feat: Generic chatml Function Calling (#957)
* Add demo notebook * Add initial chat handler * Update OpenAI types * Add generic chatml function calling (wip) * Update chatml generic function calling. * Progress on auto-tool calls * fix streaming functions * Remove print statements * fix: Suppress output from llama.cpp init and grammar creation * Add OpenAI v1 python api compatible chat completion function * Support non-streaming multi-tool calls * Format * Include function_call in response.
This commit is contained in:
parent
69413ce08e
commit
153a0049d9
4 changed files with 1660 additions and 60 deletions
910
examples/notebooks/OpenHermesFunctionCalling.ipynb
Normal file
910
examples/notebooks/OpenHermesFunctionCalling.ipynb
Normal file
|
@ -0,0 +1,910 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"{\n",
|
||||
" \"name\": \"get_article_details\",\n",
|
||||
" \"description\": \"Get article details from unstructured article text.\\ndate_published: formatted as \\\"MM/DD/YYYY\\\"\",\n",
|
||||
" \"parameters\": {\n",
|
||||
" \"type\": \"object\",\n",
|
||||
" \"properties\": {\n",
|
||||
" \"title\": {\n",
|
||||
" \"type\": \"str\"\n",
|
||||
" },\n",
|
||||
" \"authors\": {\n",
|
||||
" \"type\": \"list[str]\"\n",
|
||||
" },\n",
|
||||
" \"short_summary\": {\n",
|
||||
" \"type\": \"str\"\n",
|
||||
" },\n",
|
||||
" \"date_published\": {\n",
|
||||
" \"type\": \"str\"\n",
|
||||
" },\n",
|
||||
" \"tags\": {\n",
|
||||
" \"type\": \"list[str]\"\n",
|
||||
" }\n",
|
||||
" }\n",
|
||||
" },\n",
|
||||
" \"returns\": \"Article\"\n",
|
||||
"}\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import json\n",
|
||||
"import inspect\n",
|
||||
"from typing import get_type_hints\n",
|
||||
"\n",
|
||||
"class Article:\n",
|
||||
" pass\n",
|
||||
"\n",
|
||||
"class Weather:\n",
|
||||
" pass\n",
|
||||
"\n",
|
||||
"class Directions:\n",
|
||||
" pass\n",
|
||||
"\n",
|
||||
"def calculate_mortgage_payment(loan_amount: int, interest_rate: float, loan_term: int) -> float:\n",
|
||||
" \"\"\"Get the monthly mortgage payment given an interest rate percentage.\"\"\"\n",
|
||||
" \n",
|
||||
" # TODO: you must implement this to actually call it later\n",
|
||||
" pass\n",
|
||||
"\n",
|
||||
"def get_article_details(title: str, authors: list[str], short_summary: str, date_published: str, tags: list[str]) -> Article:\n",
|
||||
" '''Get article details from unstructured article text.\n",
|
||||
"date_published: formatted as \"MM/DD/YYYY\"'''\n",
|
||||
" \n",
|
||||
" # TODO: you must implement this to actually call it later\n",
|
||||
" pass\n",
|
||||
"\n",
|
||||
"def get_weather(zip_code: str) -> Weather:\n",
|
||||
" \"\"\"Get the current weather given a zip code.\"\"\"\n",
|
||||
" \n",
|
||||
" # TODO: you must implement this to actually call it later\n",
|
||||
" pass\n",
|
||||
"\n",
|
||||
"def get_directions(start: str, destination: str) -> Directions:\n",
|
||||
" \"\"\"Get directions from Google Directions API.\n",
|
||||
"start: start address as a string including zipcode (if any)\n",
|
||||
"destination: end address as a string including zipcode (if any)\"\"\"\n",
|
||||
" \n",
|
||||
" # TODO: you must implement this to actually call it later\n",
|
||||
" pass\n",
|
||||
"\n",
|
||||
"def get_type_name(t):\n",
|
||||
" name = str(t)\n",
|
||||
" if \"list\" in name or \"dict\" in name:\n",
|
||||
" return name\n",
|
||||
" else:\n",
|
||||
" return t.__name__\n",
|
||||
"\n",
|
||||
"def serialize_function_to_json(func):\n",
|
||||
" signature = inspect.signature(func)\n",
|
||||
" type_hints = get_type_hints(func)\n",
|
||||
"\n",
|
||||
" function_info = {\n",
|
||||
" \"name\": func.__name__,\n",
|
||||
" \"description\": func.__doc__,\n",
|
||||
" \"parameters\": {\n",
|
||||
" \"type\": \"object\",\n",
|
||||
" \"properties\": {}\n",
|
||||
" },\n",
|
||||
" \"returns\": type_hints.get('return', 'void').__name__\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" for name, _ in signature.parameters.items():\n",
|
||||
" param_type = get_type_name(type_hints.get(name, type(None)))\n",
|
||||
" function_info[\"parameters\"][\"properties\"][name] = {\"type\": param_type}\n",
|
||||
"\n",
|
||||
" return json.dumps(function_info, indent=2)\n",
|
||||
"\n",
|
||||
"print(serialize_function_to_json(get_article_details))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import xml.etree.ElementTree as ET\n",
|
||||
"import re\n",
|
||||
"\n",
|
||||
"def extract_function_calls(completion):\n",
|
||||
" completion = completion.strip()\n",
|
||||
" pattern = r\"(<multiplefunctions>(.*?)</multiplefunctions>)\"\n",
|
||||
" match = re.search(pattern, completion, re.DOTALL)\n",
|
||||
" if not match:\n",
|
||||
" return None\n",
|
||||
" \n",
|
||||
" multiplefn = match.group(1)\n",
|
||||
" root = ET.fromstring(multiplefn)\n",
|
||||
" functions = root.findall(\"functioncall\")\n",
|
||||
" return [json.loads(fn.text) for fn in functions]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def generate_hermes_prompt(prompt, functions):\n",
|
||||
" functions = \"\\n\\n\".join([serialize_function_to_json(fn) for fn in functions])\n",
|
||||
" prompt = f\"\"\"<|im_start|>system\n",
|
||||
"You are a helpful assistant with access to the following functions:\n",
|
||||
"\n",
|
||||
"{functions}\n",
|
||||
"\n",
|
||||
"To use these functions respond with:\n",
|
||||
"<multiplefunctions>\n",
|
||||
" <functioncall> {{\"name\": \"function_name\", \"arguments\": {{\"arg_1\": \"value_1\", \"arg_2\": value_2, ...}}}} </functioncall>\n",
|
||||
" <functioncall> {{\"name\": \"function_name\", \"arguments\": {{\"arg_1\": \"value_1\", \"arg_2\": value_2, ...}}}} </functioncall>\n",
|
||||
" ...\n",
|
||||
"</multiplefunctions>\n",
|
||||
"\n",
|
||||
"Edge cases you must handle:\n",
|
||||
"- If there are no functions that match the user request, you will respond politely that you cannot help.<|im_end|>\n",
|
||||
"<|im_start|>user\n",
|
||||
"{prompt}<|im_end|>\n",
|
||||
"<|im_start|>assistant\"\"\"\n",
|
||||
" return prompt"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"<|im_start|>system\n",
|
||||
"You are a helpful assistant with access to the following functions:\n",
|
||||
"\n",
|
||||
"{\n",
|
||||
" \"name\": \"get_weather\",\n",
|
||||
" \"description\": \"Get the current weather given a zip code.\",\n",
|
||||
" \"parameters\": {\n",
|
||||
" \"type\": \"object\",\n",
|
||||
" \"properties\": {\n",
|
||||
" \"zip_code\": {\n",
|
||||
" \"type\": \"str\"\n",
|
||||
" }\n",
|
||||
" }\n",
|
||||
" },\n",
|
||||
" \"returns\": \"Weather\"\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
"{\n",
|
||||
" \"name\": \"calculate_mortgage_payment\",\n",
|
||||
" \"description\": \"Get the monthly mortgage payment given an interest rate percentage.\",\n",
|
||||
" \"parameters\": {\n",
|
||||
" \"type\": \"object\",\n",
|
||||
" \"properties\": {\n",
|
||||
" \"loan_amount\": {\n",
|
||||
" \"type\": \"int\"\n",
|
||||
" },\n",
|
||||
" \"interest_rate\": {\n",
|
||||
" \"type\": \"float\"\n",
|
||||
" },\n",
|
||||
" \"loan_term\": {\n",
|
||||
" \"type\": \"int\"\n",
|
||||
" }\n",
|
||||
" }\n",
|
||||
" },\n",
|
||||
" \"returns\": \"float\"\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
"{\n",
|
||||
" \"name\": \"get_article_details\",\n",
|
||||
" \"description\": \"Get article details from unstructured article text.\\ndate_published: formatted as \\\"MM/DD/YYYY\\\"\",\n",
|
||||
" \"parameters\": {\n",
|
||||
" \"type\": \"object\",\n",
|
||||
" \"properties\": {\n",
|
||||
" \"title\": {\n",
|
||||
" \"type\": \"str\"\n",
|
||||
" },\n",
|
||||
" \"authors\": {\n",
|
||||
" \"type\": \"list[str]\"\n",
|
||||
" },\n",
|
||||
" \"short_summary\": {\n",
|
||||
" \"type\": \"str\"\n",
|
||||
" },\n",
|
||||
" \"date_published\": {\n",
|
||||
" \"type\": \"str\"\n",
|
||||
" },\n",
|
||||
" \"tags\": {\n",
|
||||
" \"type\": \"list[str]\"\n",
|
||||
" }\n",
|
||||
" }\n",
|
||||
" },\n",
|
||||
" \"returns\": \"Article\"\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
"To use these functions respond with:\n",
|
||||
"<multiplefunctions>\n",
|
||||
" <functioncall> {\"name\": \"function_name\", \"arguments\": {\"arg_1\": \"value_1\", \"arg_2\": value_2, ...}} </functioncall>\n",
|
||||
" <functioncall> {\"name\": \"function_name\", \"arguments\": {\"arg_1\": \"value_1\", \"arg_2\": value_2, ...}} </functioncall>\n",
|
||||
" ...\n",
|
||||
"</multiplefunctions>\n",
|
||||
"\n",
|
||||
"Edge cases you must handle:\n",
|
||||
"- If there are no functions that match the user request, you will respond politely that you cannot help.<|im_end|>\n",
|
||||
"<|im_start|>user\n",
|
||||
"What's the weather in 10001?<|im_end|>\n",
|
||||
"<|im_start|>assistant\n",
|
||||
"<|im_start|>system\n",
|
||||
"You are a helpful assistant with access to the following functions:\n",
|
||||
"\n",
|
||||
"{\n",
|
||||
" \"name\": \"get_weather\",\n",
|
||||
" \"description\": \"Get the current weather given a zip code.\",\n",
|
||||
" \"parameters\": {\n",
|
||||
" \"type\": \"object\",\n",
|
||||
" \"properties\": {\n",
|
||||
" \"zip_code\": {\n",
|
||||
" \"type\": \"str\"\n",
|
||||
" }\n",
|
||||
" }\n",
|
||||
" },\n",
|
||||
" \"returns\": \"Weather\"\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
"{\n",
|
||||
" \"name\": \"calculate_mortgage_payment\",\n",
|
||||
" \"description\": \"Get the monthly mortgage payment given an interest rate percentage.\",\n",
|
||||
" \"parameters\": {\n",
|
||||
" \"type\": \"object\",\n",
|
||||
" \"properties\": {\n",
|
||||
" \"loan_amount\": {\n",
|
||||
" \"type\": \"int\"\n",
|
||||
" },\n",
|
||||
" \"interest_rate\": {\n",
|
||||
" \"type\": \"float\"\n",
|
||||
" },\n",
|
||||
" \"loan_term\": {\n",
|
||||
" \"type\": \"int\"\n",
|
||||
" }\n",
|
||||
" }\n",
|
||||
" },\n",
|
||||
" \"returns\": \"float\"\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
"{\n",
|
||||
" \"name\": \"get_article_details\",\n",
|
||||
" \"description\": \"Get article details from unstructured article text.\\ndate_published: formatted as \\\"MM/DD/YYYY\\\"\",\n",
|
||||
" \"parameters\": {\n",
|
||||
" \"type\": \"object\",\n",
|
||||
" \"properties\": {\n",
|
||||
" \"title\": {\n",
|
||||
" \"type\": \"str\"\n",
|
||||
" },\n",
|
||||
" \"authors\": {\n",
|
||||
" \"type\": \"list[str]\"\n",
|
||||
" },\n",
|
||||
" \"short_summary\": {\n",
|
||||
" \"type\": \"str\"\n",
|
||||
" },\n",
|
||||
" \"date_published\": {\n",
|
||||
" \"type\": \"str\"\n",
|
||||
" },\n",
|
||||
" \"tags\": {\n",
|
||||
" \"type\": \"list[str]\"\n",
|
||||
" }\n",
|
||||
" }\n",
|
||||
" },\n",
|
||||
" \"returns\": \"Article\"\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
"To use these functions respond with:\n",
|
||||
"<multiplefunctions>\n",
|
||||
" <functioncall> {\"name\": \"function_name\", \"arguments\": {\"arg_1\": \"value_1\", \"arg_2\": value_2, ...}} </functioncall>\n",
|
||||
" <functioncall> {\"name\": \"function_name\", \"arguments\": {\"arg_1\": \"value_1\", \"arg_2\": value_2, ...}} </functioncall>\n",
|
||||
" ...\n",
|
||||
"</multiplefunctions>\n",
|
||||
"\n",
|
||||
"Edge cases you must handle:\n",
|
||||
"- If there are no functions that match the user request, you will respond politely that you cannot help.<|im_end|>\n",
|
||||
"<|im_start|>user\n",
|
||||
"Determine the monthly mortgage payment for a loan amount of $200,000, an interest rate of 4%, and a loan term of 30 years.<|im_end|>\n",
|
||||
"<|im_start|>assistant\n",
|
||||
"<|im_start|>system\n",
|
||||
