update llama.cpp

This commit is contained in:
Michael Yang 2023-08-01 16:22:03 -07:00
parent da52f5bfdd
commit 7a1c3e62dc
18 changed files with 2603 additions and 493 deletions

567
llama/ggml-alloc.c Normal file
View file

@ -0,0 +1,567 @@
/**
* llama.cpp - git c574bddb368424b5996cbee2ec45ec050967d404
*
* MIT License
*
* Copyright (c) 2023 Georgi Gerganov
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "ggml-alloc.h"
#include "ggml.h"
#include <assert.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define UNUSED(x) (void)(x)
#define MAX(a, b) ((a) > (b) ? (a) : (b))
//#define GGML_ALLOCATOR_DEBUG
//#define AT_PRINTF printf
#define AT_PRINTF(...) ((void)0)
struct hash_node {
struct ggml_tensor * t;
int n_children;
int n_views;
};
static size_t hash(void * p) {
return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE;
}
static struct hash_node * hash_get(struct hash_node hash_table[], struct ggml_tensor * t) {
size_t h = hash(t);
// linear probing
size_t i = h;
while (hash_table[i].t != NULL) {
if (hash_table[i].t == t) {
return &hash_table[i];
}
i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE;
if (i == h) {
// hash table is full
GGML_ASSERT(false);
}
}
hash_table[i].t = t;
return &hash_table[i];
}
// TODO: GGML_PAD ?
static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) {
assert(alignment && !(alignment & (alignment - 1))); // power of 2
size_t align = (alignment - (((uintptr_t)buffer + offset) % alignment)) % alignment;
return offset + align;
}
struct free_block {
void * addr;
size_t size;
};
#define MAX_FREE_BLOCKS 128
struct ggml_allocr {
void * data;
size_t size;
size_t alignment;
int n_free_blocks;
struct free_block free_blocks[MAX_FREE_BLOCKS];
struct hash_node hash_table[GGML_GRAPH_HASHTABLE_SIZE];
size_t max_size;
bool measure;
#ifdef GGML_ALLOCATOR_DEBUG
struct ggml_tensor * allocated_tensors[1024];
#endif
};
#ifdef GGML_ALLOCATOR_DEBUG
static void add_allocated_tensor(struct ggml_allocator * alloc, struct ggml_tensor * tensor) {
for (int i = 0; i < 1024; i++) {
if (alloc->allocated_tensors[i] == NULL) {
alloc->allocated_tensors[i] = tensor;
return;
}
}
GGML_ASSERT(!"out of allocated_tensors");
}
static void remove_allocated_tensor(struct ggml_allocator * alloc, struct ggml_tensor * tensor) {
for (int i = 0; i < 1024; i++) {
if (alloc->allocated_tensors[i] == tensor ||
(alloc->allocated_tensors[i] != NULL && alloc->allocated_tensors[i]->data == tensor->data)) {
alloc->allocated_tensors[i] = NULL;
return;
}
}
printf("tried to free tensor %s not found\n", tensor->name);
GGML_ASSERT(!"tensor not found");
}
#endif
static size_t ggml_allocator_get_alloc_size(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
return ggml_nbytes(tensor);
UNUSED(alloc);
}
void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
size_t size = ggml_allocator_get_alloc_size(alloc, tensor);
size = aligned_offset(NULL, size, alloc->alignment);
AT_PRINTF("%s: allocating %s (%zu bytes) - ", __func__, tensor->name, size);
size_t max_avail = 0;
// find the best fitting free block
int best_fit_block = -1;
size_t best_fit_size = SIZE_MAX;
for (int i = 0; i < alloc->n_free_blocks; i++) {
struct free_block * block = &alloc->free_blocks[i];
max_avail = MAX(max_avail, block->size);
if (block->size >= size && block->size <= best_fit_size) {
best_fit_block = i;
best_fit_size = block->size;
}
}
AT_PRINTF("block %d\n", best_fit_block);
if (best_fit_block == -1) {
fprintf(stderr, "%s: not enough space in the buffer (needed %zu, largest block available %zu)\n",
__func__, size, max_avail);
GGML_ASSERT(!"not enough space in the buffer");
return;
}
struct free_block * block = &alloc->free_blocks[best_fit_block];
void * addr = block->addr;
block->addr = (char*)block->addr + size;
block->size -= size;
if (block->size == 0) {
// remove block if empty
alloc->n_free_blocks--;
for (int j = best_fit_block; j < alloc->n_free_blocks; j++) {
alloc->free_blocks[j] = alloc->free_blocks[j+1];
}
}
tensor->data = addr;
#ifdef GGML_ALLOCATOR_DEBUG
add_allocated_tensor(alloc, tensor);
size_t cur_max = (char*)addr - (char*)alloc->data + size;
if (cur_max > alloc->max_size) {
printf("max_size = %.2f MB: tensors: ", cur_max / 1024.0 / 1024.0);
for (int i = 0; i < 1024; i++) {
if (alloc->allocated_tensors[i]) {
printf("%s (%.2f MB) ", alloc->allocated_tensors[i]->name, ggml_nbytes(alloc->allocated_tensors[i]) / 1024.0 / 1024.0);
}
}
printf("\n");
}
#endif
alloc->max_size = MAX(alloc->max_size, (char*)addr - (char*)alloc->data + size);
}
// this is a very naive implementation, but for our case the number of free blocks should be very small
static void ggml_allocator_free_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
void * ptr = tensor->data;
if (ptr < alloc->data || (char*)ptr >= (char*)alloc->data + alloc->max_size) {
// the tensor was not allocated in this buffer
// this can happen because the graph allocator will try to free weights and other tensors from different buffers
// the easiest way to deal with this is just to ignore it
return;
}
size_t size = ggml_allocator_get_alloc_size(alloc, tensor);
size = aligned_offset(NULL, size, alloc->alignment);
AT_PRINTF("%s: freeing %s (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, size, alloc->n_free_blocks);
#ifdef GGML_ALLOCATOR_DEBUG
remove_allocated_tensor(alloc, tensor);
#endif
// see if we can merge with an existing block
for (int i = 0; i < alloc->n_free_blocks; i++) {
struct free_block * block = &alloc->free_blocks[i];
// check if ptr is at the end of the block
if ((char*)block->addr + block->size == ptr) {
block->size += size;
// check if we can merge with the next block
if (i < alloc->n_free_blocks - 1 && (char*)block->addr + block->size == alloc->free_blocks[i+1].addr) {
block->size += alloc->free_blocks[i+1].size;
alloc->n_free_blocks--;
for (int j = i+1; j < alloc->n_free_blocks; j++) {
alloc->free_blocks[j] = alloc->free_blocks[j+1];
}
}
return;
}
// check if ptr is at the beginning of the block
if ((char*)ptr + size == block->addr) {
block->addr = ptr;
block->size += size;
// check if we can merge with the previous block
if (i > 0 && (char*)alloc->free_blocks[i-1].addr + alloc->free_blocks[i-1].size == block->addr) {
alloc->free_blocks[i-1].size += block->size;
alloc->n_free_blocks--;
for (int j = i; j < alloc->n_free_blocks; j++) {
alloc->free_blocks[j] = alloc->free_blocks[j+1];
}
}
return;
}
}
// otherwise, add a new block
GGML_ASSERT(alloc->n_free_blocks < MAX_FREE_BLOCKS && "out of free blocks");
// insert the new block in the correct position to keep the array sorted by address (to make merging blocks faster)
int insert_pos = 0;
while (insert_pos < alloc->n_free_blocks && alloc->free_blocks[insert_pos].addr < ptr) {
insert_pos++;
}
// shift all blocks from insert_pos onward to make room for the new block
for (int i = alloc->n_free_blocks; i > insert_pos; i--) {
alloc->free_blocks[i] = alloc->free_blocks[i-1];
}
// insert the new block
alloc->free_blocks[insert_pos].addr = ptr;
alloc->free_blocks[insert_pos].size = size;
alloc->n_free_blocks++;
}
void ggml_allocr_reset(struct ggml_allocr * alloc) {
alloc->n_free_blocks = 1;
size_t align_offset = aligned_offset(alloc->data, 0, alloc->alignment);
alloc->free_blocks[0].addr = (char *)alloc->data + align_offset;
alloc->free_blocks[0].size = alloc->size - align_offset;
}
struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment) {
struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr) /* + n_free_blocks * sizeof(struct free_block) */);
*alloc = (struct ggml_allocr){
/*.data = */ data,
/*.size = */ size,
/*.alignment = */ alignment,
/*.n_free_blocks = */ 0,
