Compare commits

...

42 commits

Author SHA1 Message Date
21ac214a38
Merge https://github.com/abetlen/llama-cpp-python 2024-02-14 17:50:11 +05:30
Andrei Betlen
ae71ad1a14 Bump version 2024-02-14 04:31:42 -05:00
Andrei Betlen
f300d4310a Merge branch 'main' of https://github.com/abetlen/llama-cpp-python into main 2024-02-14 04:27:33 -05:00
Andrei Betlen
c336f78269 Update llama.cpp 2024-02-14 04:27:30 -05:00
Douglas Hanley
d7a67917ba
feat: Support batch embeddings (#1186)
* handle batched embeddings

* fix normalization issue

* fix type hints, ensure no breaking changes to embed

* Clear kv cache / reset internal state after embedding complete

---------

Co-authored-by: Andrei <abetlen@gmail.com>
2024-02-14 04:26:09 -05:00
Andrei Betlen
36b843228f misc: fix makefile build commands 2024-02-14 03:47:40 -05:00
Andrei Betlen
7b9960d1cb Update llama.cpp 2024-02-14 03:47:21 -05:00
Andrei Betlen
6943bab6d8 fix: destructor exception where internal classes are missing some uninitialized attributes 2024-02-14 03:38:41 -05:00
Andrei Betlen
07a783779a fix: Update openbuddy prompt format. Closes #1155 2024-02-13 23:57:10 -05:00
Andrei Betlen
7a79e5ac49 Update llama.cpp 2024-02-13 23:54:05 -05:00
Andrei Betlen
7dbbfdecad fix: submodule kompute is not included in sdist. Closes #1165 2024-02-13 23:53:56 -05:00
Andrei Betlen
345215a76c fix: more chatml-function-calling fixes 2024-02-13 23:02:50 -05:00
Andrei Betlen
b1637c2319 Bump version 2024-02-13 12:35:04 -05:00
Andrew Lapp
d6be5333e1
fix: sample idx off-by-one error for logit_processors (#1179)
* fix sample_idx off-by-one error

* self._scores is indexed differently, only modify the index within self._input_ids

---------

Co-authored-by: Andrew Lapp <andrew@rew.la>
Co-authored-by: Andrei <abetlen@gmail.com>
2024-02-13 12:26:07 -05:00
Andrei Betlen
f7cdf78788 Update llama.cpp 2024-02-13 12:24:00 -05:00
Andrei Betlen
68fb71b6a2 fix: missing generation_prompt in chatml-function-calling 2024-02-13 03:24:41 -05:00
Andrei Betlen
4b0e3320bd fix: minor formatting bugs for chatml-function-calling 2024-02-13 03:11:35 -05:00
Andrei Betlen
6fe8b427e1 Bump version 2024-02-13 02:46:52 -05:00
Andrei Betlen
d1822fed6b fix: Don't change order of json schema object properties unless prop_order is passed, Closes #1180 2024-02-13 02:44:00 -05:00
Andrei Betlen
5efc45bdfd Update llama.cpp 2024-02-13 02:43:07 -05:00
Andrei Betlen
4348a6cdf0 docs: Fix typo 2024-02-13 02:04:54 -05:00
Andrei Betlen
d605875772 Bump version 2024-02-12 16:28:30 -05:00
Andrei Betlen
b82b0e1014 docs: Temporarily revert function calling docs 2024-02-12 16:27:43 -05:00
Andrei Betlen
cb791716b4 fix: Always set logits_all = True when using speculative decoding 2024-02-12 16:19:05 -05:00
Andrei
153a0049d9
feat: Generic chatml Function Calling (#957)
* Add demo notebook

* Add initial chat handler

* Update OpenAI types

* Add generic chatml function calling (wip)

* Update chatml generic function calling.