"You are a helpful assistant with access to the following functions:\n",
|
||||
"\n",
|
||||
"{\n",
|
||||
" \"name\": \"get_weather\",\n",
|
||||
" \"description\": \"Get the current weather given a zip code.\",\n",
|
||||
" \"parameters\": {\n",
|
||||
" \"type\": \"object\",\n",
|
||||
" \"properties\": {\n",
|
||||
" \"zip_code\": {\n",
|
||||
" \"type\": \"str\"\n",
|
||||
" }\n",
|
||||
" }\n",
|
||||
" },\n",
|
||||
" \"returns\": \"Weather\"\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
"{\n",
|
||||
" \"name\": \"calculate_mortgage_payment\",\n",
|
||||
" \"description\": \"Get the monthly mortgage payment given an interest rate percentage.\",\n",
|
||||
" \"parameters\": {\n",
|
||||
" \"type\": \"object\",\n",
|
||||
" \"properties\": {\n",
|
||||
" \"loan_amount\": {\n",
|
||||
" \"type\": \"int\"\n",
|
||||
" },\n",
|
||||
" \"interest_rate\": {\n",
|
||||
" \"type\": \"float\"\n",
|
||||
" },\n",
|
||||
" \"loan_term\": {\n",
|
||||
" \"type\": \"int\"\n",
|
||||
" }\n",
|
||||
" }\n",
|
||||
" },\n",
|
||||
" \"returns\": \"float\"\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
"{\n",
|
||||
" \"name\": \"get_article_details\",\n",
|
||||
" \"description\": \"Get article details from unstructured article text.\\ndate_published: formatted as \\\"MM/DD/YYYY\\\"\",\n",
|
||||
" \"parameters\": {\n",
|
||||
" \"type\": \"object\",\n",
|
||||
" \"properties\": {\n",
|
||||
" \"title\": {\n",
|
||||
" \"type\": \"str\"\n",
|
||||
" },\n",
|
||||
" \"authors\": {\n",
|
||||
" \"type\": \"list[str]\"\n",
|
||||
" },\n",
|
||||
" \"short_summary\": {\n",
|
||||
" \"type\": \"str\"\n",
|
||||
" },\n",
|
||||
" \"date_published\": {\n",
|
||||
" \"type\": \"str\"\n",
|
||||
" },\n",
|
||||
" \"tags\": {\n",
|
||||
" \"type\": \"list[str]\"\n",
|
||||
" }\n",
|
||||
" }\n",
|
||||
" },\n",
|
||||
" \"returns\": \"Article\"\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
"To use these functions respond with:\n",
|
||||
"<multiplefunctions>\n",
|
||||
" <functioncall> {\"name\": \"function_name\", \"arguments\": {\"arg_1\": \"value_1\", \"arg_2\": value_2, ...}} </functioncall>\n",
|
||||
" <functioncall> {\"name\": \"function_name\", \"arguments\": {\"arg_1\": \"value_1\", \"arg_2\": value_2, ...}} </functioncall>\n",
|
||||
" ...\n",
|
||||
"</multiplefunctions>\n",
|
||||
"\n",
|
||||
"Edge cases you must handle:\n",
|
||||
"- If there are no functions that match the user request, you will respond politely that you cannot help.<|im_end|>\n",
|
||||
"<|im_start|>user\n",
|
||||
"What's the current exchange rate for USD to EUR?<|im_end|>\n",
|
||||
"<|im_start|>assistant\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"prompts = [\n",
|
||||
" \"What's the weather in 10001?\",\n",
|
||||
" \"Determine the monthly mortgage payment for a loan amount of $200,000, an interest rate of 4%, and a loan term of 30 years.\",\n",
|
||||
" \"What's the current exchange rate for USD to EUR?\"\n",
|
||||
"]\n",
|
||||
"functions = [get_weather, calculate_mortgage_payment, get_article_details]\n",
|
||||
"\n",
|
||||
"for prompt in prompts:\n",
|
||||
" print(generate_hermes_prompt(prompt, functions))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"ggml_init_cublas: GGML_CUDA_FORCE_MMQ: no\n",
|
||||
"ggml_init_cublas: CUDA_USE_TENSOR_CORES: yes\n",
|
||||
"ggml_init_cublas: found 1 CUDA devices:\n",
|
||||
" Device 0: NVIDIA GeForce RTX 2060, compute capability 7.5\n",
|
||||
"llama_model_loader: loaded meta data with 20 key-value pairs and 291 tensors from ../../models/OpenHermes-2.5-Mistral-7B-GGUF/openhermes-2.5-mistral-7b.Q4_K_M.gguf (version GGUF V3 (latest))\n",
|
||||
"llama_model_loader: - tensor 0: token_embd.weight q4_K [ 4096, 32002, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 1: blk.0.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 2: blk.0.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 3: blk.0.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 4: blk.0.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 5: blk.0.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 6: blk.0.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 7: blk.0.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 8: blk.0.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 9: blk.0.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 10: blk.1.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 11: blk.1.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 12: blk.1.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 13: blk.1.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 14: blk.1.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 15: blk.1.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 16: blk.1.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 17: blk.1.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 18: blk.1.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 19: blk.2.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 20: blk.2.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 21: blk.2.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 22: blk.2.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 23: blk.2.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 24: blk.2.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 25: blk.2.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 26: blk.2.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 27: blk.2.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 28: blk.3.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 29: blk.3.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 30: blk.3.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 31: blk.3.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 32: blk.3.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 33: blk.3.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 34: blk.3.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 35: blk.3.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 36: blk.3.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 37: blk.4.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 38: blk.4.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 39: blk.4.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 40: blk.4.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 41: blk.4.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 42: blk.4.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 43: blk.4.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 44: blk.4.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 45: blk.4.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 46: blk.5.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 47: blk.5.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 48: blk.5.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 49: blk.5.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 50: blk.5.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 51: blk.5.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 52: blk.5.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 53: blk.5.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 54: blk.5.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 55: blk.6.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 56: blk.6.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 57: blk.6.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 58: blk.6.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 59: blk.6.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 60: blk.6.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 61: blk.6.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 62: blk.6.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 63: blk.6.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 64: blk.7.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 65: blk.7.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 66: blk.7.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 67: blk.7.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 68: blk.7.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 69: blk.7.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 70: blk.7.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 71: blk.7.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 72: blk.7.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 73: blk.8.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 74: blk.8.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 75: blk.8.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 76: blk.8.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 77: blk.8.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 78: blk.8.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 79: blk.8.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 80: blk.8.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 81: blk.8.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 82: blk.9.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 83: blk.9.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 84: blk.9.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 85: blk.9.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 86: blk.9.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 87: blk.9.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 88: blk.9.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 89: blk.9.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 90: blk.9.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 91: blk.10.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 92: blk.10.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 93: blk.10.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 94: blk.10.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 95: blk.10.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 96: blk.10.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 97: blk.10.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 98: blk.10.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 99: blk.10.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 100: blk.11.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 101: blk.11.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 102: blk.11.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 103: blk.11.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 104: blk.11.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 105: blk.11.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 106: blk.11.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 107: blk.11.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 108: blk.11.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 109: blk.12.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 110: blk.12.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 111: blk.12.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 112: blk.12.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 113: blk.12.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 114: blk.12.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 115: blk.12.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 116: blk.12.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 117: blk.12.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 118: blk.13.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 119: blk.13.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 120: blk.13.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 121: blk.13.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 122: blk.13.