/*.free_blocks = */ {{0}},
/*.hash_table = */ {{0}},
/*.max_size = */ 0,
/*.measure = */ false,
#ifdef GGML_ALLOCATOR_DEBUG
/*.allocated_tensors = */ = {0},
#endif
};
ggml_allocr_reset(alloc);
return alloc;
}
// address and size of the buffer when measuring
// it needs to be large enough to fit all the tensors, but it cannot overlap with other existing buffers
static void * const MEASURE_BASE_ADDR = (void *) 0x1000;
static const size_t MEASURE_MAX_SIZE = 1ULL<<40; // 1 TB
struct ggml_allocr * ggml_allocr_new_measure(size_t alignment) {
struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr) /* + n_free_blocks * sizeof(struct free_block) */);
*alloc = (struct ggml_allocr){
/*.data = */ MEASURE_BASE_ADDR,
/*.size = */ MEASURE_MAX_SIZE,
/*.alignment = */ alignment,
/*.n_free_blocks = */ 0,
/*.free_blocks = */ {{0}},
/*.hash_table = */ {{0}},
/*.max_size = */ 0,
/*.measure = */ true,
#ifdef GGML_ALLOCATOR_DEBUG
/*.allocated_tensors = */ = {0},
#endif
};
ggml_allocr_reset(alloc);
return alloc;
}
void ggml_allocr_free(struct ggml_allocr * alloc) {
free(alloc);
}
bool ggml_allocr_is_measure(struct ggml_allocr * alloc) {
return alloc->measure;
}
//////////// compute graph allocator
static bool ggml_is_view(struct ggml_tensor * t) {
return t->op == GGML_OP_RESHAPE || t->op == GGML_OP_VIEW || t->op == GGML_OP_TRANSPOSE ||
t->op == GGML_OP_PERMUTE || t->op == GGML_OP_CPY;
}
static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
if (a->type != b->type) {
return false;
}
for (int i = 0; i < GGML_MAX_DIMS; i++) {
if (a->ne[i] != b->ne[i]) {
return false;
}
if (a->nb[i] != b->nb[i]) {
return false;
}
}
return true;
}
static struct ggml_tensor * get_view_parent(struct ggml_tensor * t) {
switch (t->op) {
case GGML_OP_PERMUTE:
case GGML_OP_RESHAPE:
case GGML_OP_TRANSPOSE:
case GGML_OP_VIEW:
return t->src[0];
case GGML_OP_CPY:
return t->src[1];
default:
return NULL;
}
}
static struct ggml_tensor * get_view_source(struct ggml_tensor * t) {
struct ggml_tensor * parent = t;
do {
parent = get_view_parent(parent);
} while (ggml_is_view(parent));
return parent;
}
static bool ggml_op_can_inplace(enum ggml_op op) {
switch (op) {
case GGML_OP_SCALE:
case GGML_OP_DIAG_MASK_ZERO:
case GGML_OP_DIAG_MASK_INF:
case GGML_OP_ADD:
case GGML_OP_ADD1:
case GGML_OP_ACC:
case GGML_OP_SUB:
case GGML_OP_MUL:
case GGML_OP_DIV:
case GGML_OP_SQR:
case GGML_OP_SQRT:
case GGML_OP_LOG:
case GGML_OP_UNARY:
case GGML_OP_ROPE:
case GGML_OP_RMS_NORM:
case GGML_OP_SET:
case GGML_OP_SOFT_MAX:
case GGML_OP_CONT:
return true;
default:
return false;
}
}
static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node) {
struct hash_node * ht = alloc->hash_table;
if (node->data == NULL) {
if (ggml_is_view(node)) {
size_t offset;
switch(node->op) {
case GGML_OP_VIEW:
memcpy(&offset, node->op_params, sizeof(size_t));
node->data = (char *) node->src[0]->data + offset;
break;
case GGML_OP_PERMUTE:
case GGML_OP_RESHAPE:
case GGML_OP_TRANSPOSE:
node->data = node->src[0]->data;
break;
case GGML_OP_CPY:
node->data = node->src[1]->data;
break;
default:
GGML_ASSERT(!"unknown view op");
break;
}
} else {
// see if we can reuse a parent's buffer (inplace)
if (ggml_op_can_inplace(node->op)) {
for (int i = 0; i < GGML_MAX_SRC; i++) {
struct ggml_tensor * parent = node->src[i];
if (parent == NULL) {
break;
}
struct hash_node * p_hn = hash_get(ht, parent);
if (parent->data != NULL && p_hn->n_children == 1 && p_hn->n_views == 0 && ggml_are_same_layout(node, parent)) {
if (ggml_is_view(parent)) {
struct ggml_tensor * view_src = get_view_source(parent);
struct hash_node * view_src_hn = hash_get(ht, view_src);
if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) {
// TODO: the offset of the view parent must be kept to ensure that the op doesn't overwrite
// the parent's data that it will need later (same layout requirement). the problem is that then
// we cannot free the tensor because the original address of the allocation is lost.
// adding a view_src pointer to the tensor would solve this and simplify the code dealing with views
// for now, we only reuse the parent's data if the offset is zero (view_src->data == parent->data)
AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, view_src->name, node->name);
node->data = parent->data;
return;
}
}
else {
AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name);
node->data = parent->data;
}
return;
}
}
}
ggml_allocr_alloc(alloc, node);
}
}
}
static size_t ggml_allocator_alloc_graph_tensors_n(
struct ggml_allocr * alloc,
struct ggml_cgraph ** graphs, int n_graphs,
struct ggml_tensor *** inputs, struct ggml_tensor *** outputs) {
// reset hash table
struct hash_node * ht = alloc->hash_table;
memset(ht, 0, sizeof(struct hash_node) * GGML_GRAPH_HASHTABLE_SIZE);
// count number of children and views
for (int g = 0; g < n_graphs; g++) {
struct ggml_cgraph * gf = graphs[g];
for (int i = 0; i < gf->n_nodes; i++) {
struct ggml_tensor * node = gf->nodes[i];
if (ggml_is_view(node)) {
struct ggml_tensor * view_src = get_view_source(node);
hash_get(ht, view_src)->n_views += 1;
}
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * parent = node->src[j];
if (parent == NULL) {
break;
}
hash_get(ht, parent)->n_children += 1;
}
}
}
// allocate tensors
for (int g = 0; g < n_graphs; g++) {
struct ggml_cgraph * gf = graphs[g];
AT_PRINTF("####### graph %d/%d\n", g, n_graphs);
// graph inputs are allocated first to ensure that they are not overwritten by each other
if (inputs != NULL && inputs[g] != NULL) {
for (int i = 0; inputs[g][i] != NULL; i++) {
struct ggml_tensor * input = inputs[g][i];
AT_PRINTF("input: %s\n", input->name);
allocate_node(alloc, input);
}
}
for (int i = 0; i < gf->n_nodes; i++) {
struct ggml_tensor * node = gf->nodes[i];
// allocate parents (leafs)
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * parent = node->src[j];
if (parent == NULL) {
break;
}
allocate_node(alloc, parent);
}
// allocate node
allocate_node(alloc, node);
AT_PRINTF("exec: %s (%s) <= ", ggml_op_name(node->op), node->name);
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * parent = node->src[j];
if (parent == NULL) {
break;
}
AT_PRINTF("%s", parent->name);
if (j < GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) {
AT_PRINTF(", ");
}
}
AT_PRINTF("\n");
// update parents
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * parent = node->src[j];
if (parent == NULL) {
break;
}
struct hash_node * p_hn = hash_get(ht, parent);
p_hn->n_children -= 1;
//AT_PRINTF("parent %s: %d children, %d views\n", parent->name, parent->n_children, parent->n_views);
if (p_hn->n_children == 0 && p_hn->n_views == 0) {
if (ggml_is_view(parent)) {
struct ggml_tensor * view_src = get_view_source(parent);
struct hash_node * view_src_hn = hash_get(ht, view_src);
view_src_hn->n_views -= 1;
AT_PRINTF("view_src %s: %d children, %d views\n", view_src->name, view_src->n_children, view_src->n_views);
if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0 && view_src->data != node->data) {
ggml_allocator_free_tensor(alloc, view_src);
}
}
else {
if (parent->data != node->data) {
ggml_allocator_free_tensor(alloc, parent);
}
}
}
}
AT_PRINTF("\n");
}
// free graph outputs here that wouldn't be freed otherwise because they have no children
if (outputs != NULL && outputs[g] != NULL) {
for (int i = 0; outputs[g][i] != NULL; i++) {
struct ggml_tensor * output = outputs[g][i];
AT_PRINTF("output: %s\n", output->name);
ggml_allocator_free_tensor(alloc, output);
}
}
}
return alloc->max_size;
}
size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph) {
return ggml_allocator_alloc_graph_tensors_n(alloc, &graph, 1, NULL, NULL);
}

