153a0049d9
* Add demo notebook * Add initial chat handler * Update OpenAI types * Add generic chatml function calling (wip) * Update chatml generic function calling. * Progress on auto-tool calls * fix streaming functions * Remove print statements * fix: Suppress output from llama.cpp init and grammar creation * Add OpenAI v1 python api compatible chat completion function * Support non-streaming multi-tool calls * Format * Include function_call in response.
910 lines
58 KiB
Text
910 lines
58 KiB
Text
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"{\n",
|
|
" \"name\": \"get_article_details\",\n",
|
|
" \"description\": \"Get article details from unstructured article text.\\ndate_published: formatted as \\\"MM/DD/YYYY\\\"\",\n",
|
|
" \"parameters\": {\n",
|
|
" \"type\": \"object\",\n",
|
|
" \"properties\": {\n",
|
|
" \"title\": {\n",
|
|
" \"type\": \"str\"\n",
|
|
" },\n",
|
|
" \"authors\": {\n",
|
|
" \"type\": \"list[str]\"\n",
|
|
" },\n",
|
|
" \"short_summary\": {\n",
|
|
" \"type\": \"str\"\n",
|
|
" },\n",
|
|
" \"date_published\": {\n",
|
|
" \"type\": \"str\"\n",
|
|
" },\n",
|
|
" \"tags\": {\n",
|
|
" \"type\": \"list[str]\"\n",
|
|
" }\n",
|
|
" }\n",
|
|
" },\n",
|
|
" \"returns\": \"Article\"\n",
|
|
"}\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"import json\n",
|
|
"import inspect\n",
|
|
"from typing import get_type_hints\n",
|
|
"\n",
|
|
"class Article:\n",
|
|
" pass\n",
|
|
"\n",
|
|
"class Weather:\n",
|
|
" pass\n",
|
|
"\n",
|
|
"class Directions:\n",
|
|
" pass\n",
|
|
"\n",
|
|
"def calculate_mortgage_payment(loan_amount: int, interest_rate: float, loan_term: int) -> float:\n",
|
|
" \"\"\"Get the monthly mortgage payment given an interest rate percentage.\"\"\"\n",
|
|
" \n",
|
|
" # TODO: you must implement this to actually call it later\n",
|
|
" pass\n",
|
|
"\n",
|
|
"def get_article_details(title: str, authors: list[str], short_summary: str, date_published: str, tags: list[str]) -> Article:\n",
|
|
" '''Get article details from unstructured article text.\n",
|
|
"date_published: formatted as \"MM/DD/YYYY\"'''\n",
|
|
" \n",
|
|
" # TODO: you must implement this to actually call it later\n",
|
|
" pass\n",
|
|
"\n",
|
|
"def get_weather(zip_code: str) -> Weather:\n",
|
|
" \"\"\"Get the current weather given a zip code.\"\"\"\n",
|
|
" \n",
|
|
" # TODO: you must implement this to actually call it later\n",
|
|
" pass\n",
|
|
"\n",
|
|
"def get_directions(start: str, destination: str) -> Directions:\n",
|
|
" \"\"\"Get directions from Google Directions API.\n",
|
|
"start: start address as a string including zipcode (if any)\n",
|
|
"destination: end address as a string including zipcode (if any)\"\"\"\n",
|
|
" \n",
|
|
" # TODO: you must implement this to actually call it later\n",
|
|
" pass\n",
|
|
"\n",
|
|
"def get_type_name(t):\n",
|
|
" name = str(t)\n",
|
|
" if \"list\" in name or \"dict\" in name:\n",
|
|
" return name\n",
|
|
" else:\n",
|
|
" return t.__name__\n",
|
|
"\n",
|
|
"def serialize_function_to_json(func):\n",
|
|
" signature = inspect.signature(func)\n",
|
|
" type_hints = get_type_hints(func)\n",
|
|
"\n",
|
|
" function_info = {\n",
|
|
" \"name\": func.__name__,\n",
|
|
" \"description\": func.__doc__,\n",
|
|
" \"parameters\": {\n",
|
|
" \"type\": \"object\",\n",
|
|
" \"properties\": {}\n",
|
|
" },\n",
|
|
" \"returns\": type_hints.get('return', 'void').__name__\n",
|
|
" }\n",
|
|
"\n",
|
|
" for name, _ in signature.parameters.items():\n",
|
|
" param_type = get_type_name(type_hints.get(name, type(None)))\n",
|
|
" function_info[\"parameters\"][\"properties\"][name] = {\"type\": param_type}\n",
|
|
"\n",
|
|
" return json.dumps(function_info, indent=2)\n",
|
|
"\n",
|
|
"print(serialize_function_to_json(get_article_details))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import xml.etree.ElementTree as ET\n",
|
|
"import re\n",
|
|
"\n",
|
|
"def extract_function_calls(completion):\n",
|
|
" completion = completion.strip()\n",
|
|
" pattern = r\"(<multiplefunctions>(.*?)</multiplefunctions>)\"\n",
|
|
" match = re.search(pattern, completion, re.DOTALL)\n",
|
|
" if not match:\n",
|
|
" return None\n",
|
|
" \n",
|
|
" multiplefn = match.group(1)\n",
|
|
" root = ET.fromstring(multiplefn)\n",
|
|
" functions = root.findall(\"functioncall\")\n",
|
|
" return [json.loads(fn.text) for fn in functions]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 12,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def generate_hermes_prompt(prompt, functions):\n",
|
|
" functions = \"\\n\\n\".join([serialize_function_to_json(fn) for fn in functions])\n",
|
|
" prompt = f\"\"\"<|im_start|>system\n",
|
|
"You are a helpful assistant with access to the following functions:\n",
|
|
"\n",
|
|
"{functions}\n",
|
|
"\n",
|
|
"To use these functions respond with:\n",
|
|
"<multiplefunctions>\n",
|
|
" <functioncall> {{\"name\": \"function_name\", \"arguments\": {{\"arg_1\": \"value_1\", \"arg_2\": value_2, ...}}}} </functioncall>\n",
|
|
" <functioncall> {{\"name\": \"function_name\", \"arguments\": {{\"arg_1\": \"value_1\", \"arg_2\": value_2, ...}}}} </functioncall>\n",
|
|
" ...\n",
|
|
"</multiplefunctions>\n",