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 123: blk.13.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 124: blk.13.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 125: blk.13.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 126: blk.13.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 127: blk.14.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 128: blk.14.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 129: blk.14.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 130: blk.14.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 131: blk.14.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 132: blk.14.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 133: blk.14.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 134: blk.14.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 135: blk.14.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 136: blk.15.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 137: blk.15.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 138: blk.15.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 139: blk.15.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 140: blk.15.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 141: blk.15.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 142: blk.15.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 143: blk.15.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 144: blk.15.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 145: blk.16.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 146: blk.16.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 147: blk.16.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 148: blk.16.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 149: blk.16.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 150: blk.16.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 151: blk.16.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 152: blk.16.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 153: blk.16.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 154: blk.17.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 155: blk.17.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 156: blk.17.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 157: blk.17.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 158: blk.17.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 159: blk.17.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 160: blk.17.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 161: blk.17.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 162: blk.17.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 163: blk.18.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 164: blk.18.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 165: blk.18.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 166: blk.18.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 167: blk.18.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 168: blk.18.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 169: blk.18.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 170: blk.18.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 171: blk.18.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 172: blk.19.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 173: blk.19.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 174: blk.19.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 175: blk.19.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 176: blk.19.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 177: blk.19.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 178: blk.19.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 179: blk.19.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 180: blk.19.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 181: blk.20.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 182: blk.20.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 183: blk.20.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 184: blk.20.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 185: blk.20.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 186: blk.20.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 187: blk.20.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 188: blk.20.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 189: blk.20.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 190: blk.21.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 191: blk.21.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 192: blk.21.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 193: blk.21.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 194: blk.21.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 195: blk.21.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 196: blk.21.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 197: blk.21.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 198: blk.21.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 199: blk.22.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 200: blk.22.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 201: blk.22.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 202: blk.22.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 203: blk.22.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 204: blk.22.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 205: blk.22.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 206: blk.22.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 207: blk.22.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 208: blk.23.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 209: blk.23.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 210: blk.23.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 211: blk.23.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 212: blk.23.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 213: blk.23.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 214: blk.23.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 215: blk.23.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 216: blk.23.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 217: blk.24.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 218: blk.24.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 219: blk.24.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 220: blk.24.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 221: blk.24.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 222: blk.24.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 223: blk.24.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 224: blk.24.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 225: blk.24.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 226: blk.25.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 227: blk.25.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 228: blk.25.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 229: blk.25.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 230: blk.25.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 231: blk.25.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 232: blk.25.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 233: blk.25.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 234: blk.25.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 235: blk.26.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 236: blk.26.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 237: blk.26.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 238: blk.26.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 239: blk.26.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 240: blk.26.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 241: blk.26.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 242: blk.26.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 243: blk.26.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 244: blk.27.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 245: blk.27.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 246: blk.27.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 247: blk.27.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 248: blk.27.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 249: blk.27.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 250: blk.27.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 251: blk.27.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 252: blk.27.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 253: blk.28.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 254: blk.28.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 255: blk.28.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 256: blk.28.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 257: blk.28.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 258: blk.28.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 259: blk.28.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 260: blk.28.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 261: blk.28.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 262: blk.29.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 263: blk.29.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 264: blk.29.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 265: blk.29.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 266: blk.29.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 267: blk.29.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 268: blk.29.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 269: blk.29.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 270: blk.29.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 271: blk.30.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 272: blk.30.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 273: blk.30.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 274: blk.30.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 275: blk.30.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 276: blk.30.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 277: blk.30.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 278: blk.30.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 279: blk.30.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 280: blk.31.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 281: blk.31.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 282: blk.31.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 283: blk.31.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 284: blk.31.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 285: blk.31.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 286: blk.31.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 287: blk.31.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 288: blk.31.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 289: output_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
|
||||
"llama_model_loader: - tensor 290: output.weight q6_K [ 4096, 32002, 1, 1 ]\n",
|
||||
"llama_model_loader: - kv 0: general.architecture str = llama\n",
|
||||
"llama_model_loader: - kv 1: general.name str = teknium_openhermes-2.5-mistral-7b\n",
|
||||
"llama_model_loader: - kv 2: llama.context_length u32 = 32768\n",
|
||||
"llama_model_loader: - kv 3: llama.embedding_length u32 = 4096\n",
|
||||
"llama_model_loader: - kv 4: llama.block_count u32 = 32\n",
|
||||