48
llama/ggml-alloc.h Normal file
View file

@ -0,0 +1,48 @@
/**
* llama.cpp - git c574bddb368424b5996cbee2ec45ec050967d404
*
* MIT License
*
* Copyright (c) 2023 Georgi Gerganov
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#pragma once
#include "ggml.h"
#ifdef __cplusplus
extern "C" {
#endif
GGML_API struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment);
GGML_API struct ggml_allocr * ggml_allocr_new_measure(size_t alignment);
GGML_API void ggml_allocr_free(struct ggml_allocr * alloc);
GGML_API bool ggml_allocr_is_measure(struct ggml_allocr * alloc);
GGML_API void ggml_allocr_reset(struct ggml_allocr * alloc);
GGML_API void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor);
GGML_API size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph);
#ifdef __cplusplus
}
#endif

File diff suppressed because it is too large Load diff

View file

@ -1,5 +1,5 @@
/**
* llama.cpp - git d91f3f0c55663719ea03b76311e8c36ed55eb0e2
* llama.cpp - git c574bddb368424b5996cbee2ec45ec050967d404
*
* MIT License
*
@ -53,6 +53,7 @@ void ggml_cuda_assign_buffers(struct ggml_tensor * tensor);
void ggml_cuda_assign_buffers_no_scratch(struct ggml_tensor * tensor);
void ggml_cuda_assign_buffers_force_inplace(struct ggml_tensor * tensor);
void ggml_cuda_set_main_device(int main_device);
void ggml_cuda_set_mul_mat_q(bool mul_mat_q);
void ggml_cuda_set_scratch_size(size_t scratch_size);
void ggml_cuda_free_scratch(void);
bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor);

View file

@ -1,7 +1,7 @@
//go:build darwin
/**
* llama.cpp - git d91f3f0c55663719ea03b76311e8c36ed55eb0e2
* llama.cpp - git c574bddb368424b5996cbee2ec45ec050967d404
*
* MIT License
*

View file

@ -1,7 +1,7 @@
//go:build darwin
/**
* llama.cpp - git d91f3f0c55663719ea03b76311e8c36ed55eb0e2
* llama.cpp - git c574bddb368424b5996cbee2ec45ec050967d404
*
* MIT License
*
@ -746,7 +746,8 @@ void ggml_metal_graph_compute(
// TODO: needs to be updated after PR: https://github.com/ggerganov/ggml/pull/224
GGML_ASSERT(ne00 == ne10);
GGML_ASSERT(ne02 == ne12);
// GGML_ASSERT(ne02 == ne12); // Should be checked on individual data types until broadcast is implemented everywhere
GGML_ASSERT(ne03 == ne13);
if (ggml_is_contiguous(src0) &&
ggml_is_contiguous(src1) &&
@ -774,11 +775,11 @@ void ggml_metal_graph_compute(
initWithDevice:ctx->device transposeLeft:false transposeRight:true
resultRows:ne11 resultColumns:ne01 interiorColumns:ne00 alpha:1.0 beta:0.0];
// we need to do ne02 multiplications
// we need to do ne12 multiplications
// TODO: is there a way to do this in parallel - currently very slow ..
// TODO: might be possible to offload part of the computation to ANE using Accelerate's CBLAS
for (int64_t i02 = 0; i02 < ne02; ++i02) {
size_t offs_src0_cur = offs_src0 + i02*nb02;
for (int64_t i02 = 0; i02 < ne12; ++i02) {
size_t offs_src0_cur = offs_src0 + i02/(ne12/ne02)*nb02; // gqa not used for now
size_t offs_src1_cur = offs_src1 + i02*nb12;
size_t offs_dst_cur = offs_dst + i02*nb2;
@ -800,8 +801,6 @@ void ggml_metal_graph_compute(
switch (src0t) {
case GGML_TYPE_F16:
{
GGML_ASSERT(ne02 == ne12);
nth0 = 64;
nth1 = 1;
[encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32];
@ -881,16 +880,18 @@ void ggml_metal_graph_compute(
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:5];
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:6];
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:7];
[encoder setBytes:&ne10 length:sizeof(ne10) atIndex:8];
[encoder setBytes:&ne11 length:sizeof(ne11) atIndex:9];
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:10];
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:11];
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:12];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:13];
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:14];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5];
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
[encoder setBytes:&ne10 length:sizeof(ne10) atIndex:9];
[encoder setBytes:&ne11 length:sizeof(ne11) atIndex:10];
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:11];
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:12];
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:13];
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:14];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:15];
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:16];
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 ||
src0t == GGML_TYPE_Q2_K || src0t == GGML_TYPE_Q4_K) {

