ollama/llm/llm.go

101 lines
3.1 KiB
Go
Raw Normal View History

2023-07-21 13:33:56 -07:00
package llm
import (
"context"
2023-07-21 13:33:56 -07:00
"fmt"
"log"
2023-07-21 13:33:56 -07:00
"os"
"github.com/pbnjay/memory"
2023-07-21 13:33:56 -07:00
"github.com/jmorganca/ollama/api"
)
type LLM interface {
Predict(context.Context, []int, string, func(api.GenerateResponse)) error
Embedding(context.Context, string) ([]float64, error)
Encode(context.Context, string) ([]int, error)
Decode(context.Context, []int) (string, error)
2023-07-21 13:33:56 -07:00
SetOptions(api.Options)
Close()
Ping(context.Context) error
2023-07-21 13:33:56 -07:00
}
func New(model string, adapters []string, opts api.Options) (LLM, error) {
2023-07-21 13:33:56 -07:00
if _, err := os.Stat(model); err != nil {
return nil, err
}
f, err := os.Open(model)
if err != nil {
return nil, err
}
2023-08-14 16:08:02 -07:00
defer f.Close()
2023-07-21 13:33:56 -07:00
2023-09-07 13:55:37 -04:00
ggml, err := DecodeGGML(f)
2023-07-21 13:33:56 -07:00
if err != nil {
return nil, err
}
switch ggml.FileType() {
2023-09-07 13:55:37 -04:00
case "Q8_0":
if ggml.Name() != "gguf" && opts.NumGPU != 0 {
// GGML Q8_0 do not support Metal API and will
// cause the runner to segmentation fault so disable GPU
log.Printf("WARNING: GPU disabled for F32, Q5_0, Q5_1, and Q8_0")
opts.NumGPU = 0
}
case "F32", "Q5_0", "Q5_1":
if opts.NumGPU != 0 {
2023-09-07 13:55:37 -04:00
// F32, Q5_0, Q5_1, and Q8_0 do not support Metal API and will
// cause the runner to segmentation fault so disable GPU
log.Printf("WARNING: GPU disabled for F32, Q5_0, Q5_1, and Q8_0")
opts.NumGPU = 0
}
}
totalResidentMemory := memory.TotalMemory()
2023-08-17 11:37:27 -07:00
switch ggml.ModelType() {
case "3B", "7B":
if ggml.FileType() == "F16" && totalResidentMemory < 16*1024*1024 {
return nil, fmt.Errorf("F16 model requires at least 16GB of memory")
} else if totalResidentMemory < 8*1024*1024 {
return nil, fmt.Errorf("model requires at least 8GB of memory")
}
case "13B":
if ggml.FileType() == "F16" && totalResidentMemory < 32*1024*1024 {
return nil, fmt.Errorf("F16 model requires at least 32GB of memory")
} else if totalResidentMemory < 16*1024*1024 {
return nil, fmt.Errorf("model requires at least 16GB of memory")
}
case "30B", "34B", "40B":
if ggml.FileType() == "F16" && totalResidentMemory < 64*1024*1024 {
return nil, fmt.Errorf("F16 model requires at least 64GB of memory")
} else if totalResidentMemory < 32*1024*1024 {
return nil, fmt.Errorf("model requires at least 32GB of memory")
}
case "65B", "70B":
if ggml.FileType() == "F16" && totalResidentMemory < 128*1024*1024 {
return nil, fmt.Errorf("F16 model requires at least 128GB of memory")
} else if totalResidentMemory < 64*1024*1024 {
return nil, fmt.Errorf("model requires at least 64GB of memory")
}
case "180B":
if ggml.FileType() == "F16" && totalResidentMemory < 512*1024*1024 {
return nil, fmt.Errorf("F16 model requires at least 512GB of memory")
} else if totalResidentMemory < 128*1024*1024 {
return nil, fmt.Errorf("model requires at least 128GB of memory")
}
}
2023-09-07 13:55:37 -04:00
switch ggml.Name() {
case "gguf":
opts.NumGQA = 0 // TODO: remove this when llama.cpp runners differ enough to need separate newLlama functions
return newLlama(model, adapters, ggufRunner(), opts)
case "ggml", "ggmf", "ggjt", "ggla":
return newLlama(model, adapters, ggmlRunner(), opts)
2023-07-21 13:33:56 -07:00
default:
2023-08-17 11:37:27 -07:00
return nil, fmt.Errorf("unknown ggml type: %s", ggml.ModelFamily())
2023-07-21 13:33:56 -07:00
}
}