|
|
"\n",
|
|
"Edge cases you must handle:\n",
|
|
"- If there are no functions that match the user request, you will respond politely that you cannot help.<|im_end|>\n",
|
|
"<|im_start|>user\n",
|
|
"{prompt}<|im_end|>\n",
|
|
"<|im_start|>assistant\"\"\"\n",
|
|
" return prompt"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 13,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"<|im_start|>system\n",
|
|
"You are a helpful assistant with access to the following functions:\n",
|
|
"\n",
|
|
"{\n",
|
|
" \"name\": \"get_weather\",\n",
|
|
" \"description\": \"Get the current weather given a zip code.\",\n",
|
|
" \"parameters\": {\n",
|
|
" \"type\": \"object\",\n",
|
|
" \"properties\": {\n",
|
|
" \"zip_code\": {\n",
|
|
" \"type\": \"str\"\n",
|
|
" }\n",
|
|
" }\n",
|
|
" },\n",
|
|
" \"returns\": \"Weather\"\n",
|
|
"}\n",
|
|
"\n",
|
|
"{\n",
|
|
" \"name\": \"calculate_mortgage_payment\",\n",
|
|
" \"description\": \"Get the monthly mortgage payment given an interest rate percentage.\",\n",
|
|
" \"parameters\": {\n",
|
|
" \"type\": \"object\",\n",
|
|
" \"properties\": {\n",
|
|
" \"loan_amount\": {\n",
|
|
" \"type\": \"int\"\n",
|
|
" },\n",
|
|
" \"interest_rate\": {\n",
|
|
" \"type\": \"float\"\n",
|
|
" },\n",
|
|
" \"loan_term\": {\n",
|
|
" \"type\": \"int\"\n",
|
|
" }\n",
|
|
" }\n",
|
|
" },\n",
|
|
" \"returns\": \"float\"\n",
|
|
"}\n",
|
|
"\n",
|
|
"{\n",
|
|
" \"name\": \"get_article_details\",\n",
|
|
" \"description\": \"Get article details from unstructured article text.\\ndate_published: formatted as \\\"MM/DD/YYYY\\\"\",\n",
|
|
" \"parameters\": {\n",
|
|
" \"type\": \"object\",\n",
|
|
" \"properties\": {\n",
|
|
" \"title\": {\n",
|
|
" \"type\": \"str\"\n",
|
|
" },\n",
|
|
" \"authors\": {\n",
|
|
" \"type\": \"list[str]\"\n",
|
|
" },\n",
|
|
" \"short_summary\": {\n",
|
|
" \"type\": \"str\"\n",
|
|
" },\n",
|
|
" \"date_published\": {\n",
|
|
" \"type\": \"str\"\n",
|
|
" },\n",
|
|
" \"tags\": {\n",
|
|
" \"type\": \"list[str]\"\n",
|
|
" }\n",
|
|
" }\n",
|
|
" },\n",
|
|
" \"returns\": \"Article\"\n",
|
|
"}\n",
|
|
"\n",
|
|
"To use these functions respond with:\n",
|
|
"<multiplefunctions>\n",
|
|
" <functioncall> {\"name\": \"function_name\", \"arguments\": {\"arg_1\": \"value_1\", \"arg_2\": value_2, ...}} </functioncall>\n",
|
|
" <functioncall> {\"name\": \"function_name\", \"arguments\": {\"arg_1\": \"value_1\", \"arg_2\": value_2, ...}} </functioncall>\n",
|
|
" ...\n",
|
|
"</multiplefunctions>\n",
|
|
"\n",
|
|
"Edge cases you must handle:\n",
|
|
"- If there are no functions that match the user request, you will respond politely that you cannot help.<|im_end|>\n",
|
|
"<|im_start|>user\n",
|
|
"What's the weather in 10001?<|im_end|>\n",
|
|
"<|im_start|>assistant\n",
|
|
"<|im_start|>system\n",
|
|
"You are a helpful assistant with access to the following functions:\n",
|
|
"\n",
|
|
"{\n",
|
|
" \"name\": \"get_weather\",\n",
|
|
" \"description\": \"Get the current weather given a zip code.\",\n",
|
|
" \"parameters\": {\n",
|
|
" \"type\": \"object\",\n",
|
|
" \"properties\": {\n",
|
|
" \"zip_code\": {\n",
|
|
" \"type\": \"str\"\n",
|
|
" }\n",
|
|
" }\n",
|
|
" },\n",
|
|
" \"returns\": \"Weather\"\n",
|
|
"}\n",
|
|
"\n",
|
|
"{\n",
|
|
" \"name\": \"calculate_mortgage_payment\",\n",
|
|
" \"description\": \"Get the monthly mortgage payment given an interest rate percentage.\",\n",
|
|
" \"parameters\": {\n",
|
|
" \"type\": \"object\",\n",
|
|
" \"properties\": {\n",
|
|
" \"loan_amount\": {\n",
|
|
" \"type\": \"int\"\n",
|
|
" },\n",
|
|
" \"interest_rate\": {\n",
|
|
" \"type\": \"float\"\n",
|
|
" },\n",
|
|
" \"loan_term\": {\n",
|
|
" \"type\": \"int\"\n",
|
|
" }\n",
|
|
" }\n",
|
|
" },\n",
|
|
" \"returns\": \"float\"\n",
|
|
"}\n",
|
|
"\n",
|
|
"{\n",
|
|
" \"name\": \"get_article_details\",\n",
|
|
" \"description\": \"Get article details from unstructured article text.\\ndate_published: formatted as \\\"MM/DD/YYYY\\\"\",\n",
|
|
" \"parameters\": {\n",
|
|
" \"type\": \"object\",\n",
|
|
" \"properties\": {\n",
|
|
" \"title\": {\n",
|
|
" \"type\": \"str\"\n",
|
|
" },\n",
|
|
" \"authors\": {\n",
|
|
" \"type\": \"list[str]\"\n",
|
|
" },\n",
|
|
" \"short_summary\": {\n",
|
|
" \"type\": \"str\"\n",
|
|
" },\n",
|
|
" \"date_published\": {\n",
|
|
" \"type\": \"str\"\n",
|
|
" },\n",
|
|
" \"tags\": {\n",
|
|
" \"type\": \"list[str]\"\n",
|
|
" }\n",
|
|
" }\n",
|
|
" },\n",
|
|
" \"returns\": \"Article\"\n",
|
|
"}\n",
|
|
"\n",
|
|
"To use these functions respond with:\n",
|
|
"<multiplefunctions>\n",
|
|
" <functioncall> {\"name\": \"function_name\", \"arguments\": {\"arg_1\": \"value_1\", \"arg_2\": value_2, ...}} </functioncall>\n",
|
|
" <functioncall> {\"name\": \"function_name\", \"arguments\": {\"arg_1\": \"value_1\", \"arg_2\": value_2, ...}} </functioncall>\n",
|
|
" ...\n",
|
|
"</multiplefunctions>\n",
|
|
"\n",
|
|
"Edge cases you must handle:\n",
|
|
"- If there are no functions that match the user request, you will respond politely that you cannot help.<|im_end|>\n",
|
|
"<|im_start|>user\n",
|
|
"Determine the monthly mortgage payment for a loan amount of $200,000, an interest rate of 4%, and a loan term of 30 years.<|im_end|>\n",