View file

@ -1,7 +1,7 @@
//go:build darwin
/**
* llama.cpp - git d91f3f0c55663719ea03b76311e8c36ed55eb0e2
* llama.cpp - git c574bddb368424b5996cbee2ec45ec050967d404
*
* MIT License
*
@ -537,11 +537,13 @@ kernel void kernel_mul_mat_f16_f32(
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
@ -557,7 +559,7 @@ kernel void kernel_mul_mat_f16_f32(
const int64_t r1 = tgpig.y;
const int64_t im = tgpig.z;
device const half * x = (device const half *) (src0 + r0*nb01 + im*nb02);
device const half * x = (device const half *) (src0 + r0*nb01 + im/(ne12/ne02)*nb02);
device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
sum[tpitg.x] = 0.0f;
@ -580,6 +582,7 @@ kernel void kernel_mul_mat_f16_f32(
}
}
kernel void kernel_alibi_f32(
device const float * src0,
device float * dst,

View file

@ -1,7 +1,7 @@
//go:build mpi
/**
* llama.cpp - git d91f3f0c55663719ea03b76311e8c36ed55eb0e2
* llama.cpp - git c574bddb368424b5996cbee2ec45ec050967d404
*
* MIT License
*

View file

@ -1,7 +1,7 @@
//go:build mpi
/**
* llama.cpp - git d91f3f0c55663719ea03b76311e8c36ed55eb0e2
* llama.cpp - git c574bddb368424b5996cbee2ec45ec050967d404
*
* MIT License
*

View file

@ -1,7 +1,7 @@
//go:build opencl
/**
* llama.cpp - git d91f3f0c55663719ea03b76311e8c36ed55eb0e2
* llama.cpp - git c574bddb368424b5996cbee2ec45ec050967d404
*
* MIT License
*

View file

@ -1,7 +1,7 @@
//go:build opencl
/**
* llama.cpp - git d91f3f0c55663719ea03b76311e8c36ed55eb0e2
* llama.cpp - git c574bddb368424b5996cbee2ec45ec050967d404
*
* MIT License
*

View file

@ -1,5 +1,5 @@
/**
* llama.cpp - git d91f3f0c55663719ea03b76311e8c36ed55eb0e2
* llama.cpp - git c574bddb368424b5996cbee2ec45ec050967d404
*
* MIT License
*
@ -4583,10 +4583,12 @@ static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml
static struct ggml_tensor * ggml_new_tensor_impl(
struct ggml_context * ctx,
enum ggml_type type,
int n_dims,
const int64_t* ne,
void* data) {
enum ggml_type type,
int n_dims,
const int64_t * ne,
void * data) {
assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
size_t data_size = 0;
@ -4674,22 +4676,22 @@ static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int3
struct ggml_tensor * ggml_new_tensor(
struct ggml_context * ctx,
enum ggml_type type,
int n_dims,
const int64_t * ne) {
enum ggml_type type,
int n_dims,
const int64_t * ne) {
return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
}
struct ggml_tensor * ggml_new_tensor_1d(
struct ggml_context * ctx,
enum ggml_type type,
enum ggml_type type,
int64_t ne0) {
return ggml_new_tensor(ctx, type, 1, &ne0);
}
struct ggml_tensor * ggml_new_tensor_2d(
struct ggml_context * ctx,
enum ggml_type type,
enum ggml_type type,
int64_t ne0,
int64_t ne1) {
const int64_t ne[2] = { ne0, ne1 };
@ -4698,7 +4700,7 @@ struct ggml_tensor * ggml_new_tensor_2d(
struct ggml_tensor * ggml_new_tensor_3d(
struct ggml_context * ctx,
enum ggml_type type,
enum ggml_type type,
int64_t ne0,
int64_t ne1,
int64_t ne2) {
@ -6264,6 +6266,27 @@ struct ggml_tensor * ggml_reshape_4d(
// ggml_view_1d
static struct ggml_tensor * ggml_view_tensor_offset(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_dims,
const int64_t * ne,
size_t offset) {
// don't calculate an offset from an unallocated tensor
void * data = NULL;
if (a->data != NULL) {
data = (char *) a->data + offset;
}
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, data);
ggml_format_name(result, "%s (view)", a->name);
ggml_set_op_params(result, &offset, sizeof(offset));
return result;
}
struct ggml_tensor * ggml_view_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
@ -6276,10 +6299,7 @@ struct ggml_tensor * ggml_view_1d(
is_node = true;
}
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
ggml_format_name(result, "%s (view)", a->name);
ggml_set_op_params(result, &offset, sizeof(offset));
struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 1, &ne0, offset);
result->op = GGML_OP_VIEW;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
@ -6306,10 +6326,7 @@ struct ggml_tensor * ggml_view_2d(
const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
ggml_format_name(result, "%s (view)", a->name);
ggml_set_op_params(result, &offset, sizeof(offset));
struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 2, ne, offset);
result->nb[1] = nb1;
result->nb[2] = result->nb[1]*ne1;
@ -6342,10 +6359,7 @@ struct ggml_tensor * ggml_view_3d(
const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
ggml_format_name(result, "%s (view)", a->name);
ggml_set_op_params(result, &offset, sizeof(offset));
struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 3, ne, offset);
result->nb[1] = nb1;
result->nb[2] = nb2;
@ -6380,10 +6394,7 @@ struct ggml_tensor * ggml_view_4d(
const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, (char *) a->data + offset);
ggml_format_name(result, "%s (view)", a->name);
ggml_set_op_params(result, &offset, sizeof(offset));
struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 4, ne, offset);
result->nb[1] = nb1;
result->nb[2] = nb2;
@ -6767,6 +6778,18 @@ struct ggml_tensor * ggml_rope_inplace(
return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, 10000.0f, 1.0f, true);
}
struct ggml_tensor * ggml_rope_custom(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_past,
int n_dims,
int mode,
int n_ctx,
float freq_base,
float freq_scale) {
return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, freq_base, freq_scale, false);
}
struct ggml_tensor * ggml_rope_custom_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,

View file

@ -1,5 +1,5 @@
/**
* llama.cpp - git d91f3f0c55663719ea03b76311e8c36ed55eb0e2
* llama.cpp - git c574bddb368424b5996cbee2ec45ec050967d404
*
* MIT License
*
@ -1196,7 +1196,18 @@ extern "C" {
int mode,
int n_ctx);
// custom RoPE, in-place, returns view(a)
// custom RoPE
GGML_API struct ggml_tensor * ggml_rope_custom(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_past,
int n_dims,
int mode,
int n_ctx,
float freq_base,
float freq_scale);
// in-place, returns view(a)
GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,