"llama_model_loader: - kv 5: llama.feed_forward_length u32 = 14336\n",
|
||||
"llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 128\n",
|
||||
"llama_model_loader: - kv 7: llama.attention.head_count u32 = 32\n",
|
||||
"llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 8\n",
|
||||
"llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010\n",
|
||||
"llama_model_loader: - kv 10: llama.rope.freq_base f32 = 10000.000000\n",
|
||||
"llama_model_loader: - kv 11: general.file_type u32 = 15\n",
|
||||
"llama_model_loader: - kv 12: tokenizer.ggml.model str = llama\n",
|
||||
"llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,32002] = [\"<unk>\", \"<s>\", \"</s>\", \"<0x00>\", \"<...\n",
|
||||
"llama_model_loader: - kv 14: tokenizer.ggml.scores arr[f32,32002] = [0.000000, 0.000000, 0.000000, 0.0000...\n",
|
||||
"llama_model_loader: - kv 15: tokenizer.ggml.token_type arr[i32,32002] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...\n",
|
||||
"llama_model_loader: - kv 16: tokenizer.ggml.bos_token_id u32 = 1\n",
|
||||
"llama_model_loader: - kv 17: tokenizer.ggml.eos_token_id u32 = 32000\n",
|
||||
"llama_model_loader: - kv 18: tokenizer.ggml.padding_token_id u32 = 0\n",
|
||||
"llama_model_loader: - kv 19: general.quantization_version u32 = 2\n",
|
||||
"llama_model_loader: - type f32: 65 tensors\n",
|
||||
"llama_model_loader: - type q4_K: 193 tensors\n",
|
||||
"llama_model_loader: - type q6_K: 33 tensors\n",
|
||||
"llm_load_vocab: special tokens definition check successful ( 261/32002 ).\n",
|
||||
"llm_load_print_meta: format = GGUF V3 (latest)\n",
|
||||
"llm_load_print_meta: arch = llama\n",
|
||||
"llm_load_print_meta: vocab type = SPM\n",
|
||||
"llm_load_print_meta: n_vocab = 32002\n",
|
||||
"llm_load_print_meta: n_merges = 0\n",
|
||||
"llm_load_print_meta: n_ctx_train = 32768\n",
|
||||
"llm_load_print_meta: n_embd = 4096\n",
|
||||
"llm_load_print_meta: n_head = 32\n",
|
||||
"llm_load_print_meta: n_head_kv = 8\n",
|
||||
"llm_load_print_meta: n_layer = 32\n",
|
||||
"llm_load_print_meta: n_rot = 128\n",
|
||||
"llm_load_print_meta: n_gqa = 4\n",
|
||||
"llm_load_print_meta: f_norm_eps = 0.0e+00\n",
|
||||
"llm_load_print_meta: f_norm_rms_eps = 1.0e-05\n",
|
||||
"llm_load_print_meta: f_clamp_kqv = 0.0e+00\n",
|
||||
"llm_load_print_meta: f_max_alibi_bias = 0.0e+00\n",
|
||||
"llm_load_print_meta: n_ff = 14336\n",
|
||||
"llm_load_print_meta: rope scaling = linear\n",
|
||||
"llm_load_print_meta: freq_base_train = 10000.0\n",
|
||||
"llm_load_print_meta: freq_scale_train = 1\n",
|
||||
"llm_load_print_meta: n_yarn_orig_ctx = 32768\n",
|
||||
"llm_load_print_meta: rope_finetuned = unknown\n",
|
||||
"llm_load_print_meta: model type = 7B\n",
|
||||
"llm_load_print_meta: model ftype = mostly Q4_K - Medium\n",
|
||||
"llm_load_print_meta: model params = 7.24 B\n",
|
||||
"llm_load_print_meta: model size = 4.07 GiB (4.83 BPW) \n",
|
||||
"llm_load_print_meta: general.name = teknium_openhermes-2.5-mistral-7b\n",
|
||||
"llm_load_print_meta: BOS token = 1 '<s>'\n",
|
||||
"llm_load_print_meta: EOS token = 32000 '<|im_end|>'\n",
|
||||
"llm_load_print_meta: UNK token = 0 '<unk>'\n",
|
||||
"llm_load_print_meta: PAD token = 0 '<unk>'\n",
|
||||
"llm_load_print_meta: LF token = 13 '<0x0A>'\n",
|
||||
"llm_load_tensors: ggml ctx size = 0.11 MiB\n",
|
||||
"llm_load_tensors: using CUDA for GPU acceleration\n",
|
||||
"llm_load_tensors: mem required = 70.42 MiB\n",
|
||||
"llm_load_tensors: offloading 32 repeating layers to GPU\n",
|
||||
"llm_load_tensors: offloading non-repeating layers to GPU\n",
|
||||
"llm_load_tensors: offloaded 35/35 layers to GPU\n",
|
||||
"llm_load_tensors: VRAM used: 4095.06 MiB\n",
|
||||
"...............................................................................................\n",
|
||||
"llama_new_context_with_model: n_ctx = 2048\n",
|
||||
"llama_new_context_with_model: freq_base = 10000.0\n",
|
||||
"llama_new_context_with_model: freq_scale = 1\n",
|
||||
"llama_kv_cache_init: offloading v cache to GPU\n",
|
||||
"llama_kv_cache_init: offloading k cache to GPU\n",
|
||||
"llama_kv_cache_init: VRAM kv self = 256.00 MiB\n",
|
||||
"llama_new_context_with_model: kv self size = 256.00 MiB\n",
|
||||
"llama_build_graph: non-view tensors processed: 740/740\n",
|
||||
"llama_new_context_with_model: compute buffer total size = 159.07 MiB\n",
|
||||
"llama_new_context_with_model: VRAM scratch buffer: 156.00 MiB\n",
|
||||
"llama_new_context_with_model: total VRAM used: 4507.07 MiB (model: 4095.06 MiB, context: 412.00 MiB)\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import llama_cpp\n",
|
||||
"\n",
|
||||
"llama = llama_cpp.Llama(model_path=\"../../models/OpenHermes-2.5-Mistral-7B-GGUF/openhermes-2.5-mistral-7b.Q4_K_M.gguf\", n_gpu_layers=-1, n_ctx=2048, verbose=False)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 22,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[{'name': 'get_weather', 'arguments': {'zip_code': '10001'}}]\n",
|
||||
"====================================================================================================\n",
|
||||
"[{'name': 'calculate_mortgage_payment', 'arguments': {'loan_amount': 200000, 'interest_rate': 0.04, 'loan_term': 30}}]\n",
|
||||
"====================================================================================================\n",
|
||||
"Unfortunately, I do not have a built-in function to check currency exchange rates. However, you can use third-party APIs or websites like Google Finance or XE to get this information.\n",
|
||||
"====================================================================================================\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"prompts = [\n",
|
||||
" \"What's the weather in 10001?\",\n",
|
||||
" \"Determine the monthly mortgage payment for a loan amount of $200,000, an interest rate of 4%, and a loan term of 30 years.\",\n",
|
||||
" \"What's the current exchange rate for USD to EUR?\"\n",
|
||||
"]\n",
|
||||
"functions = [get_weather, calculate_mortgage_payment, get_article_details]\n",
|
||||
"\n",
|
||||
"for prompt in prompts:\n",
|
||||
" prompt = generate_hermes_prompt(prompt, functions)\n",
|
||||
" completion = llama.create_completion(prompt, max_tokens=-1)[\"choices\"][0][\"text\"]\n",
|
||||
" function_calls = extract_function_calls(completion)\n",
|
||||
" if function_calls:\n",
|
||||
" print(function_calls)\n",
|
||||
" else:\n",
|
||||
" print(completion.strip())\n",
|
||||
" print(\"=\"*100)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 23,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"get_weather\n",
|
||||
"{'zip_code': '05751'}\n",
|
||||
"====================================================================================================\n",
|
||||
"get_weather\n",
|
||||
"{'zip_code': '05751'}\n",
|
||||
"get_weather\n",
|
||||
"{'zip_code': '07030'}\n",
|
||||
"calculate_mortgage_payment\n",
|
||||
"{'loan_amount': 250000, 'interest_rate': 4.18, 'loan_term': 30}\n",
|
||||
"====================================================================================================\n",
|
||||
"I don't have a function to get exchange rates, but I can provide some resources where you can find this information. You can check websites like Google Finance, XE.com, or Yahoo Finance for up-to-date currency exchange rates.\n",
|
||||
"====================================================================================================\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"prompts = [\n",
|
||||
" \"What's the weather in 05751?\",\n",
|
||||
" \"I'm planning a trip to Killington, Vermont (05751) from Hoboken, NJ (07030). Can you get me weather for both locations and directions?\",\n",
|
||||
" \"What's the current exchange rate for USD to EUR?\"\n",
|
||||
"]\n",
|
||||
"\n",
|
||||
"for prompt in prompts:\n",
|
||||
" completion = llama.create_completion(generate_hermes_prompt(prompt, functions), max_tokens=-1)[\"choices\"][0][\"text\"]\n",
|
||||
" function_calls = extract_function_calls(completion)\n",
|
||||
"\n",
|
||||
" if function_calls:\n",
|
||||
" for function in function_calls:\n",
|
||||
" print(function[\"name\"])\n",
|
||||
" print(function[\"arguments\"])\n",
|
||||
" else:\n",
|
||||
" print(completion.strip())\n",
|
||||
"\n",
|
||||
" print(\"=\"*100)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": ".venv",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.5+"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
|
@ -50,6 +50,9 @@ from ._internals import (
|
|||
_LlamaSamplingContext, # type: ignore
|
||||
)
|
||||
from ._logger import set_verbose
|
||||
from ._utils import (
|
||||
suppress_stdout_stderr
|
||||
)
|
||||
|
||||
|
||||
class Llama:
|
||||
|
@ -182,7 +185,8 @@ class Llama:
|
|||
|
||||
self.numa = numa
|
||||
if not Llama.__backend_initialized:
|
||||
llama_cpp.llama_backend_init(self.numa)
|
||||
with suppress_stdout_stderr(disable=verbose):
|
||||
llama_cpp.llama_backend_init(self.numa)
|
||||
Llama.__backend_initialized = True
|
||||
|
||||
self.model_path = model_path
|
||||
|
@ -1567,6 +1571,38 @@ class Llama:
|
|||
logit_bias=logit_bias,
|
||||
)
|
||||
|
||||
def create_chat_completion_openai_v1(
|
||||
self,
|
||||
*args: Any,
|
||||
**kwargs: Any,
|
||||
):
|
||||
"""Generate a chat completion with return type based on the the OpenAI v1 API.
|
||||
|
||||
OpenAI python package is required to use this method.
|
||||
|
||||
You can install it with `pip install openai`.
|
||||
|
||||
Args:
|
||||
*args: Positional arguments to pass to create_chat_completion.
|
||||
**kwargs: Keyword arguments to pass to create_chat_completion.
|
||||
|
||||
Returns:
|
||||
Generated chat completion or a stream of chat completion chunks.
|
||||
"""
|
||||
try:
|
||||
from openai.types.chat import ChatCompletion, ChatCompletionChunk
|
||||
stream = kwargs.get("stream", False) # type: ignore
|
||||
assert isinstance(stream, bool)
|
||||
if stream:
|
||||
return (ChatCompletionChunk(**chunk) for chunk in self.create_chat_completion(*args, **kwargs)) # type: ignore
|
||||
else:
|
||||
return ChatCompletion(**self.create_chat_completion(*args, **kwargs)) # type: ignore
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"To use create_chat_completion_openai_v1, you must install the openai package."
|
||||
"You can install it with `pip install openai`."
|
||||
)
|
||||
|
||||
def __getstate__(self):
|
||||
return dict(
|
||||
model_path=self.model_path,
|
||||
|
|
|
@ -31,6 +31,7 @@ MISTRAL_INSTRUCT_EOS_TOKEN = "</s>"
|
|||
|
||||
### Chat Completion Handler ###
|
||||
|
||||
|
||||
class LlamaChatCompletionHandler(Protocol):
|
||||
"""Base Protocol for a llama chat completion handler.
|
||||
|
||||
|
@ -77,8 +78,7 @@ class LlamaChatCompletionHandler(Protocol):
|
|||
) -> Union[
|
||||
llama_types.CreateChatCompletionResponse,
|
||||
Iterator[llama_types.CreateChatCompletionStreamResponse],
|
||||
]:
|
||||
...
|
||||
]: ...
|
||||
|
||||
|
||||
class LlamaChatCompletionHandlerNotFoundException(Exception):
|
||||
|
@ -134,6 +134,7 @@ def register_chat_completion_handler(name: str):
|
|||
|
||||
### Chat Formatter ###
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class ChatFormatterResponse:
|
||||
"""Dataclass that stores completion parameters for a given chat format and
|
||||
|
@ -157,8 +158,7 @@ class ChatFormatter(Protocol):
|
|||
*,
|
||||
messages: List[llama_types.ChatCompletionRequestMessage],
|
||||
**kwargs: Any,
|
||||
) -> ChatFormatterResponse:
|
||||
...
|
||||
) -> ChatFormatterResponse: ...