|
|
"<|im_start|>assistant\n",
|
|
"<|im_start|>system\n",
|
|
"You are a helpful assistant with access to the following functions:\n",
|
|
"\n",
|
|
"{\n",
|
|
" \"name\": \"get_weather\",\n",
|
|
" \"description\": \"Get the current weather given a zip code.\",\n",
|
|
" \"parameters\": {\n",
|
|
" \"type\": \"object\",\n",
|
|
" \"properties\": {\n",
|
|
" \"zip_code\": {\n",
|
|
" \"type\": \"str\"\n",
|
|
" }\n",
|
|
" }\n",
|
|
" },\n",
|
|
" \"returns\": \"Weather\"\n",
|
|
"}\n",
|
|
"\n",
|
|
"{\n",
|
|
" \"name\": \"calculate_mortgage_payment\",\n",
|
|
" \"description\": \"Get the monthly mortgage payment given an interest rate percentage.\",\n",
|
|
" \"parameters\": {\n",
|
|
" \"type\": \"object\",\n",
|
|
" \"properties\": {\n",
|
|
" \"loan_amount\": {\n",
|
|
" \"type\": \"int\"\n",
|
|
" },\n",
|
|
" \"interest_rate\": {\n",
|
|
" \"type\": \"float\"\n",
|
|
" },\n",
|
|
" \"loan_term\": {\n",
|
|
" \"type\": \"int\"\n",
|
|
" }\n",
|
|
" }\n",
|
|
" },\n",
|
|
" \"returns\": \"float\"\n",
|
|
"}\n",
|
|
"\n",
|
|
"{\n",
|
|
" \"name\": \"get_article_details\",\n",
|
|
" \"description\": \"Get article details from unstructured article text.\\ndate_published: formatted as \\\"MM/DD/YYYY\\\"\",\n",
|
|
" \"parameters\": {\n",
|
|
" \"type\": \"object\",\n",
|
|
" \"properties\": {\n",
|
|
" \"title\": {\n",
|
|
" \"type\": \"str\"\n",
|
|
" },\n",
|
|
" \"authors\": {\n",
|
|
" \"type\": \"list[str]\"\n",
|
|
" },\n",
|
|
" \"short_summary\": {\n",
|
|
" \"type\": \"str\"\n",
|
|
" },\n",
|
|
" \"date_published\": {\n",
|
|
" \"type\": \"str\"\n",
|
|
" },\n",
|
|
" \"tags\": {\n",
|
|
" \"type\": \"list[str]\"\n",
|
|
" }\n",
|
|
" }\n",
|
|
" },\n",
|
|
" \"returns\": \"Article\"\n",
|
|
"}\n",
|
|
"\n",
|
|
"To use these functions respond with:\n",
|
|
"<multiplefunctions>\n",
|
|
" <functioncall> {\"name\": \"function_name\", \"arguments\": {\"arg_1\": \"value_1\", \"arg_2\": value_2, ...}} </functioncall>\n",
|
|
" <functioncall> {\"name\": \"function_name\", \"arguments\": {\"arg_1\": \"value_1\", \"arg_2\": value_2, ...}} </functioncall>\n",
|
|
" ...\n",
|
|
"</multiplefunctions>\n",
|
|
"\n",
|
|
"Edge cases you must handle:\n",
|
|
"- If there are no functions that match the user request, you will respond politely that you cannot help.<|im_end|>\n",
|
|
"<|im_start|>user\n",
|
|
"What's the current exchange rate for USD to EUR?<|im_end|>\n",
|
|
"<|im_start|>assistant\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"prompts = [\n",
|
|
" \"What's the weather in 10001?\",\n",
|
|
" \"Determine the monthly mortgage payment for a loan amount of $200,000, an interest rate of 4%, and a loan term of 30 years.\",\n",
|
|
" \"What's the current exchange rate for USD to EUR?\"\n",
|
|
"]\n",
|
|
"functions = [get_weather, calculate_mortgage_payment, get_article_details]\n",
|
|
"\n",
|
|
"for prompt in prompts:\n",
|
|
" print(generate_hermes_prompt(prompt, functions))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"ggml_init_cublas: GGML_CUDA_FORCE_MMQ: no\n",
|
|
"ggml_init_cublas: CUDA_USE_TENSOR_CORES: yes\n",
|
|
"ggml_init_cublas: found 1 CUDA devices:\n",
|
|
" Device 0: NVIDIA GeForce RTX 2060, compute capability 7.5\n",
|
|
"llama_model_loader: loaded meta data with 20 key-value pairs and 291 tensors from ../../models/OpenHermes-2.5-Mistral-7B-GGUF/openhermes-2.5-mistral-7b.Q4_K_M.gguf (version GGUF V3 (latest))\n",
|
|
"llama_model_loader: - tensor 0: token_embd.weight q4_K [ 4096, 32002, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 1: blk.0.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 2: blk.0.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 3: blk.0.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 4: blk.0.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 5: blk.0.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 6: blk.0.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 7: blk.0.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 8: blk.0.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 9: blk.0.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 10: blk.1.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 11: blk.1.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 12: blk.1.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 13: blk.1.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 14: blk.1.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 15: blk.1.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 16: blk.1.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 17: blk.1.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 18: blk.1.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 19: blk.2.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 20: blk.2.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 21: blk.2.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 22: blk.2.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 23: blk.2.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 24: blk.2.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 25: blk.2.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 26: blk.2.