View file

@ -1,5 +1,5 @@
/**
* llama.cpp - git d91f3f0c55663719ea03b76311e8c36ed55eb0e2
* llama.cpp - git c574bddb368424b5996cbee2ec45ec050967d404
*
* MIT License
*
@ -65,6 +65,8 @@
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
//
// 2-6 bit quantization in super-blocks
//
@ -1379,7 +1381,7 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
const __m256i all_scales = _mm256_cvtepi8_epi16(scales8);
const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
const __m256i scales[2] = {_mm256_set_m128i(l_scales, l_scales), _mm256_set_m128i(h_scales, h_scales)};
const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
__m256i sumi = _mm256_setzero_si256();
@ -1447,7 +1449,7 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
const __m128i summs_1 = _mm_madd_epi16(mins_1, _mm_loadu_si128((const __m128i*)&y[i].bsums[8]));
// sumf += -dmin * summs in 32bits*8
acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(_mm256_set_m128i(summs_1, summs_0))), acc);
acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(MM256_SET_M128I(summs_1, summs_0))), acc);
const __m128i scales_0 = _mm_cvtepi8_epi16(scales16);
const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales16, scales16));
@ -1519,7 +1521,7 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
}
// sumf += dall * isum - dmin * summs in 32bits
__m256i sumi = _mm256_set_m128i(sumi_1, sumi_0);
__m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dall), _mm256_cvtepi32_ps(sumi)), acc);
}
@ -1670,8 +1672,8 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
summs += dmin * smin;
const __m128i q2bits = _mm_loadu_si128((const __m128i*)q2);
const __m256i q2_0 = _mm256_and_si256(_mm256_set_m128i(_mm_srli_epi16(q2bits, 2), q2bits), m3);
const __m256i q2_1 = _mm256_and_si256(_mm256_set_m128i(_mm_srli_epi16(q2bits, 6), _mm_srli_epi16(q2bits, 4)), m3);
const __m256i q2_0 = _mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q2bits, 2), q2bits), m3);
const __m256i q2_1 = _mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q2bits, 6), _mm_srli_epi16(q2bits, 4)), m3);
const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
@ -1735,10 +1737,10 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
const __m128i p2 = _mm_maddubs_epi16(q2_2, _mm256_extractf128_si256(q8_1, 0));
const __m128i p3 = _mm_maddubs_epi16(q2_3, _mm256_extractf128_si256(q8_1, 1));
const __m256i p_0 = _mm256_set_m128i(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p0, p0)), _mm_cvtepi16_epi32(p0));
const __m256i p_1 = _mm256_set_m128i(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p1, p1)), _mm_cvtepi16_epi32(p1));
const __m256i p_2 = _mm256_set_m128i(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p2, p2)), _mm_cvtepi16_epi32(p2));
const __m256i p_3 = _mm256_set_m128i(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p3, p3)), _mm_cvtepi16_epi32(p3));
const __m256i p_0 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p0, p0)), _mm_cvtepi16_epi32(p0));
const __m256i p_1 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p1, p1)), _mm_cvtepi16_epi32(p1));
const __m256i p_2 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p2, p2)), _mm_cvtepi16_epi32(p2));
const __m256i p_3 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p3, p3)), _mm_cvtepi16_epi32(p3));
acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[0]), _mm256_cvtepi32_ps(p_0)), acc);
acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[1]), _mm256_cvtepi32_ps(p_1)), acc);
@ -1943,7 +1945,7 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
const __m256i all_scales = _mm256_cvtepi8_epi16(scales128);
const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
const __m256i scales[2] = {_mm256_set_m128i(l_scales, l_scales), _mm256_set_m128i(h_scales, h_scales)};
const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
// high bit
const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].hmask);
@ -2154,7 +2156,7 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
}
// multiply with block scale and accumulate
__m256i sumi = _mm256_set_m128i(sumi_1, sumi_0);
__m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
}
@ -2329,13 +2331,13 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
aux16[0] = a & 0x0f0f;
aux16[1] = (a >> 4) & 0x0f0f;
const __m256i scale_0 = _mm256_set_m128i(_mm_set1_epi16(aux8[2] - 8), _mm_set1_epi16(aux8[0] - 8));
const __m256i scale_1 = _mm256_set_m128i(_mm_set1_epi16(aux8[3] - 8), _mm_set1_epi16(aux8[1] - 8));
const __m256i scale_0 = MM256_SET_M128I(_mm_set1_epi16(aux8[2] - 8), _mm_set1_epi16(aux8[0] - 8));
const __m256i scale_1 = MM256_SET_M128I(_mm_set1_epi16(aux8[3] - 8), _mm_set1_epi16(aux8[1] - 8));
memcpy(&aux64, x[i].hmask, 8);
const __m128i haux = _mm_set_epi64x(aux64 >> 1, aux64 >> 0);
__m256i q3h_0 = _mm256_set_m128i(_mm_srli_epi16(haux, 2), haux);
__m256i q3h_0 = MM256_SET_M128I(_mm_srli_epi16(haux, 2), haux);
__m256i q3h_1 = _mm256_srli_epi16(q3h_0, 4);
q3h_0 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_0, m1), 2);
q3h_1 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_1, m1), 2);
@ -2344,7 +2346,7 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
const __m128i q3bits = _mm_loadu_si128((const __m128i*)q3);
// prepare low and high bits
const __m256i q3aux = _mm256_set_m128i(_mm_srli_epi16(q3bits, 2), q3bits);
const __m256i q3aux = MM256_SET_M128I(_mm_srli_epi16(q3bits, 2), q3bits);
const __m256i q3l_0 = _mm256_and_si256(q3aux, m3);
const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3aux, 4), m3);
@ -2455,7 +2457,7 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
p16_0 = _mm_add_epi32(p16_0, p16_2);
p16_1 = _mm_add_epi32(p16_1, p16_3);
__m256i p16 = _mm256_set_m128i(p16_1, p16_0);
__m256i p16 = MM256_SET_M128I(p16_1, p16_0);
// multiply with block scale and accumulate
acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(p16)), acc);
@ -2646,7 +2648,7 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
acc_m = _mm_fmadd_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod), acc_m);
const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
const __m256i scales = _mm256_set_m128i(sc128, sc128);
const __m256i scales = MM256_SET_M128I(sc128, sc128);
__m256i sumi = _mm256_setzero_si256();
@ -2753,7 +2755,7 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
}
__m256 vd = _mm256_set1_ps(d);
__m256i sumi = _mm256_set_m128i(sumi_1, sumi_0);
__m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
}
@ -2994,11 +2996,11 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
const __m128i p32_0 = _mm_madd_epi16(_mm_set1_epi16(scales[0]), p16_0);
const __m128i p32_1 = _mm_madd_epi16(_mm_set1_epi16(scales[0]), p16_1);
acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(_mm256_set_m128i(p32_1, p32_0))), acc);
acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(MM256_SET_M128I(p32_1, p32_0))), acc);
const __m128i p32_2 = _mm_madd_epi16(_mm_set1_epi16(scales[1]), p16_2);
const __m128i p32_3 = _mm_madd_epi16(_mm_set1_epi16(scales[1]), p16_3);
acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(_mm256_set_m128i(p32_3, p32_2))), acc);
acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(MM256_SET_M128I(p32_3, p32_2))), acc);
}
@ -3186,7 +3188,7 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
summs += dmin * _mm_extract_epi32(hsum, 0);
const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
const __m256i scales = _mm256_set_m128i(sc128, sc128);
const __m256i scales = MM256_SET_M128I(sc128, sc128);
const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].qh);
__m256i hmask = mone;
@ -3325,7 +3327,7 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
}
__m256 vd = _mm256_set1_ps(d);
__m256i sumi = _mm256_set_m128i(sumi_1, sumi_0);
__m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
}
@ -3488,13 +3490,13 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5);
const __m256i scale_l = _mm256_set_m128i(_mm_set1_epi16(x[i].scales[1]), _mm_set1_epi16(x[i].scales[0]));
const __m256i scale_h = _mm256_set_m128i(_mm_set1_epi16(x[i].scales[3]), _mm_set1_epi16(x[i].scales[2]));
const __m256i scale_l = MM256_SET_M128I(_mm_set1_epi16(x[i].scales[1]), _mm_set1_epi16(x[i].scales[0]));
const __m256i scale_h = MM256_SET_M128I(_mm_set1_epi16(x[i].scales[3]), _mm_set1_epi16(x[i].scales[2]));
int64_t aux64;
memcpy(&aux64, x[i].qh, 8);
const __m128i haux128 = _mm_set_epi64x(aux64 >> 1, aux64);
const __m256i haux256 = _mm256_set_m128i(_mm_srli_epi16(haux128, 2), haux128);
const __m256i haux256 = MM256_SET_M128I(_mm_srli_epi16(haux128, 2), haux128);
const __m256i q5h_0 = _mm256_slli_epi16(_mm256_andnot_si256(haux256, mone), 4);
const __m256i q5h_1 = _mm256_slli_epi16(_mm256_andnot_si256(_mm256_srli_epi16(haux256, 4), mone), 4);
@ -3569,7 +3571,7 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
const __m128i dot_0 = _mm_sub_epi32(_mm_add_epi32(p16_0, p16_2), _mm_add_epi32(s16_0, s16_2));
const __m128i dot_1 = _mm_sub_epi32(_mm_add_epi32(p16_1, p16_3), _mm_add_epi32(s16_1, s16_3));
acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_set_m128i(dot_1, dot_0))), acc);
acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(dot_1, dot_0))), acc);
}
@ -3951,7 +3953,7 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
}
__m256i sumi = _mm256_set_m128i(sumi_1, sumi_0);
__m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
}
@ -4109,8 +4111,8 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4);
const __m128i q4bitsH = _mm_loadu_si128((const __m128i*)qh);
const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(_mm256_set_m128i(_mm_srli_epi16(q4bitsH, 2), q4bitsH), m2), 4);
const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(_mm256_set_m128i(_mm_srli_epi16(q4bitsH, 6), _mm_srli_epi16(q4bitsH, 4)), m2), 4);
const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q4bitsH, 2), q4bitsH), m2), 4);
const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q4bitsH, 6), _mm_srli_epi16(q4bitsH, 4)), m2), 4);
const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_1);
@ -4203,7 +4205,7 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(_mm256_set_m128i(sumi_1, sumi_0))), acc);
acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(MM256_SET_M128I(sumi_1, sumi_0))), acc);
}
*s = hsum_float_8(acc);