|
||||
|
||||
|
||||
class Jinja2ChatFormatter(ChatFormatter):
|
||||
|
@ -195,7 +195,7 @@ class Jinja2ChatFormatter(ChatFormatter):
|
|||
eos_token=self.eos_token,
|
||||
bos_token=self.bos_token,
|
||||
raise_exception=raise_exception,
|
||||
add_generation_prompt=self.add_generation_prompt
|
||||
add_generation_prompt=self.add_generation_prompt,
|
||||
)
|
||||
|
||||
return ChatFormatterResponse(prompt=prompt, stop=[self.eos_token])
|
||||
|
@ -255,11 +255,13 @@ def _convert_text_completion_chunks_to_chat(
|
|||
"choices": [
|
||||
{
|
||||
"index": 0,
|
||||
"delta": {
|
||||
"content": chunk["choices"][0]["text"],
|
||||
}
|
||||
if chunk["choices"][0]["finish_reason"] is None
|
||||
else {},
|
||||
"delta": (
|
||||
{
|
||||
"content": chunk["choices"][0]["text"],
|
||||
}
|
||||
if chunk["choices"][0]["finish_reason"] is None
|
||||
else {}
|
||||
),
|
||||
"finish_reason": chunk["choices"][0]["finish_reason"],
|
||||
}
|
||||
],
|
||||
|
@ -338,10 +340,12 @@ def chat_formatter_to_chat_completion_handler(
|
|||
# create grammar from json schema
|
||||
if "schema" in response_format:
|
||||
grammar = llama_grammar.LlamaGrammar.from_json_schema(
|
||||
json.dumps(response_format["schema"])
|
||||
json.dumps(response_format["schema"]), verbose=llama.verbose
|
||||
)
|
||||
except Exception as e:
|
||||
grammar = llama_grammar.LlamaGrammar.from_string(llama_grammar.JSON_GBNF)
|
||||
grammar = llama_grammar.LlamaGrammar.from_string(
|
||||
llama_grammar.JSON_GBNF, verbose=llama.verbose
|
||||
)
|
||||
|
||||
completion_or_chunks = llama.create_completion(
|
||||
prompt=prompt,
|
||||
|
@ -452,7 +456,9 @@ def hf_tokenizer_config_to_chat_completion_handler(
|
|||
tokenizer_config: Dict[str, Any],
|
||||
add_generation_prompt: bool = True,
|
||||
) -> LlamaChatCompletionHandler:
|
||||
chat_formatter = hf_tokenizer_config_to_chat_formatter(tokenizer_config, add_generation_prompt=add_generation_prompt)
|
||||
chat_formatter = hf_tokenizer_config_to_chat_formatter(
|
||||
tokenizer_config, add_generation_prompt=add_generation_prompt
|
||||
)
|
||||
return chat_formatter_to_chat_completion_handler(chat_formatter)
|
||||
|
||||
|
||||
|
@ -463,11 +469,12 @@ def guess_chat_format_from_gguf_metadata(metadata: Dict[str, str]) -> Optional[s
|
|||
if metadata["tokenizer.chat_template"] == CHATML_CHAT_TEMPLATE:
|
||||
return "chatml"
|
||||
|
||||
if metadata["tokenizer.chat_template"] == MISTRAL_INSTRUCT_CHAT_TEMPLATE:
|
||||
if metadata["tokenizer.chat_template"] == MISTRAL_INSTRUCT_CHAT_TEMPLATE:
|
||||
return "mistral-instruct"
|
||||
|
||||
return None
|
||||
|
||||
|
||||
### Utility functions for formatting chat prompts ###
|
||||
# TODO: Replace these with jinja2 templates
|
||||
|
||||
|
@ -916,9 +923,17 @@ def format_mistral_instruct(
|
|||
stop = eos
|
||||
prompt = bos
|
||||
for message in messages:
|
||||
if message["role"] == "user" and message["content"] is not None and isinstance(message["content"], str):
|
||||
if (
|
||||
message["role"] == "user"
|
||||
and message["content"] is not None
|
||||
and isinstance(message["content"], str)
|
||||
):
|
||||
prompt += "[INST] " + message["content"]
|
||||
elif message["role"] == "assistant" and message["content"] is not None and isinstance(message["content"], str):
|
||||
elif (
|
||||
message["role"] == "assistant"
|
||||
and message["content"] is not None
|
||||
and isinstance(message["content"], str)
|
||||
):
|
||||
prompt += " [/INST]" + message["content"] + eos
|
||||
prompt += " [/INST]"
|
||||
return ChatFormatterResponse(prompt=prompt, stop=stop)
|
||||
|
@ -958,6 +973,7 @@ def format_openchat(
|
|||
_prompt = _format_chatml(system_message, _messages, _sep)
|
||||
return ChatFormatterResponse(prompt=_prompt, stop=_sep)
|
||||
|
||||
|
||||
# Chat format for Saiga models, see more details and available models:
|
||||
# https://huggingface.co/collections/IlyaGusev/saiga2-saigamistral-6505d4ccc3d1e53166b636cd
|
||||
@register_chat_format("saiga")
|
||||
|
@ -979,8 +995,10 @@ def format_saiga(
|
|||
_prompt += "<s>bot"
|
||||
return ChatFormatterResponse(prompt=_prompt.strip())
|
||||
|
||||
|
||||
# Tricky chat formats that require custom chat handlers
|
||||
|
||||
|
||||
@register_chat_completion_handler("functionary")
|
||||
def functionary_chat_handler(
|
||||
llama: llama.Llama,
|
||||
|
@ -1253,7 +1271,8 @@ def functionary_chat_handler(
|
|||
json.dumps(function_body)
|
||||
)
|
||||
grammar = llama_grammar.LlamaGrammar.from_string(
|
||||
llama_grammar.json_schema_to_gbnf(json.dumps(function_body))
|
||||
llama_grammar.json_schema_to_gbnf(json.dumps(function_body)),
|
||||
verbose=llama.verbose,
|
||||
)
|
||||
print(grammar_text)
|
||||
except Exception as e:
|
||||
|
@ -1264,11 +1283,14 @@ def functionary_chat_handler(
|
|||
print(e)
|
||||
with suppress_stdout_stderr(disable=llama.verbose):
|
||||
grammar = llama_grammar.LlamaGrammar.from_string(
|
||||
llama_grammar.JSON_GBNF
|
||||
llama_grammar.JSON_GBNF,
|
||||
verbose=llama.verbose,
|
||||
)
|
||||
else:
|
||||
with suppress_stdout_stderr(disable=llama.verbose):
|
||||
grammar = llama_grammar.LlamaGrammar.from_string(llama_grammar.JSON_GBNF)
|
||||
grammar = llama_grammar.LlamaGrammar.from_string(
|
||||
llama_grammar.JSON_GBNF, verbose=llama.verbose
|
||||
)
|
||||
|
||||
completion: llama_types.Completion = llama.create_completion(
|
||||
prompt=new_prompt,
|
||||
|
@ -1365,11 +1387,13 @@ def functionary_v1_v2_chat_handler(
|
|||
**kwargs, # type: ignore
|
||||
) -> Union[llama_types.ChatCompletion, Iterator[llama_types.ChatCompletionChunk]]:
|
||||
SYSTEM_MESSAGE = """A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. The assistant calls functions with appropriate input when necessary"""
|
||||
|
||||
|
||||
tokenizer = llama.tokenizer_
|
||||
assert hasattr(tokenizer, "hf_tokenizer"), "Please provide a valid hf_tokenizer_path from https://huggingface.co/meetkai when initializing the Llama class"
|
||||
assert hasattr(
|
||||
tokenizer, "hf_tokenizer"
|
||||
), "Please provide a valid hf_tokenizer_path from https://huggingface.co/meetkai when initializing the Llama class"
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
|
||||
if "<|START_OF_FUNCTION_CALL|>" in tokenizer.hf_tokenizer.additional_special_tokens:
|
||||
version = "v1"
|
||||
END_SYSTEM_TOKEN = "<|END_OF_SYSTEM|>"
|
||||
|
@ -1513,13 +1537,16 @@ def functionary_v1_v2_chat_handler(
|
|||
"name"
|
||||
] = f"functions.{message['function_call']['name']}"
|
||||
all_messages.append(message)
|
||||
|
||||
|
||||
if version == "v1":
|
||||
suffix = "assistant:\n"
|
||||
else:
|
||||
suffix = "<|from|>assistant\n<|recipient|>"
|
||||
|
||||
return tokenizer.hf_tokenizer.apply_chat_template(all_messages, tokenize=False) + suffix
|
||||
|
||||
return (
|
||||
tokenizer.hf_tokenizer.apply_chat_template(all_messages, tokenize=False)
|
||||
+ suffix
|
||||
)
|
||||
|
||||
if tools is not None:
|
||||
functions = [tool["function"] for tool in tools if tool["type"] == "function"]
|
||||
|
@ -1529,8 +1556,10 @@ def functionary_v1_v2_chat_handler(
|
|||
tool_choice if isinstance(tool_choice, str) else tool_choice["function"]
|
||||
)
|
||||
|
||||
prompt = prepare_messages_for_inference(messages, tokenizer, version, functions, tools)
|
||||
|
||||
prompt = prepare_messages_for_inference(
|
||||
messages, tokenizer, version, functions, tools
|
||||
)
|
||||
|
||||
# If no tools/functions are provided
|
||||
if function_call is None and (functions is None or len(functions) == 0):
|
||||
if version == "v1":
|
||||
|
@ -1538,7 +1567,7 @@ def functionary_v1_v2_chat_handler(
|
|||
else:
|
||||
stop = STOP_TOKEN
|
||||
prompt += "all\n<|content|>"
|
||||
|
||||
|
||||
completion_or_completion_chunks = llama.create_completion(
|
||||
prompt=prompt,
|
||||
temperature=temperature,
|
||||
|
@ -1561,9 +1590,9 @@ def functionary_v1_v2_chat_handler(
|
|||
grammar=grammar,
|
||||
)
|
||||
return _convert_completion_to_chat(completion_or_completion_chunks, stream=stream) # type: ignore
|
||||
|
||||
|
||||
assert stream is False # TODO: support stream mode
|
||||
|
||||
|
||||
def get_grammar(function_call):
|
||||
function_body = None
|
||||
for function in functions or []:
|
||||
|
@ -1574,7 +1603,7 @@ def functionary_v1_v2_chat_handler(
|
|||
if tool["type"] == "function" and tool["function"]["name"] == function_call:
|
||||
function_body = tool["function"]["parameters"]