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 27: blk.2.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 28: blk.3.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 29: blk.3.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 30: blk.3.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 31: blk.3.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 32: blk.3.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 33: blk.3.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 34: blk.3.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 35: blk.3.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 36: blk.3.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 37: blk.4.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 38: blk.4.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 39: blk.4.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 40: blk.4.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 41: blk.4.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 42: blk.4.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 43: blk.4.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 44: blk.4.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 45: blk.4.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 46: blk.5.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 47: blk.5.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 48: blk.5.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 49: blk.5.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 50: blk.5.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 51: blk.5.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 52: blk.5.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 53: blk.5.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 54: blk.5.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 55: blk.6.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 56: blk.6.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 57: blk.6.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 58: blk.6.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 59: blk.6.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 60: blk.6.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 61: blk.6.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 62: blk.6.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 63: blk.6.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 64: blk.7.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 65: blk.7.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 66: blk.7.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 67: blk.7.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 68: blk.7.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 69: blk.7.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 70: blk.7.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 71: blk.7.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 72: blk.7.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 73: blk.8.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 74: blk.8.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 75: blk.8.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 76: blk.8.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 77: blk.8.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 78: blk.8.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 79: blk.8.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 80: blk.8.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 81: blk.8.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 82: blk.9.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 83: blk.9.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 84: blk.9.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 85: blk.9.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 86: blk.9.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 87: blk.9.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 88: blk.9.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 89: blk.9.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 90: blk.9.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 91: blk.10.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 92: blk.10.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 93: blk.10.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 94: blk.10.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 95: blk.10.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 96: blk.10.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 97: blk.10.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 98: blk.10.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 99: blk.10.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 100: blk.11.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 101: blk.11.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 102: blk.11.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 103: blk.11.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 104: blk.11.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 105: blk.11.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 106: blk.11.