View file

@ -1,5 +1,5 @@
/**
* llama.cpp - git d91f3f0c55663719ea03b76311e8c36ed55eb0e2
* llama.cpp - git c574bddb368424b5996cbee2ec45ec050967d404
*
* MIT License
*

View file

@ -1,5 +1,5 @@
/**
* llama.cpp - git d91f3f0c55663719ea03b76311e8c36ed55eb0e2
* llama.cpp - git c574bddb368424b5996cbee2ec45ec050967d404
*
* MIT License
*

View file

@ -1,5 +1,5 @@
/**
* llama.cpp - git d91f3f0c55663719ea03b76311e8c36ed55eb0e2
* llama.cpp - git c574bddb368424b5996cbee2ec45ec050967d404
*
* MIT License
*
@ -82,8 +82,14 @@
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
#if !defined(GGML_USE_CUBLAS) && !defined(GGML_USE_METAL)
#include "ggml-alloc.h"
#define LLAMA_USE_ALLOCATOR
#else
#define LLAMA_USE_SCRATCH
#define LLAMA_MAX_SCRATCH_BUFFERS 16
#endif
// available llama models
enum e_model {
@ -353,13 +359,22 @@ struct llama_model {
struct llama_context {
llama_context(const llama_model & model) : model(model), t_load_us(model.t_load_us), t_start_us(model.t_start_us) {}
#ifdef GGML_USE_METAL
~llama_context() {
if (model_owner) {
delete &model;
}
#ifdef GGML_USE_METAL
if (ctx_metal) {
ggml_metal_free(ctx_metal);
}
}
#endif
#ifdef LLAMA_USE_ALLOCATOR
if (alloc) {
ggml_allocr_free(alloc);
}
#endif
}
std::mt19937 rng;
bool has_evaluated_once = false;
@ -397,7 +412,17 @@ struct llama_context {
// memory buffers used to evaluate the model
// TODO: move in llama_state
llama_ctx_buffer buf_compute;
#ifdef LLAMA_USE_ALLOCATOR
llama_ctx_buffer buf_alloc;
ggml_allocr * alloc = NULL;
#endif
#ifdef LLAMA_USE_SCRATCH
llama_ctx_buffer buf_scratch[LLAMA_MAX_SCRATCH_BUFFERS];
int buf_last = 0;
size_t buf_max_size[LLAMA_MAX_SCRATCH_BUFFERS] = { 0 };
#endif
#ifdef GGML_USE_METAL
ggml_metal_context * ctx_metal = NULL;
@ -407,9 +432,6 @@ struct llama_context {
ggml_mpi_context * ctx_mpi = NULL;
#endif
int buf_last = 0;
size_t buf_max_size[LLAMA_MAX_SCRATCH_BUFFERS] = { 0 };
void use_buf(struct ggml_context * ctx, int i) {
#if defined(LLAMA_USE_SCRATCH)
size_t last_size = 0;
@ -905,6 +927,7 @@ struct llama_context_params llama_context_default_params() {
/*.progress_callback =*/ nullptr,
/*.progress_callback_user_data =*/ nullptr,
/*.low_vram =*/ false,
/*.mul_mat_q =*/ false,
/*.f16_kv =*/ true,
/*.logits_all =*/ false,
/*.vocab_only =*/ false,
@ -1032,6 +1055,7 @@ static void llama_model_load_internal(
int n_gpu_layers,
int main_gpu,
const float * tensor_split,
const bool mul_mat_q,
float rope_freq_base,
float rope_freq_scale,
bool low_vram,
@ -1160,9 +1184,11 @@ static void llama_model_load_internal(
}
(void) main_gpu;
(void) mul_mat_q;
#if defined(GGML_USE_CUBLAS)
fprintf(stderr, "%s: using CUDA for GPU acceleration\n", __func__);
ggml_cuda_set_main_device(main_gpu);
ggml_cuda_set_mul_mat_q(mul_mat_q);
#define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
#define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU_SPLIT
#elif defined(GGML_USE_CLBLAST)
@ -1256,12 +1282,16 @@ static void llama_model_load_internal(
const size_t scale = memory_type == GGML_TYPE_F32 ? 2 : 1;
// this is the total memory required to run the inference
const size_t mem_required =
size_t mem_required =
ctx_size +
mmapped_size - vram_weights + // weights in VRAM not in memory
mmapped_size - vram_weights; // weights in VRAM not in memory
#ifndef LLAMA_USE_ALLOCATOR
mem_required +=
MEM_REQ_SCRATCH0(hparams.n_ctx).at(model.type) +
MEM_REQ_SCRATCH1().at(model.type) +
MEM_REQ_EVAL().at(model.type);
#endif
// this is the memory required by one llama_state
const size_t mem_required_state =
@ -1367,6 +1397,7 @@ static bool llama_model_load(
int n_gpu_layers,
int main_gpu,
const float * tensor_split,
const bool mul_mat_q,
float rope_freq_base,
float rope_freq_scale,
bool low_vram,
@ -1377,7 +1408,8 @@ static bool llama_model_load(
llama_progress_callback progress_callback,
void *progress_callback_user_data) {
try {
llama_model_load_internal(fname, model, vocab, n_ctx, n_batch, n_gqa, rms_norm_eps, n_gpu_layers, main_gpu, tensor_split, rope_freq_base, rope_freq_scale, low_vram, memory_type,
llama_model_load_internal(fname, model, vocab, n_ctx, n_batch, n_gqa, rms_norm_eps, n_gpu_layers,
main_gpu, tensor_split, mul_mat_q, rope_freq_base, rope_freq_scale, low_vram, memory_type,
use_mmap, use_mlock, vocab_only, progress_callback, progress_callback_user_data);
return true;
} catch (const std::exception & err) {
@ -1386,32 +1418,15 @@ static bool llama_model_load(
}
}
// evaluate the transformer
//
// - lctx: llama context
// - tokens: new batch of tokens to process
// - embd embeddings input
// - n_tokens number of tokens
// - n_past: the context size so far
// - n_threads: number of threads to use
//
static bool llama_eval_internal(
static struct ggml_cgraph * llama_build_graph(
llama_context & lctx,
const llama_token * tokens,
const float * embd,
int n_tokens,
int n_past,
int n_threads,
const char * cgraph_fname) {
int n_past) {
LLAMA_ASSERT((!tokens && embd) || (tokens && !embd));
#ifdef GGML_USE_MPI
ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads);
#endif
const int64_t t_start_us = ggml_time_us();
const int N = n_tokens;
const auto & model = lctx.model;
@ -1427,10 +1442,8 @@ static bool llama_eval_internal(
const int64_t n_head = hparams.n_head;
const int64_t n_head_kv = hparams.n_head_kv;
const int64_t n_embd_head = hparams.n_embd_head();
const int64_t n_vocab = hparams.n_vocab;