|
||||
break
|
||||
|
||||
|
||||
try:
|
||||
with suppress_stdout_stderr(disable=llama.verbose):
|
||||
grammar_text = llama_grammar.json_schema_to_gbnf(
|
||||
|
@ -1592,11 +1621,11 @@ def functionary_v1_v2_chat_handler(
|
|||
print(e)
|
||||
with suppress_stdout_stderr(disable=llama.verbose):
|
||||
grammar = llama_grammar.LlamaGrammar.from_string(
|
||||
llama_grammar.JSON_GBNF
|
||||
llama_grammar.JSON_GBNF, verbose=llama.verbose
|
||||
)
|
||||
|
||||
|
||||
return grammar
|
||||
|
||||
|
||||
def create_completion(stop):
|
||||
completion: llama_types.Completion = llama.create_completion(
|
||||
prompt=prompt,
|
||||
|
@ -1619,11 +1648,11 @@ def functionary_v1_v2_chat_handler(
|
|||
logits_processor=logits_processor,
|
||||
grammar=grammar,
|
||||
)
|
||||
|
||||
|
||||
return completion
|
||||
|
||||
|
||||
function_calls, function_bodies = [], []
|
||||
|
||||
|
||||
if version == "v1":
|
||||
# If no or "auto" tool_choice/function_call
|
||||
if function_call is None or (
|
||||
|
@ -1632,7 +1661,9 @@ def functionary_v1_v2_chat_handler(
|
|||
stops = ["\n", END_ASSISTANT_TOKEN]
|
||||
# If tool_choice/function_call is "none"
|
||||
elif isinstance(function_call, str) and function_call == "none":
|
||||
prompt = prepare_messages_for_inference(messages, tokenizer, version, [], [])
|
||||
prompt = prepare_messages_for_inference(
|
||||
messages, tokenizer, version, [], []
|
||||
)
|
||||
stops = END_ASSISTANT_TOKEN
|
||||
# If tool_choice/function_call is provided
|
||||
elif isinstance(function_call, dict):
|
||||
|
@ -1647,14 +1678,27 @@ def functionary_v1_v2_chat_handler(
|
|||
|
||||
completion = create_completion(stop=stops)
|
||||
completion_text = completion["choices"][0]["text"]
|
||||
|
||||
|
||||
# If the generation does not involve a function call
|
||||
if START_FUNCTION_CALL_TOKEN not in prompt and START_FUNCTION_CALL_TOKEN not in completion_text:
|
||||
if (
|
||||
START_FUNCTION_CALL_TOKEN not in prompt
|
||||
and START_FUNCTION_CALL_TOKEN not in completion_text
|
||||
):
|
||||
return _convert_completion_to_chat(completion, stream=stream) # type: ignore
|
||||
# If the generation involves a function call in completion, generate the parameters
|
||||
elif START_FUNCTION_CALL_TOKEN not in prompt and START_FUNCTION_CALL_TOKEN in completion_text:
|
||||
prompt += completion_text.replace(f"{START_FUNCTION_CALL_TOKEN} ", START_FUNCTION_CALL_TOKEN) + "\n"
|
||||
function_calls.append(completion_text.split(START_FUNCTION_CALL_TOKEN)[-1][:-1].strip())
|
||||
elif (
|
||||
START_FUNCTION_CALL_TOKEN not in prompt
|
||||
and START_FUNCTION_CALL_TOKEN in completion_text
|
||||
):
|
||||
prompt += (
|
||||
completion_text.replace(
|
||||
f"{START_FUNCTION_CALL_TOKEN} ", START_FUNCTION_CALL_TOKEN
|
||||
)
|
||||
+ "\n"
|
||||
)
|
||||
function_calls.append(
|
||||
completion_text.split(START_FUNCTION_CALL_TOKEN)[-1][:-1].strip()
|
||||
)
|
||||
grammar = get_grammar(function_calls[-1])
|
||||
completion = create_completion(stop=END_FUNCTION_CALL_TOKEN)
|
||||
function_bodies.append(completion["choices"][0]["text"].strip())
|
||||
|
@ -1672,7 +1716,10 @@ def functionary_v1_v2_chat_handler(
|
|||
stops = CONTENT_TOKEN
|
||||
# If tool_choice/function_call is "none"
|
||||
elif isinstance(function_call, str) and function_call == "none":
|
||||
prompt = prepare_messages_for_inference(messages, tokenizer, version, [], []) + "all\n<|content|>"
|
||||
prompt = (
|
||||
prepare_messages_for_inference(messages, tokenizer, version, [], [])
|
||||
+ "all\n<|content|>"
|
||||
)
|
||||
stops = STOP_TOKEN
|
||||
# If tool_choice/function_call is provided
|
||||
elif isinstance(function_call, dict):
|
||||
|
@ -1684,15 +1731,17 @@ def functionary_v1_v2_chat_handler(
|
|||
else:
|
||||
prompt = prompt
|
||||
stops = STOP_TOKEN
|
||||
|
||||
|
||||
completion = create_completion(stop=stops)
|
||||
completion_text = completion["choices"][0]["text"]
|
||||
|
||||
|
||||
# If the generation does not involve a function call
|
||||
if prompt.endswith("all\n<|content|>") and not completion_text.startswith("all"):
|
||||
if prompt.endswith("all\n<|content|>") and not completion_text.startswith(
|
||||
"all"
|
||||
):
|
||||
return _convert_completion_to_chat(completion, stream=stream) # type: ignore
|
||||
# Generate model response if the model decides not to call any function
|
||||
elif (prompt.endswith(RECIPIENT_TOKEN) and completion_text.startswith("all")):
|
||||
elif prompt.endswith(RECIPIENT_TOKEN) and completion_text.startswith("all"):
|
||||
prompt += completion_text + CONTENT_TOKEN
|
||||
completion = create_completion(stop=STOP_TOKEN)
|
||||
return _convert_completion_to_chat(completion, stream=stream) # type: ignore
|
||||
|
@ -1704,7 +1753,7 @@ def functionary_v1_v2_chat_handler(
|
|||
function_bodies.append(completion["choices"][0]["text"].strip())
|
||||
prompt += f"{function_calls[-1]}\n{CONTENT_TOKEN}{function_bodies[-1]}"
|
||||
grammar = None
|
||||
|
||||
|
||||
# Try to generate the beginning of next turn
|
||||
# If empty completion, break from loop
|
||||
next_turn_completion_text = create_completion(
|
||||
|
@ -1718,17 +1767,21 @@ def functionary_v1_v2_chat_handler(
|
|||
else:
|
||||
function_bodies.append(completion_text.strip())
|
||||
break
|
||||
|
||||
|
||||
assert "usage" in completion
|
||||
assert len(function_calls) > 0
|
||||
assert len(function_calls) == len(function_bodies)
|
||||
|
||||
|
||||
tool_calls = []
|
||||
for function_call, function_body in zip(function_calls, function_bodies):
|
||||
tool_calls.append(
|
||||
{
|
||||
"id": "call_" + "".join(
|
||||
[random.choice(string.ascii_letters + string.digits) for _ in range(24)]
|
||||
"id": "call_"
|
||||
+ "".join(
|
||||
[
|
||||
random.choice(string.ascii_letters + string.digits)
|
||||
for _ in range(24)
|
||||
]
|
||||
),
|
||||
"type": "function",
|
||||
"function": {
|
||||
|
@ -1924,7 +1977,9 @@ class Llava15ChatHandler:
|
|||
json.dumps(response_format["schema"])
|
||||
)
|
||||
except Exception as e:
|
||||
grammar = llama_grammar.LlamaGrammar.from_string(llama_grammar.JSON_GBNF)
|
||||
grammar = llama_grammar.LlamaGrammar.from_string(
|
||||
llama_grammar.JSON_GBNF
|
||||
)
|
||||
|
||||
return _convert_completion_to_chat(
|
||||
llama.create_completion(
|
||||
|
@ -1950,3 +2005,601 @@ class Llava15ChatHandler:
|
|||
),
|
||||
stream=stream,
|
||||
)
|
||||
|
||||
|
||||
@register_chat_completion_handler("chatml-function-calling")
|
||||
def chatml_function_calling(
|
||||
llama: llama.Llama,
|
||||
messages: List[llama_types.ChatCompletionRequestMessage],
|
||||
functions: Optional[List[llama_types.ChatCompletionFunction]] = None,
|
||||
function_call: Optional[llama_types.ChatCompletionRequestFunctionCall] = None,
|
||||
tools: Optional[List[llama_types.ChatCompletionTool]] = None,
|
||||
tool_choice: Optional[llama_types.ChatCompletionToolChoiceOption] = None,
|
||||
temperature: float = 0.2,
|
||||
top_p: float = 0.95,
|
||||
top_k: int = 40,
|
||||
min_p: float = 0.05,
|
||||
typical_p: float = 1.0,
|
||||
stream: bool = False,
|
||||
stop: Optional[Union[str, List[str]]] = [],
|
||||
response_format: Optional[llama_types.ChatCompletionRequestResponseFormat] = None,
|
||||
max_tokens: Optional[int] = None,
|
||||
presence_penalty: float = 0.0,
|
||||
frequency_penalty: float = 0.0,
|
||||
repeat_penalty: float = 1.1,
|
||||
tfs_z: float = 1.0,
|
||||
mirostat_mode: int = 0,
|
||||
mirostat_tau: float = 5.0,
|
||||
mirostat_eta: float = 0.1,
|
||||
model: Optional[str] = None,
|
||||
logits_processor: Optional[llama.LogitsProcessorList] = None,
|
||||
grammar: Optional[llama.LlamaGrammar] = None,
|
||||
**kwargs, # type: ignore
|
||||
) -> Union[
|
||||
llama_types.CreateChatCompletionResponse,
|
||||
Iterator[llama_types.CreateChatCompletionStreamResponse],
|
||||
]:
|
||||
function_calling_template = (
|
||||
"{% for message in messages %}"
|
||||
"<|im_start|>{{ message.role }}\n"
|
||||
# System message
|
||||
"{% if message.role == 'system' %}"
|
||||
"{{ message.content }}"
|
||||
"{% if tool_calls %}"
|
||||
"\n\nYou have access to the following functions:\n"
|
||||
"{% for tool in tools %}"
|
||||
"\nfunctions.{{ tool.function.name }}:\n"
|
||||
"{{ tool.function.parameters | tojson }}"
|
||||
"\n{% endfor %}"
|
||||
"\n\nYou can respond to users messages with either a single message or one or more function calls."