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 107: blk.11.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 108: blk.11.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 109: blk.12.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 110: blk.12.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 111: blk.12.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 112: blk.12.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 113: blk.12.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 114: blk.12.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 115: blk.12.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 116: blk.12.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 117: blk.12.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 118: blk.13.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 119: blk.13.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 120: blk.13.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 121: blk.13.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 122: blk.13.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 123: blk.13.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 124: blk.13.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 125: blk.13.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 126: blk.13.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 127: blk.14.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 128: blk.14.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 129: blk.14.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 130: blk.14.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 131: blk.14.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 132: blk.14.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 133: blk.14.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 134: blk.14.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 135: blk.14.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 136: blk.15.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 137: blk.15.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 138: blk.15.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 139: blk.15.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 140: blk.15.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 141: blk.15.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 142: blk.15.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 143: blk.15.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 144: blk.15.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 145: blk.16.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 146: blk.16.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 147: blk.16.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 148: blk.16.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 149: blk.16.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 150: blk.16.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 151: blk.16.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 152: blk.16.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 153: blk.16.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 154: blk.17.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 155: blk.17.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 156: blk.17.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 157: blk.17.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 158: blk.17.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 159: blk.17.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 160: blk.17.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 161: blk.17.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 162: blk.17.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 163: blk.18.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 164: blk.18.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 165: blk.18.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 166: blk.18.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 167: blk.18.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 168: blk.18.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 169: blk.18.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 170: blk.18.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 171: blk.18.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 172: blk.19.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 173: blk.19.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 174: blk.19.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 175: blk.19.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 176: blk.19.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 177: blk.19.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 178: blk.19.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 179: blk.19.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 180: blk.19.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 181: blk.20.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 182: blk.20.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 183: blk.20.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 184: blk.20.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 185: blk.20.