const int64_t n_embd_gqa = hparams.n_embd_gqa();
LLAMA_ASSERT(n_embd_head == hparams.n_rot);
const float freq_base = hparams.rope_freq_base;
@ -1442,26 +1455,35 @@ static bool llama_eval_internal(
auto & mem_per_token = lctx.mem_per_token;
auto & buf_compute = lctx.buf_compute;
struct ggml_init_params params = {
/*.mem_size =*/ buf_compute.size,
/*.mem_buffer =*/ buf_compute.addr,
/*.no_alloc =*/ false,
};
#ifdef LLAMA_USE_ALLOCATOR
params.no_alloc = true;
#endif
struct ggml_context * ctx0 = ggml_init(params);
ggml_cgraph * gf = ggml_new_graph(ctx0);
// for big prompts, if BLAS is enabled, it is better to use only one thread
// otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
n_threads = N >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas() ? 1 : n_threads;
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
if (tokens) {
struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
#ifdef LLAMA_USE_ALLOCATOR
ggml_allocr_alloc(lctx.alloc, inp_tokens);
if (!ggml_allocr_is_measure(lctx.alloc)) {
memcpy(inp_tokens->data, tokens, N*ggml_element_size(inp_tokens));
}
#else
memcpy(inp_tokens->data, tokens, N*ggml_element_size(inp_tokens));
#endif
ggml_set_name(inp_tokens, "inp_tokens");
inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
@ -1471,7 +1493,15 @@ static bool llama_eval_internal(
#endif
inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N);
#ifdef LLAMA_USE_ALLOCATOR
ggml_allocr_alloc(lctx.alloc, inpL);
if (!ggml_allocr_is_measure(lctx.alloc)) {
memcpy(inpL->data, embd, N * n_embd * ggml_element_size(inpL));
}
#else
memcpy(inpL->data, embd, N * n_embd * ggml_element_size(inpL));
#endif
}
const int i_gpu_start = n_layer - n_gpu_layers;
@ -1498,6 +1528,17 @@ static bool llama_eval_internal(
}
#endif // GGML_USE_CUBLAS
struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
#ifdef LLAMA_USE_ALLOCATOR
ggml_allocr_alloc(lctx.alloc, KQ_scale);
if (!ggml_allocr_is_measure(lctx.alloc)) {
ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
}
#else
ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
#endif
ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
for (int il = 0; il < n_layer; ++il) {
ggml_format_name(inpL, "layer_inp_%d", il);
@ -1593,9 +1634,6 @@ static bool llama_eval_internal(
ggml_set_name(KQ, "KQ");
// KQ_scaled = KQ / sqrt(n_embd_head)
struct ggml_tensor * KQ_scale = ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head));
ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
// KQ_scaled shape [n_past + N, N, n_head, 1]
struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale);
offload_func_kq(KQ_scaled);
@ -1711,9 +1749,6 @@ static bool llama_eval_internal(
lctx.use_buf(ctx0, 0);
// used at the end to optionally extract the embeddings
struct ggml_tensor * embeddings = NULL;
// norm
{
cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
@ -1724,8 +1759,6 @@ static bool llama_eval_internal(
cur = ggml_mul(ctx0, cur, model.norm);
// offload_func_nr(cur); // TODO CPU + GPU mirrored backend
ggml_set_name(cur, "result_norm");
embeddings = cur;
}
// lm_head
@ -1737,12 +1770,88 @@ static bool llama_eval_internal(
// logits -> probs
//cur = ggml_soft_max_inplace(ctx0, cur);
// run the computation
ggml_build_forward_expand(gf, cur);
// fprintf(stderr, "graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf.n_nodes, gf.n_leafs);
if (mem_per_token == 0) {
mem_per_token = ggml_used_mem(ctx0)/N;
}
#if 0
printf("\n%s: used_mem: eval ctx %.3f MB, scratch %.3f MB %.3f MB, work buf %.3f MB, n_past = %d, N = %d\n", __func__,
ggml_used_mem(ctx0)/1024.0/1024.0,
lctx.get_buf_max_mem(0)/1024.0/1024.0,
lctx.get_buf_max_mem(1)/1024.0/1024.0,
lctx.work_buffer.size()/1024.0/1024.0,
n_past, N);
#endif
ggml_free(ctx0);
return gf;
}
// evaluate the transformer
//
// - lctx: llama context
// - tokens: new batch of tokens to process
// - embd embeddings input
// - n_tokens number of tokens
// - n_past: the context size so far
// - n_threads: number of threads to use
//
static bool llama_eval_internal(
llama_context & lctx,
const llama_token * tokens,
const float * embd,
int n_tokens,
int n_past,
int n_threads,
const char * cgraph_fname) {
LLAMA_ASSERT((!tokens && embd) || (tokens && !embd));
const int64_t t_start_us = ggml_time_us();
#ifdef GGML_USE_MPI
ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads);
#endif
const int N = n_tokens;
const auto & model = lctx.model;
const auto & hparams = model.hparams;
const auto & kv_self = lctx.kv_self;
LLAMA_ASSERT(!!kv_self.ctx);
const int64_t n_embd = hparams.n_embd;
const int64_t n_vocab = hparams.n_vocab;
#ifdef LLAMA_USE_ALLOCATOR
ggml_allocr_reset(lctx.alloc);
#endif
ggml_cgraph * gf = llama_build_graph(lctx, tokens, embd, n_tokens, n_past);
#ifdef LLAMA_USE_ALLOCATOR
ggml_allocr_alloc_graph(lctx.alloc, gf);
#endif
// fprintf(stderr, "graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
// for big prompts, if BLAS is enabled, it is better to use only one thread
// otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
n_threads = N >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas() ? 1 : n_threads;
struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
struct ggml_tensor * embeddings = gf->nodes[gf->n_nodes - 2];
LLAMA_ASSERT(strcmp(res->name, "result_output") == 0);
LLAMA_ASSERT(strcmp(embeddings->name, "result_norm") == 0);