|
||||
"\n\nTo respond with a message begin the message with 'message:', use the following format:"
|
||||
"\n\nmessage:"
|
||||
"\n<message>"
|
||||
"\n\nTo respond with one or more function calls begin the message with 'functions.<function_name>:', use the following format:"
|
||||
"\n\nfunctions.<function_name>:"
|
||||
'\n{ "arg1": "value1", "arg2": "value2" }'
|
||||
"\nfunctions.<function_name>:"
|
||||
'\n{ "arg1": "value1", "arg2": "value2" }'
|
||||
"{% endif %}"
|
||||
"\n<|im_end|>\n"
|
||||
"{% endif %}"
|
||||
# User message
|
||||
"{% if message.role == 'user' %}"
|
||||
"{{ message.content }}"
|
||||
"\n<|im_end|>\n"
|
||||
"{% endif %}"
|
||||
# Assistant message
|
||||
"{% if message.role == 'assistant' %}"
|
||||
## Reglar message
|
||||
"{% if message.content and message.content | length > 0 %}"
|
||||
"message:\n"
|
||||
"{{ message.content }}"
|
||||
"\n<|im_end|>\n"
|
||||
"{% endif %}"
|
||||
## Function calls
|
||||
"{% if message.tool_calls %}"
|
||||
"{% for tool_call in message.tool_calls %}"
|
||||
"functions.{{ tool_call.function.name }}:\n"
|
||||
"{{ tool_call.function.arguments }}"
|
||||
"{% endfor %}"
|
||||
"\n<|im_end|>\n"
|
||||
"{% endif %}"
|
||||
"{% endif %}"
|
||||
"{% endfor %}"
|
||||
)
|
||||
template_renderer = jinja2.Environment(
|
||||
loader=jinja2.BaseLoader(),
|
||||
autoescape=jinja2.select_autoescape(["html", "xml"]),
|
||||
undefined=jinja2.StrictUndefined,
|
||||
).from_string(function_calling_template)
|
||||
|
||||
# Convert legacy functions to tools
|
||||
if functions is not None:
|
||||
tools = [
|
||||
{
|
||||
"type": "function",
|
||||
"function": function,
|
||||
}
|
||||
for function in functions
|
||||
]
|
||||
|
||||
# Convert legacy function_call to tool_choice
|
||||
if function_call is not None:
|
||||
if isinstance(function_call, str) and (
|
||||
function_call == "none" or function_call == "auto"
|
||||
):
|
||||
tool_choice = function_call
|
||||
if isinstance(function_call, dict) and "name" in function_call:
|
||||
tool_choice = {
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": function_call["name"],
|
||||
},
|
||||
}
|
||||
|
||||
# Case 1: No tool choice by user
|
||||
if (
|
||||
tool_choice is None
|
||||
or (isinstance(tool_choice, str) and tool_choice == "none")
|
||||
or tools is None
|
||||
or len(tools) == 0
|
||||
):
|
||||
prompt = template_renderer.render(
|
||||
messages=messages,
|
||||
tools=[],
|
||||
tool_calls=None,
|
||||
)
|
||||
if response_format is not None and response_format["type"] == "json_object":
|
||||
try:
|
||||
grammar = (
|
||||
llama_grammar.LlamaGrammar.from_json_schema(
|
||||
json.dumps(response_format["schema"])
|
||||
)
|
||||
if "schema" in response_format
|
||||
else None
|
||||
)
|
||||
except Exception as e:
|
||||
if llama.verbose:
|
||||
print(
|
||||
"Failed to parse response format as JSON schema, falling back to default grammar"
|
||||
)
|
||||
print(e)
|
||||
grammar = (
|
||||
llama_grammar.LlamaGrammar.from_string(llama_grammar.JSON_GBNF)
|
||||
if grammar is None
|
||||
else grammar
|
||||
)
|
||||
return _convert_completion_to_chat(
|
||||
llama.create_completion(
|
||||
prompt=prompt,
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
top_k=top_k,
|
||||
min_p=min_p,
|
||||
typical_p=typical_p,
|
||||
stream=stream,
|
||||
stop=stop,
|
||||
max_tokens=max_tokens,
|
||||
presence_penalty=presence_penalty,
|
||||
frequency_penalty=frequency_penalty,
|
||||
repeat_penalty=repeat_penalty,
|
||||
tfs_z=tfs_z,
|
||||
mirostat_mode=mirostat_mode,
|
||||
mirostat_tau=mirostat_tau,
|
||||
mirostat_eta=mirostat_eta,
|
||||
model=model,
|
||||
logits_processor=logits_processor,
|
||||
grammar=grammar,
|
||||
),
|
||||
stream=stream,
|
||||
)
|
||||
|
||||
def _convert_completion_to_chat_function(
|
||||
tool_name: str,
|
||||
completion_or_chunks: Union[
|
||||
llama_types.CreateCompletionResponse,
|
||||
Iterator[llama_types.CreateCompletionStreamResponse],
|
||||
],
|
||||
stream: bool,
|
||||
):
|
||||
if not stream:
|
||||
completion: llama_types.CreateCompletionResponse = completion_or_chunks # type: ignore
|
||||
assert "usage" in completion
|
||||
tool_id = "call_" + "_0_" + tool_name + "_" + completion["id"]
|
||||
# TODO: Fix for legacy function calls
|
||||
chat_completion: llama_types.CreateChatCompletionResponse = {
|
||||
"id": "chat" + completion["id"],
|
||||
"object": "chat.completion",
|
||||
"created": completion["created"],
|
||||
"model": completion["model"],
|
||||
"choices": [
|
||||
{
|
||||
"index": 0,
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
"content": None,
|
||||
"function_call": {
|
||||
"name": tool_name,
|
||||
"arguments": completion["choices"][0]["text"],
|
||||
},
|
||||
"tool_calls": [
|
||||
{
|
||||
"id": tool_id,
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": tool_name,
|
||||
"arguments": completion["choices"][0]["text"],
|
||||
},
|
||||
}
|
||||
],
|
||||
},
|
||||
"finish_reason": "tool_calls",
|
||||
}
|
||||
],
|
||||
"usage": completion["usage"],
|
||||
}
|
||||
return chat_completion
|
||||
else:
|
||||
chunks: Iterator[llama_types.CreateCompletionStreamResponse] = completion_or_chunks # type: ignore
|
||||
|
||||
def _stream_response_to_function_stream(
|
||||
chunks: Iterator[llama_types.CreateCompletionStreamResponse],
|
||||
) -> Iterator[llama_types.CreateChatCompletionStreamResponse]:
|
||||
# blank first message
|
||||
first = True
|
||||
id_ = None
|
||||
created = None
|
||||
model = None
|
||||
tool_id = None
|
||||
for chunk in chunks:
|
||||
if first:
|
||||
id_ = "chat" + chunk["id"]
|
||||
created = chunk["created"]
|
||||
model = chunk["model"]
|
||||
tool_id = "call_" + "_0_" + tool_name + "_" + chunk["id"]
|
||||
yield {
|
||||
"id": id_,
|
||||
"object": "chat.completion.chunk",
|
||||
"created": created,
|
||||
"model": model,
|
||||
"choices": [
|
||||
{
|
||||
"index": 0,
|
||||
"finish_reason": None,
|
||||
"logprobs": None,
|
||||
"delta": {
|
||||
"role": "assistant",
|
||||
"content": None,
|
||||
"function_call": None,
|
||||
"tool_calls": None,
|
||||
},
|
||||
}
|
||||
],
|
||||
}
|
||||
yield {
|
||||
"id": "chat" + chunk["id"],
|
||||
"object": "chat.completion.chunk",
|
||||
"created": chunk["created"],
|
||||
"model": chunk["model"],
|
||||
"choices": [
|
||||
{
|
||||
"index": 0,
|
||||
"finish_reason": None,
|
||||
"logprobs": None,
|
||||
"delta": {
|
||||
"role": None,
|
||||
"content": None,
|
||||
"function_call": {
|
||||
"name": tool_name,
|
||||
"arguments": chunk["choices"][0]["text"],
|
||||
},
|
||||
"tool_calls": [
|
||||
{
|
||||
"index": 0,
|
||||
"id": tool_id,
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": tool_name,
|
||||
"arguments": "",
|
||||
},
|
||||
}
|
||||
],
|
||||
},
|
||||
}
|
||||
],
|
||||
}
|
||||
first = False
|
||||
continue
|
||||
assert tool_id is not None
|
||||
yield {
|
||||
"id": "chat" + chunk["id"],
|
||||
"object": "chat.completion.chunk",
|
||||
"created": chunk["created"],
|
||||
"model": chunk["model"],
|
||||
"choices": [
|
||||
{
|
||||
"index": 0,
|
||||
"finish_reason": None,
|
||||
"logprobs": None,
|
||||
"delta": {
|
||||
"role": None,
|
||||
"content": None,
|
||||
"function_call": {
|
||||
"name": tool_name,
|
||||
"arguments": chunk["choices"][0]["text"],
|
||||
},
|
||||
"tool_calls": [
|
||||
{
|
||||
"index": 0,
|
||||
"id": tool_id,
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": tool_name,
|
||||
"arguments": chunk["choices"][0][
|
||||
"text"
|
||||
],
|
||||
},
|
||||
}
|
||||
],
|
||||
},
|
||||
}
|
||||
],
|
||||
}
|
||||
|
||||
if id_ is not None and created is not None and model is not None:
|
||||
yield {
|
||||
"id": id_,
|
||||
"object": "chat.completion.chunk",
|
||||
"created": created,
|
||||
"model": model,
|
||||
"choices": [
|
||||
{
|
||||
"index": 0,
|
||||
"finish_reason": "tool_calls",
|
||||
"logprobs": None,
|
||||
"delta": {
|
||||
"role": None,
|
||||
"content": None,
|
||||
"function_call": None,
|
||||
"tool_calls": None,
|
||||
},
|
||||
}
|
||||
],
|
||||
}
|
||||
|
||||
return _stream_response_to_function_stream(chunks)
|
||||
|
||||
# Case 2: Tool choice by user
|
||||
if isinstance(tool_choice, dict):
|
||||
tool_name = tool_choice["function"]["name"]
|
||||
tool = next(
|
||||
(tool for tool in tools if tool["function"]["name"] == tool_name), None
|
||||
)
|
||||
if tool is None:
|
||||
raise ValueError(f"Tool with name '{tool_name}' not found in tools")
|
||||
prompt = template_renderer.render(
|
||||
messages=messages,
|
||||
tools=tools,
|
||||
tool_calls=True,
|
||||
)
|
||||
prompt += f"functions.{tool_name}:\n"
|
||||
try:
|
||||
grammar = llama_grammar.LlamaGrammar.from_json_schema(
|
||||