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 186: blk.20.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 187: blk.20.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 188: blk.20.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 189: blk.20.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 190: blk.21.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 191: blk.21.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 192: blk.21.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 193: blk.21.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 194: blk.21.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 195: blk.21.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 196: blk.21.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 197: blk.21.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 198: blk.21.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 199: blk.22.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 200: blk.22.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 201: blk.22.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 202: blk.22.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 203: blk.22.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 204: blk.22.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 205: blk.22.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 206: blk.22.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 207: blk.22.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 208: blk.23.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 209: blk.23.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 210: blk.23.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 211: blk.23.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 212: blk.23.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 213: blk.23.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 214: blk.23.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 215: blk.23.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 216: blk.23.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 217: blk.24.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 218: blk.24.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 219: blk.24.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 220: blk.24.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 221: blk.24.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 222: blk.24.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 223: blk.24.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 224: blk.24.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 225: blk.24.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 226: blk.25.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 227: blk.25.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 228: blk.25.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 229: blk.25.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 230: blk.25.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 231: blk.25.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 232: blk.25.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 233: blk.25.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 234: blk.25.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 235: blk.26.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 236: blk.26.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 237: blk.26.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 238: blk.26.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 239: blk.26.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 240: blk.26.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 241: blk.26.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 242: blk.26.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 243: blk.26.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 244: blk.27.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 245: blk.27.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 246: blk.27.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 247: blk.27.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 248: blk.27.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 249: blk.27.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 250: blk.27.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 251: blk.27.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 252: blk.27.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 253: blk.28.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 254: blk.28.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 255: blk.28.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 256: blk.28.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 257: blk.28.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 258: blk.28.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 259: blk.28.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 260: blk.28.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 261: blk.28.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 262: blk.29.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 263: blk.29.