_repetition_penalty ( struct llama_context * ctx , llama_token_data_array * candidates , const llama_token * last_tokens , size_t last_tokens_size , float penalty ) ;
/// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
LLAMA_API void llama_sample_frequency_and_presence_penalties ( struct llama_context * ctx , llama_token_data_array * candidates , const llama_token * last_tokens , size_t last_tokens_size , float alpha_frequency , float alpha_presence ) ;
/// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, the logits must be directly extracted from the original generation context without being sorted.
/// @params guidance_ctx A separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
/// @params scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
LLAMA_API void llama_sample_classifier_free_guidance (
struct llama_context * ctx ,
llama_token_data_array * candidates ,
struct llama_context * guidance_ctx ,
2023-07-25 17:49:30 +00:00
float scale ) ;
2023-07-11 16:50:02 +00:00
/// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
LLAMA_API void llama_sample_softmax ( struct llama_context * ctx , llama_token_data_array * candidates ) ;
/// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
LLAMA_API void llama_sample_top_k ( struct llama_context * ctx , llama_token_data_array * candidates , int k , size_t min_keep ) ;
/// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
LLAMA_API void llama_sample_top_p ( struct llama_context * ctx , llama_token_data_array * candidates , float p , size_t min_keep ) ;
/// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
LLAMA_API void llama_sample_tail_free ( struct llama_context * ctx , llama_token_data_array * candidates , float z , size_t min_keep ) ;
/// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
LLAMA_API void llama_sample_typical ( struct llama_context * ctx , llama_token_data_array * candidates , float p , size_t min_keep ) ;
LLAMA_API void llama_sample_temperature ( struct llama_context * ctx , llama_token_data_array * candidates , float temp ) ;
2023-07-25 17:49:30 +00:00
/// @details Apply constraints from grammar
LLAMA_API void llama_sample_grammar ( struct llama_context * ctx , llama_token_data_array * candidates , const struct llama_grammar * grammar ) ;
2023-07-11 16:50:02 +00:00
/// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
/// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
/// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
/// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
LLAMA_API llama_token llama_sample_token_mirostat ( struct llama_context * ctx , llama_token_data_array * candidates , float tau , float eta , int m , float * mu ) ;
/// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
/// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
/// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
LLAMA_API llama_token llama_sample_token_mirostat_v2 ( struct llama_context * ctx , llama_token_data_array * candidates , float tau , float eta , float * mu ) ;
/// @details Selects the token with the highest probability.
LLAMA_API llama_token llama_sample_token_greedy ( struct llama_context * ctx , llama_token_data_array * candidates ) ;
/// @details Randomly selects a token from the candidates based on their probabilities.
LLAMA_API llama_token llama_sample_token ( struct llama_context * ctx , llama_token_data_array * candidates ) ;
2023-07-25 17:49:30 +00:00
/// @details Accepts the sampled token into the grammar
LLAMA_API void llama_grammar_accept_token ( struct llama_context * ctx , struct llama_grammar * grammar , llama_token token ) ;
2023-07-11 16:50:02 +00:00
// Performance information
LLAMA_API struct llama_timings llama_get_timings ( struct llama_context * ctx ) ;
LLAMA_API void llama_print_timings ( struct llama_context * ctx ) ;
LLAMA_API void llama_reset_timings ( struct llama_context * ctx ) ;
// Print system information
LLAMA_API const char * llama_print_system_info ( void ) ;
# ifdef __cplusplus
}
# endif
// Internal API to be implemented by llama.cpp and used by tests/benchmarks only
# ifdef LLAMA_API_INTERNAL
# include <vector>
# include <string>
struct ggml_tensor ;
const std : : vector < std : : pair < std : : string , struct ggml_tensor * > > & llama_internal_get_tensor_map ( struct llama_context * ctx ) ;
# endif
# endif // LLAMA_H