#if GGML_USE_MPI
const int64_t n_layer = hparams.n_layer;
ggml_mpi_graph_compute_pre(lctx.ctx_mpi, gf, n_layer);
#endif
@ -1754,7 +1863,10 @@ static bool llama_eval_internal(
//}
ggml_metal_set_n_cb (lctx.ctx_metal, n_threads);
ggml_metal_graph_compute(lctx.ctx_metal, gf);
ggml_metal_get_tensor (lctx.ctx_metal, cur);
ggml_metal_get_tensor (lctx.ctx_metal, res);
if (!lctx.embedding.empty()) {
ggml_metal_get_tensor(lctx.ctx_metal, embeddings);
}
} else {
// IMPORTANT:
// Since we don't have efficient Matrix x Matrix Metal multiplication yet, we fallback to vanilla
@ -1785,8 +1897,6 @@ static bool llama_eval_internal(
// update kv token count
lctx.kv_self.n = n_past + N;
struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
if (cgraph_fname) {
ggml_graph_export(gf, cgraph_fname);
}
@ -1824,21 +1934,6 @@ static bool llama_eval_internal(
memcpy(embedding_out.data(), (float *) ggml_get_data(embeddings) + (n_embd*(N - 1)), sizeof(float)*n_embd);
}
if (mem_per_token == 0) {
mem_per_token = ggml_used_mem(ctx0)/N;
}
#if 0
printf("\n%s: used_mem: eval ctx %.3f MB, scratch %.3f MB %.3f MB, work buf %.3f MB, n_past = %d, N = %d\n", __func__,
ggml_used_mem(ctx0)/1024.0/1024.0,
lctx.get_buf_max_mem(0)/1024.0/1024.0,
lctx.get_buf_max_mem(1)/1024.0/1024.0,
lctx.work_buffer.size()/1024.0/1024.0,
n_past, N);
#endif
ggml_free(ctx0);
// measure the performance only for the single-token evals
if (N == 1) {
lctx.t_eval_us += ggml_time_us() - t_start_us;
@ -1950,7 +2045,9 @@ struct llama_tokenizer {
if (token == vocab_.token_to_id.end()) {
// output any symbols that did not form tokens as bytes.
for (int j = 0; j < (int) symbol.n; ++j) {
llama_vocab::id token_id = static_cast<uint8_t>(symbol.text[j]) + 3;
// NOTE: old version, before #2420 - not sure what are the implications of this
//llama_vocab::id token_id = static_cast<uint8_t>(symbol.text[j]) + 3;
llama_vocab::id token_id = vocab_.token_to_id.at(std::string(1, symbol.text[j]));
output.push_back(token_id);
}
} else {
@ -3127,7 +3224,7 @@ struct llama_model * llama_load_model_from_file(
ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
if (!llama_model_load(path_model, *model, model->vocab, params.n_ctx, params.n_batch, params.n_gqa, params.rms_norm_eps, params.n_gpu_layers,
params.main_gpu, params.tensor_split, params.rope_freq_base, params.rope_freq_scale,params.low_vram,
params.main_gpu, params.tensor_split, params.mul_mat_q, params.rope_freq_base, params.rope_freq_scale,params.low_vram,
memory_type, params.use_mmap, params.use_mlock, params.vocab_only, params.progress_callback,
params.progress_callback_user_data)) {
delete model;
@ -3204,10 +3301,47 @@ struct llama_context * llama_new_context_with_model(
ctx->embedding.resize(hparams.n_embd);
}
ctx->buf_compute.resize(MEM_REQ_EVAL().at(ctx->model.type) + ggml_graph_overhead());
#ifdef LLAMA_USE_ALLOCATOR
{
static const size_t tensor_alignment = 32;
// the compute buffer is used to store the tensor and graph structs, while the allocator buffer is used for the tensor data
ctx->buf_compute.resize(ggml_tensor_overhead()*GGML_MAX_NODES + ggml_graph_overhead());
// create measure allocator
ctx->alloc = ggml_allocr_new_measure(tensor_alignment);
// build worst-case graph
int n_tokens = std::min((int)hparams.n_ctx, params.n_batch);
int n_past = hparams.n_ctx - n_tokens;
llama_token token = llama_token_bos(); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
ggml_cgraph * gf = llama_build_graph(*ctx, &token, NULL, n_tokens, n_past);
// measure memory requirements for the graph
size_t alloc_size = ggml_allocr_alloc_graph(ctx->alloc, gf) + tensor_alignment;
fprintf(stderr, "%s: compute buffer total size = %7.2f MB\n", __func__, (ctx->buf_compute.size + alloc_size) / 1024.0 / 1024.0);
// debug - for comparison with scratch buffer
//size_t prev_req =
// MEM_REQ_SCRATCH0(hparams.n_ctx).at(ctx->model.type) +
// MEM_REQ_SCRATCH1().at(ctx->model.type) +
// MEM_REQ_EVAL().at(ctx->model.type);
//fprintf(stderr, "%s: (debug) equivalent with scratch buffer = %7.2f MB\n", __func__, prev_req / 1024.0 / 1024.0);
// recreate allocator with exact memory requirements
ggml_allocr_free(ctx->alloc);
ctx->buf_alloc.resize(alloc_size);
ctx->alloc = ggml_allocr_new(ctx->buf_alloc.addr, ctx->buf_alloc.size, tensor_alignment);
}
#else
ctx->buf_compute.resize(MEM_REQ_EVAL().at(ctx->model.type) + ggml_graph_overhead());
#endif
#ifdef LLAMA_USE_SCRATCH
ctx->buf_scratch[0].resize(MEM_REQ_SCRATCH0(hparams.n_ctx).at(ctx->model.type));
ctx->buf_scratch[1].resize(MEM_REQ_SCRATCH1().at(ctx->model.type));
#endif
}
#ifdef GGML_USE_METAL
@ -3277,9 +3411,6 @@ struct llama_context * llama_init_from_file(
}
void llama_free(struct llama_context * ctx) {
if (ctx->model_owner) {
delete &ctx->model;
}
delete ctx;
}

View file

@ -1,5 +1,5 @@
/**
* llama.cpp - git d91f3f0c55663719ea03b76311e8c36ed55eb0e2
* llama.cpp - git c574bddb368424b5996cbee2ec45ec050967d404
*
* MIT License
*
@ -134,6 +134,7 @@ extern "C" {
// Keep the booleans together to avoid misalignment during copy-by-value.
bool low_vram; // if true, reduce VRAM usage at the cost of performance
bool mul_mat_q; // if true, use experimental mul_mat_q kernels
bool f16_kv; // use fp16 for KV cache
bool logits_all; // the llama_eval() call computes all logits, not just the last one
bool vocab_only; // only load the vocabulary, no weights