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 264: blk.29.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 265: blk.29.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 266: blk.29.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 267: blk.29.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 268: blk.29.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 269: blk.29.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 270: blk.29.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 271: blk.30.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 272: blk.30.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 273: blk.30.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 274: blk.30.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 275: blk.30.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 276: blk.30.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 277: blk.30.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 278: blk.30.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 279: blk.30.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 280: blk.31.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 281: blk.31.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 282: blk.31.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 283: blk.31.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 284: blk.31.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 285: blk.31.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 286: blk.31.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 287: blk.31.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 288: blk.31.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 289: output_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
|
"llama_model_loader: - tensor 290: output.weight q6_K [ 4096, 32002, 1, 1 ]\n",
|
|
"llama_model_loader: - kv 0: general.architecture str = llama\n",
|
|
"llama_model_loader: - kv 1: general.name str = teknium_openhermes-2.5-mistral-7b\n",
|
|
"llama_model_loader: - kv 2: llama.context_length u32 = 32768\n",
|
|
"llama_model_loader: - kv 3: llama.embedding_length u32 = 4096\n",
|
|
"llama_model_loader: - kv 4: llama.block_count u32 = 32\n",
|
|
"llama_model_loader: - kv 5: llama.feed_forward_length u32 = 14336\n",
|
|
"llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 128\n",
|
|
"llama_model_loader: - kv 7: llama.attention.head_count u32 = 32\n",
|
|
"llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 8\n",
|
|
"llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010\n",
|
|
"llama_model_loader: - kv 10: llama.rope.freq_base f32 = 10000.000000\n",
|
|
"llama_model_loader: - kv 11: general.file_type u32 = 15\n",
|
|
"llama_model_loader: - kv 12: tokenizer.ggml.model str = llama\n",
|
|
"llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,32002] = [\"<unk>\", \"<s>\", \"</s>\", \"<0x00>\", \"<...\n",
|
|
"llama_model_loader: - kv 14: tokenizer.ggml.scores arr[f32,32002] = [0.000000, 0.000000, 0.000000, 0.0000...\n",
|
|
"llama_model_loader: - kv 15: tokenizer.ggml.token_type arr[i32,32002] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...\n",
|
|
"llama_model_loader: - kv 16: tokenizer.ggml.bos_token_id u32 = 1\n",
|
|
"llama_model_loader: - kv 17: tokenizer.ggml.eos_token_id u32 = 32000\n",
|
|
"llama_model_loader: - kv 18: tokenizer.ggml.padding_token_id u32 = 0\n",
|
|
"llama_model_loader: - kv 19: general.quantization_version u32 = 2\n",
|
|
"llama_model_loader: - type f32: 65 tensors\n",
|
|
"llama_model_loader: - type q4_K: 193 tensors\n",
|
|
"llama_model_loader: - type q6_K: 33 tensors\n",
|
|
"llm_load_vocab: special tokens definition check successful ( 261/32002 ).\n",
|
|
"llm_load_print_meta: format = GGUF V3 (latest)\n",
|
|
"llm_load_print_meta: arch = llama\n",
|
|
"llm_load_print_meta: vocab type = SPM\n",
|
|
"llm_load_print_meta: n_vocab = 32002\n",
|
|
"llm_load_print_meta: n_merges = 0\n",
|
|
"llm_load_print_meta: n_ctx_train = 32768\n",
|
|
"llm_load_print_meta: n_embd = 4096\n",
|
|
"llm_load_print_meta: n_head = 32\n",
|
|
"llm_load_print_meta: n_head_kv = 8\n",
|
|
"llm_load_print_meta: n_layer = 32\n",
|
|
"llm_load_print_meta: n_rot = 128\n",
|
|
"llm_load_print_meta: n_gqa = 4\n",
|
|
"llm_load_print_meta: f_norm_eps = 0.0e+00\n",
|
|
"llm_load_print_meta: f_norm_rms_eps = 1.0e-05\n",
|
|
"llm_load_print_meta: f_clamp_kqv = 0.0e+00\n",
|
|
"llm_load_print_meta: f_max_alibi_bias = 0.0e+00\n",
|
|
"llm_load_print_meta: n_ff = 14336\n",
|
|
"llm_load_print_meta: rope scaling = linear\n",
|
|
"llm_load_print_meta: freq_base_train = 10000.0\n",
|
|
"llm_load_print_meta: freq_scale_train = 1\n",
|
|
"llm_load_print_meta: n_yarn_orig_ctx = 32768\n",
|
|
"llm_load_print_meta: rope_finetuned = unknown\n",
|
|
"llm_load_print_meta: model type = 7B\n",
|
|
"llm_load_print_meta: model ftype = mostly Q4_K - Medium\n",
|
|
"llm_load_print_meta: model params = 7.24 B\n",
|
|
"llm_load_print_meta: model size = 4.07 GiB (4.83 BPW) \n",
|
|
"llm_load_print_meta: general.name = teknium_openhermes-2.5-mistral-7b\n",
|
|
"llm_load_print_meta: BOS token = 1 '<s>'\n",
|
|
"llm_load_print_meta: EOS token = 32000 '<|im_end|>'\n",
|
|
