llama.cpp/docs/install/macos.md
ccshen b76724cddc
Update instruction to download GGUF model ()
Co-authored-by: john.shen <john.shen@bioclinica.com>
2023-10-02 11:46:47 -04:00

1.6 KiB

title
MacOS Install with Metal GPU

(1) Make sure you have xcode installed... at least the command line parts

# check the path of your xcode install 
xcode-select -p

# xcode installed returns
# /Applications/Xcode-beta.app/Contents/Developer

# if xcode is missing then install it... it takes ages;
xcode-select --install

(2) Install the conda version for MacOS that supports Metal GPU

wget https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-MacOSX-arm64.sh
bash Miniforge3-MacOSX-arm64.sh

(3) Make a conda environment

conda create -n llama python=3.9.16
conda activate llama

(4) Install the LATEST llama-cpp-python...which happily supports MacOS Metal GPU as of version 0.1.62
(you needed xcode installed in order pip to build/compile the C++ code)

pip uninstall llama-cpp-python -y
CMAKE_ARGS="-DLLAMA_METAL=on" pip install -U llama-cpp-python --no-cache-dir
pip install 'llama-cpp-python[server]'

# you should now have llama-cpp-python v0.1.62 or higher installed
llama-cpp-python         0.1.68

(5) Download a v3 gguf v2 model

  • ggufv2
  • file name ends with Q4_0.gguf - indicating it is 4bit quantized, with quantisation method 0

https://huggingface.co/TheBloke/CodeLlama-7B-GGUF

(6) run the llama-cpp-python API server with MacOS Metal GPU support

# config your ggml model path
# make sure it is gguf v2
# make sure it is q4_0
export MODEL=[path to your llama.cpp ggml models]]/[ggml-model-name]]Q4_0.gguf
python3 -m llama_cpp.server --model $MODEL  --n_gpu_layers 1

Note: If you omit the --n_gpu_layers 1 then CPU will be used