json.dumps(tool["function"]["parameters"]), verbose=llama.verbose
|
||||
)
|
||||
except Exception as e:
|
||||
grammar = llama_grammar.LlamaGrammar.from_string(
|
||||
llama_grammar.JSON_GBNF, verbose=llama.verbose
|
||||
)
|
||||
if llama.verbose:
|
||||
print(
|
||||
"Failed to parse function body as JSON schema, falling back to default grammar"
|
||||
)
|
||||
print(e)
|
||||
completion_or_chunks = llama.create_completion(
|
||||
prompt=prompt,
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
top_k=top_k,
|
||||
min_p=min_p,
|
||||
typical_p=typical_p,
|
||||
stream=stream,
|
||||
stop=stop,
|
||||
max_tokens=max_tokens,
|
||||
presence_penalty=presence_penalty,
|
||||
frequency_penalty=frequency_penalty,
|
||||
repeat_penalty=repeat_penalty,
|
||||
tfs_z=tfs_z,
|
||||
mirostat_mode=mirostat_mode,
|
||||
mirostat_tau=mirostat_tau,
|
||||
mirostat_eta=mirostat_eta,
|
||||
model=model,
|
||||
logits_processor=logits_processor,
|
||||
grammar=grammar,
|
||||
)
|
||||
return _convert_completion_to_chat_function(
|
||||
tool_name, completion_or_chunks, stream
|
||||
)
|
||||
|
||||
# Case 3: Automatic tool choice
|
||||
assert isinstance(tool_choice, str) and tool_choice == "auto"
|
||||
function_names = " | ".join(
|
||||
[f'''"functions.{tool['function']['name']}:"''' for tool in tools]
|
||||
)
|
||||
initial_gbnf_tool_grammar = (
|
||||
"""root ::= functions | "message:"\n"""
|
||||
f"""functions ::= {function_names}\n"""
|
||||
)
|
||||
follow_up_gbnf_tool_grammar = (
|
||||
"""root ::= functions | "<|im_end|>"\n"""
|
||||
f"""functions ::= {function_names}\n"""
|
||||
)
|
||||
prompt = template_renderer.render(
|
||||
messages=messages,
|
||||
tools=tools,
|
||||
tool_calls=True,
|
||||
)
|
||||
completion_or_chunks = llama.create_completion(
|
||||
prompt=prompt,
|
||||
temperature=0,
|
||||
top_p=top_p,
|
||||
top_k=top_k,
|
||||
min_p=min_p,
|
||||
typical_p=typical_p,
|
||||
stream=False,
|
||||
stop=[":"],
|
||||
max_tokens=None,
|
||||
presence_penalty=presence_penalty,
|
||||
frequency_penalty=frequency_penalty,
|
||||
repeat_penalty=repeat_penalty,
|
||||
tfs_z=tfs_z,
|
||||
mirostat_mode=mirostat_mode,
|
||||
mirostat_tau=mirostat_tau,
|
||||
mirostat_eta=mirostat_eta,
|
||||
model=model,
|
||||
logits_processor=logits_processor,
|
||||
grammar=llama_grammar.LlamaGrammar.from_string(
|
||||
initial_gbnf_tool_grammar, verbose=llama.verbose
|
||||
),
|
||||
)
|
||||
completion: llama_types.CreateCompletionResponse = completion_or_chunks # type: ignore
|
||||
text = completion["choices"][0]["text"]
|
||||
if "message" in text:
|
||||
return _convert_completion_to_chat(
|
||||
llama.create_completion(
|
||||
prompt=prompt + "message:\n",
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
top_k=top_k,
|
||||
min_p=min_p,
|
||||
typical_p=typical_p,
|
||||
stream=stream,
|
||||
stop=["<|im_end|>"],
|
||||
max_tokens=None,
|
||||
presence_penalty=presence_penalty,
|
||||
frequency_penalty=frequency_penalty,
|
||||
repeat_penalty=repeat_penalty,
|
||||
tfs_z=tfs_z,
|
||||
mirostat_mode=mirostat_mode,
|
||||
mirostat_tau=mirostat_tau,
|
||||
mirostat_eta=mirostat_eta,
|
||||
model=model,
|
||||
logits_processor=logits_processor,
|
||||
grammar=llama_grammar.LlamaGrammar.from_string(
|
||||
follow_up_gbnf_tool_grammar, verbose=llama.verbose
|
||||
),
|
||||
),
|
||||
stream=stream,
|
||||
)
|
||||
|
||||
# One or more function calls
|
||||
tool_name = text[len("functions.") :]
|
||||
tool = next((tool for tool in tools if tool["function"]["name"] == tool_name), None)
|
||||
if not stream:
|
||||
completions = []
|
||||
completions_tool_name = []
|
||||
while tool is not None:
|
||||
prompt += f"functions.{tool_name}:\n"
|
||||
try:
|
||||
grammar = llama_grammar.LlamaGrammar.from_json_schema(
|
||||
json.dumps(tool["function"]["parameters"]), verbose=llama.verbose
|
||||
)
|
||||
except Exception as e:
|
||||
grammar = llama_grammar.LlamaGrammar.from_string(
|
||||
llama_grammar.JSON_GBNF, verbose=llama.verbose
|
||||
)
|
||||
if llama.verbose:
|
||||
print(
|
||||
"Failed to parse function body as JSON schema, falling back to default grammar"
|
||||
)
|
||||
print(e)
|
||||
completion_or_chunks = llama.create_completion(
|
||||
prompt=prompt,
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
top_k=top_k,
|
||||
min_p=min_p,
|
||||
typical_p=typical_p,
|
||||
stream=False,
|
||||
stop=stop,
|
||||
max_tokens=None,
|
||||
presence_penalty=presence_penalty,
|
||||
frequency_penalty=frequency_penalty,
|
||||
repeat_penalty=repeat_penalty,
|
||||
tfs_z=tfs_z,
|
||||
mirostat_mode=mirostat_mode,
|
||||
mirostat_tau=mirostat_tau,
|
||||
mirostat_eta=mirostat_eta,
|
||||
model=model,
|
||||
logits_processor=logits_processor,
|
||||
grammar=grammar,
|
||||
)
|
||||
completions.append(completion_or_chunks)
|
||||
completions_tool_name.append(tool_name)
|
||||
prompt += completion_or_chunks["choices"][0]["text"]
|
||||
prompt += "\n"
|
||||
|
||||
response = llama.create_completion(
|
||||
prompt=prompt,
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
top_k=top_k,
|
||||
min_p=min_p,
|
||||
typical_p=typical_p,
|
||||
stream=False,
|
||||
stop=stop,
|
||||
max_tokens=None,
|
||||
presence_penalty=presence_penalty,
|
||||
frequency_penalty=frequency_penalty,
|
||||
repeat_penalty=repeat_penalty,
|
||||
tfs_z=tfs_z,
|
||||
mirostat_mode=mirostat_mode,
|
||||
mirostat_tau=mirostat_tau,
|
||||
mirostat_eta=mirostat_eta,
|
||||
model=model,
|
||||
logits_processor=logits_processor,
|
||||
grammar=llama_grammar.LlamaGrammar.from_string(
|
||||
follow_up_gbnf_tool_grammar, verbose=llama.verbose
|
||||
),
|
||||
)
|
||||
|
||||
tool_name = response["choices"][0]["text"][len("functions.") :]
|
||||
tool = next(
|
||||
(tool for tool in tools if tool["function"]["name"] == tool_name), None
|
||||
)
|
||||
|
||||
# Merge completions
|
||||
function_call = {
|
||||
"function_call": {
|
||||
"name": tool_name,
|
||||
"arguments": completions[0]["choices"][0]["text"],
|
||||
}
|
||||
} if len(completions) == 1 else {}
|
||||
return {
|
||||
"id": "chat" + completion["id"],
|
||||
"object": "chat.completion",
|
||||
"created": completion["created"],
|
||||
"model": completion["model"],
|
||||
"choices": [
|
||||
{
|
||||
"finish_reason": "tool_calls",
|
||||
"index": 0,
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
"content": None,
|
||||
"tool_calls": [
|
||||
{
|
||||
"id": "call_"
|
||||
+ f"_{i}_"
|
||||
+ tool_name
|
||||
+ "_"
|
||||
+ completion["id"],
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": tool_name,
|
||||
"arguments": completion["choices"][0]["text"],
|
||||
},
|
||||
}
|
||||
for i, (tool_name, completion) in enumerate(
|
||||
zip(completions_tool_name, completions)
|
||||
)
|
||||
],
|
||||
**function_call
|
||||
},
|
||||
}
|
||||
],
|
||||
"usage": {
|
||||
"completion_tokens": sum(
|
||||
completion["usage"]["completion_tokens"]
|
||||
for completion in completions
|
||||
),
|
||||
"prompt_tokens": sum(
|
||||
completion["usage"]["prompt_tokens"] for completion in completions
|
||||
),
|
||||
"total_tokens": sum(
|
||||
completion["usage"]["total_tokens"] for completion in completions
|
||||
),
|
||||
},
|
||||
}
|
||||
|
||||
raise ValueError("Automatic streaming tool choice is not supported")
|
||||
|
|
|
@ -97,7 +97,7 @@ class CreateChatCompletionResponse(TypedDict):
|
|||
|
||||
|
||||
class ChatCompletionMessageToolCallChunkFunction(TypedDict):
|
||||
name: str
|
||||
name: Optional[str]
|
||||
arguments: str
|
||||
|
||||
|
||||
|
@ -118,12 +118,12 @@ class ChatCompletionStreamResponseDeltaFunctionCall(TypedDict):
|
|||
|
||||
|
||||
class ChatCompletionStreamResponseDelta(TypedDict):
|
||||
content: NotRequired[str]
|
||||
content: NotRequired[Optional[str]]
|
||||
function_call: NotRequired[
|
||||
ChatCompletionStreamResponseDeltaFunctionCall
|
||||
Optional[ChatCompletionStreamResponseDeltaFunctionCall]
|
||||
] # DEPRECATED
|
||||
tool_calls: NotRequired[List[ChatCompletionMessageToolCallChunk]]
|
||||
role: NotRequired[Literal["system", "user", "assistant", "tool"]]
|
||||
tool_calls: NotRequired[Optional[List[ChatCompletionMessageToolCallChunk]]]
|
||||
role: NotRequired[Optional[Literal["system", "user", "assistant", "tool"]]]
|
||||
|
||||
|
||||
class ChatCompletionStreamResponseChoice(TypedDict):
|
||||
|
@ -132,6 +132,7 @@ class ChatCompletionStreamResponseChoice(TypedDict):
|
|||
ChatCompletionStreamResponseDelta, ChatCompletionStreamResponseDeltaEmpty
|
||||
]
|
||||
finish_reason: Optional[Literal["stop", "length", "tool_calls", "function_call"]]
|
||||
logprobs: NotRequired[Optional[CompletionLogprobs]]
|
||||
|
||||
|
||||
class CreateChatCompletionStreamResponse(TypedDict):
|
||||
|
|
Loading…
Add table
Reference in a new issue