"llm_load_print_meta: UNK token = 0 '<unk>'\n",
|
|
"llm_load_print_meta: PAD token = 0 '<unk>'\n",
|
|
"llm_load_print_meta: LF token = 13 '<0x0A>'\n",
|
|
"llm_load_tensors: ggml ctx size = 0.11 MiB\n",
|
|
"llm_load_tensors: using CUDA for GPU acceleration\n",
|
|
"llm_load_tensors: mem required = 70.42 MiB\n",
|
|
"llm_load_tensors: offloading 32 repeating layers to GPU\n",
|
|
"llm_load_tensors: offloading non-repeating layers to GPU\n",
|
|
"llm_load_tensors: offloaded 35/35 layers to GPU\n",
|
|
"llm_load_tensors: VRAM used: 4095.06 MiB\n",
|
|
"...............................................................................................\n",
|
|
"llama_new_context_with_model: n_ctx = 2048\n",
|
|
"llama_new_context_with_model: freq_base = 10000.0\n",
|
|
"llama_new_context_with_model: freq_scale = 1\n",
|
|
"llama_kv_cache_init: offloading v cache to GPU\n",
|
|
"llama_kv_cache_init: offloading k cache to GPU\n",
|
|
"llama_kv_cache_init: VRAM kv self = 256.00 MiB\n",
|
|
"llama_new_context_with_model: kv self size = 256.00 MiB\n",
|
|
"llama_build_graph: non-view tensors processed: 740/740\n",
|
|
"llama_new_context_with_model: compute buffer total size = 159.07 MiB\n",
|
|
"llama_new_context_with_model: VRAM scratch buffer: 156.00 MiB\n",
|
|
"llama_new_context_with_model: total VRAM used: 4507.07 MiB (model: 4095.06 MiB, context: 412.00 MiB)\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"import llama_cpp\n",
|
|
"\n",
|
|
"llama = llama_cpp.Llama(model_path=\"../../models/OpenHermes-2.5-Mistral-7B-GGUF/openhermes-2.5-mistral-7b.Q4_K_M.gguf\", n_gpu_layers=-1, n_ctx=2048, verbose=False)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 22,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"[{'name': 'get_weather', 'arguments': {'zip_code': '10001'}}]\n",
|
|
"====================================================================================================\n",
|
|
"[{'name': 'calculate_mortgage_payment', 'arguments': {'loan_amount': 200000, 'interest_rate': 0.04, 'loan_term': 30}}]\n",
|
|
"====================================================================================================\n",
|
|
"Unfortunately, I do not have a built-in function to check currency exchange rates. However, you can use third-party APIs or websites like Google Finance or XE to get this information.\n",
|
|
"====================================================================================================\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"prompts = [\n",
|
|
" \"What's the weather in 10001?\",\n",
|
|
" \"Determine the monthly mortgage payment for a loan amount of $200,000, an interest rate of 4%, and a loan term of 30 years.\",\n",
|
|
" \"What's the current exchange rate for USD to EUR?\"\n",
|
|
"]\n",
|
|
"functions = [get_weather, calculate_mortgage_payment, get_article_details]\n",
|
|
"\n",
|
|
"for prompt in prompts:\n",
|
|
" prompt = generate_hermes_prompt(prompt, functions)\n",
|
|
" completion = llama.create_completion(prompt, max_tokens=-1)[\"choices\"][0][\"text\"]\n",
|
|
" function_calls = extract_function_calls(completion)\n",
|
|
" if function_calls:\n",
|
|
" print(function_calls)\n",
|
|
" else:\n",
|
|
" print(completion.strip())\n",
|
|
" print(\"=\"*100)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 23,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"get_weather\n",
|
|
"{'zip_code': '05751'}\n",
|
|
"====================================================================================================\n",
|
|
"get_weather\n",
|
|
"{'zip_code': '05751'}\n",
|
|
"get_weather\n",
|
|
"{'zip_code': '07030'}\n",
|
|
"calculate_mortgage_payment\n",
|
|
"{'loan_amount': 250000, 'interest_rate': 4.18, 'loan_term': 30}\n",
|
|
"====================================================================================================\n",
|
|
"I don't have a function to get exchange rates, but I can provide some resources where you can find this information. You can check websites like Google Finance, XE.com, or Yahoo Finance for up-to-date currency exchange rates.\n",
|
|
"====================================================================================================\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"prompts = [\n",
|
|
" \"What's the weather in 05751?\",\n",
|
|
" \"I'm planning a trip to Killington, Vermont (05751) from Hoboken, NJ (07030). Can you get me weather for both locations and directions?\",\n",
|
|
" \"What's the current exchange rate for USD to EUR?\"\n",
|
|
"]\n",
|
|
"\n",
|
|
"for prompt in prompts:\n",
|
|
" completion = llama.create_completion(generate_hermes_prompt(prompt, functions), max_tokens=-1)[\"choices\"][0][\"text\"]\n",
|
|
" function_calls = extract_function_calls(completion)\n",
|
|
"\n",
|
|
" if function_calls:\n",
|
|
" for function in function_calls:\n",
|
|
" print(function[\"name\"])\n",
|
|
" print(function[\"arguments\"])\n",
|
|
" else:\n",
|
|
" print(completion.strip())\n",
|
|
"\n",
|
|
" print(\"=\"*100)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": ".venv",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.11.5+"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|