* Progress on auto-tool calls

* fix streaming functions

* Remove print statements

* fix: Suppress output from llama.cpp init and grammar creation

* Add OpenAI v1 python api compatible chat completion function

* Support non-streaming multi-tool calls

* Format

* Include function_call in response.
2024-02-12 15:56:07 -05:00
Andrei Betlen
69413ce08e Update llama.cpp 2024-02-11 19:00:17 -05:00
Andrei Betlen
9368670639 Update llama.cpp 2024-02-11 14:02:46 -05:00
Connor
a05d90446f
fix: Circular dependancy preventing early Llama object free (#1176)
commit 901827013b introduced a cyclic dependency
within Llama objects. That change causes old models to linger in memory longer
than necessary, thereby creating memory bloat in most applications attempting
to switch between models at runtime. This patch simply removes the problematic
line, allowing models to deallocate without relying on GC. One might also
consider combining `weakref.ref` with a `@property` if the `llama` attribute is
absolutely necessary to expose in the tokenizer class.
2024-02-11 13:57:57 -05:00
Akarshan Biswas
918ff27e50
docs: Set the correct command for compiling with syscl support (#1172) 2024-02-11 13:55:15 -05:00
Douglas Hanley
19b55ad3e5
feat: use gpu backend for clip if available (#1175) 2024-02-11 13:53:59 -05:00
Andrei Betlen
63b0c37836 Update llama.cpp 2024-02-09 13:36:58 -05:00
Andrei Betlen
4abb8c9386 Merge branch 'main' of github.com:abetlen/llama_cpp_python into main 2024-02-09 13:32:31 -05:00
Andrei Betlen
e16f06e6eb fix: revert _create_completions. 2024-02-09 02:02:13 -05:00
Andrei Betlen
dfc1b17341 Update llama.cpp 2024-02-08 23:38:12 -05:00
Andrei Betlen
5b4ad6c80b Merge branch 'main' of https://github.com/abetlen/llama-cpp-python into main 2024-02-08 23:34:45 -05:00
Andrei Betlen
85d3374b4d fix: broken import 2024-02-08 01:13:28 -05:00
Andrei Betlen
b5fca911b5 feat: Move tokenizer to own module 2024-02-08 01:08:18 -05:00
Andrei Betlen
2ef7ba3aed misc: rename grammar test 2024-02-08 01:07:44 -05:00
Jeffrey Fong
901827013b
feat: Integrate functionary v1.4 and v2 models + add custom tokenizer support to Llama class (#1078)
* convert functionary-v1 chat handler to use hf autotokenizer

* add hf_tokenizer + inteegrate functionary-v1.4 prompt template

* integrate functionary v2 prompt template

* update readme

* set up parallel function calling wip

* set up parallel function calling

* Update README.md

* Update README.md

* refactor tokenizers

* include old functionary handler for backward compatibility

* add hf_tokenizer_path in server ModelSettings

* convert functionary-v1 chat handler to use hf autotokenizer

* add hf_tokenizer + inteegrate functionary-v1.4 prompt template

* integrate functionary v2 prompt template

* update readme

* set up parallel function calling wip

* resolve merge conflict

* Update README.md

* Update README.md

* refactor tokenizers

* include old functionary handler for backward compatibility

* add hf_tokenizer_path in server ModelSettings

* Cleanup PR, fix breaking changes

* Use hf_pretrained_model_name_or_path for tokenizer

* fix hf tokenizer in streaming

* update README

* refactor offset mapping

---------

Co-authored-by: Andrei <abetlen@gmail.com>
2024-02-07 20:07:03 -05:00
Andrei Betlen
ce12775490 Update llama.cpp 2024-02-06 18:50:56 -05:00
Andrei Betlen
34f31040f6 Bump version 2024-02-06 12:47:59 -05:00
Andrei Betlen
5e3e67af47 Update llama.cpp 2024-02-06 12:44:07 -05:00
22 changed files with 2414 additions and 188 deletions

View file

@ -16,7 +16,7 @@ jobs:
steps:
- uses: actions/checkout@v3
with:
submodules: "true"
submodules: "recursive"
# Used to host cibuildwheel
- uses: actions/setup-python@v3
@ -48,7 +48,7 @@ jobs:
steps:
- uses: actions/checkout@v3
with:
submodules: "true"
submodules: "recursive"
- uses: actions/setup-python@v3
with:
python-version: "3.8"

View file

@ -14,7 +14,7 @@ jobs:
- name: Checkout
uses: actions/checkout@v3
with:
submodules: "true"
submodules: "recursive"
- name: Set up QEMU
uses: docker/setup-qemu-action@v2

View file

@ -18,7 +18,7 @@ jobs:
steps:
- uses: actions/checkout@v3
with:
submodules: "true"
submodules: "recursive"
- name: Set up Python
uses: actions/setup-python@v4
with:

View file

@ -12,7 +12,7 @@ jobs:
steps:
- uses: actions/checkout@v3
with:
submodules: "true"
submodules: "recursive"
- name: Set up Python
uses: actions/setup-python@v4
with:

View file

@ -19,7 +19,7 @@ jobs:
steps:
- uses: actions/checkout@v4
with:
submodules: "true"
submodules: "recursive"
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v4
with:
@ -42,7 +42,7 @@ jobs:
steps:
- uses: actions/checkout@v3
with:
submodules: "true"
submodules: "recursive"
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v4
with:
@ -65,7 +65,7 @@ jobs:
steps:
- uses: actions/checkout@v3
with:
submodules: "true"
submodules: "recursive"
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v4
with:
@ -85,7 +85,7 @@ jobs:
# steps:
# - uses: actions/checkout@v3
# with:
# submodules: "true"
# submodules: "recursive"
# - name: Set up Python 3.8
# uses: actions/setup-python@v4
# with:
@ -112,7 +112,7 @@ jobs:
steps:
- uses: actions/checkout@v3
with:
submodules: "true"
submodules: "recursive"
- name: Set up Python 3.8
uses: actions/setup-python@v4
with:

View file

@ -7,11 +7,42 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
## [Unreleased]
## [0.2.43]
- feat: Update llama.cpp to ggerganov/llama.cpp@8084d554406b767d36b3250b3b787462d5dd626f
- feat: Support batch embeddings by @iamlemec in #1186
- fix: submodule kompute is not included in sdist by @abetlen in 7dbbfdecadebe7750be650d9409959640ff9a460
- fix: fix: Update openbuddy prompt format by @abetlen in 07a783779a62a4aac0b11161c7e0eb983ff215f8
## [0.2.42]
- feat: Update llama.cpp to ggerganov/llama.cpp@ea9c8e11436ad50719987fa23a289c74b7b40d40
- fix: sample idx off-by-one error for logit_processors by @lapp0 in #1179
- fix: chat formatting bugs in `chatml-function-calling` by @abetlen in 4b0e3320bd8c2c209e29978d0b21e2e471cc9ee3 and 68fb71b6a26a1e57331868f959b47ab4b87851e1
## [0.2.41]
- feat: Update llama.cpp to ggerganov/llama.cpp@895407f31b358e3d9335e847d13f033491ec8a5b
- fix: Don't change order of json schema object properties in generated grammar unless prop_order is passed by @abetlen in d1822fed6b706f38bd1ff0de4dec5baaa3cf84fa
## [0.2.40]
- feat: Update llama.cpp to ggerganov/llama.cpp@3bdc4cd0f595a6096cca4a64aa75ffa8a3503465
- feat: Generic chatml Function Calling using chat_format="chatml-function-calling"` by @abetlen in #957
- fix: Circular dependancy preventing early Llama object free by @notwa in #1176
- docs: Set the correct command for compiling with syscl support by @akarshanbiswas in #1172
- feat: use gpu backend for clip if available by @iamlemec in #1175
## [0.2.39]
- feat: Update llama.cpp to ggerganov/llama.cpp@b08f22c882a1443e6b97081f3ce718a4d1a741f8
- fix: Fix destructor logging bugs by using llama_log_callback to avoid suppress_stdout_stderr by @abetlen in 59760c85eddc72dfcc1839f43760ef72c23d6874
## [0.2.38]
- feat: Update llama.cpp to ggerganov/llama.cpp@1cfb5372cf5707c8ec6dde7c874f4a44a6c4c915
- feat: Add speculative decoding by @abetlen in #1120
- fix: Pass raise_exception and add_generation_prompt to jinja2 chat template 078cca0361bf5a94d2cf52ed04980d20e32d6f95
- fix: Pass raise_exception and add_generation_prompt to jinja2 chat template by @abetlen in 078cca0361bf5a94d2cf52ed04980d20e32d6f95
## [0.2.37]

View file

@ -46,6 +46,14 @@ if (LLAMA_BUILD)
)
if (LLAVA_BUILD)
if (LLAMA_CUBLAS)
add_compile_definitions(GGML_USE_CUBLAS)
endif()
if (LLAMA_METAL)
add_compile_definitions(GGML_USE_METAL)
endif()
# Building llava
add_subdirectory(vendor/llama.cpp/examples/llava)
set_target_properties(llava_shared PROPERTIES OUTPUT_NAME "llava")

View file

@ -19,10 +19,10 @@ build.opencl:
CMAKE_ARGS="-DLLAMA_CLBLAST=on" python3 -m pip install --verbose -e .
build.openblas:
CMAKE_ARGS="-DLLAMA_CLBLAST=on" python3 -m pip install --verbose -e .
CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" python3 -m pip install --verbose -e .
build.blis:
CMAKE_ARGS="-DLLAMA_OPENBLAS=on -DLLAMA_OPENBLAS_VENDOR=blis" python3 -m pip install --verbose -e .
CMAKE_ARGS="-DLLAMA_BLAS=on -DLLAMA_BLAS_VENDOR=FLAME" python3 -m pip install --verbose -e .
build.metal:
CMAKE_ARGS="-DLLAMA_METAL=on" python3 -m pip install --verbose -e .

View file

@ -118,7 +118,8 @@ CMAKE_ARGS="-DLLAMA_KOMPUTE=on" pip install llama-cpp-python
To install with SYCL support, set the `LLAMA_SYCL=on` environment variable before installing:
```bash
CMAKE_ARGS="-DLLAMA_SYCL=on" pip install llama-cpp-python
source /opt/intel/oneapi/setvars.sh
CMAKE_ARGS="-DLLAMA_SYCL=on -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx" pip install llama-cpp-python
```
### Windows Notes
@ -291,14 +292,15 @@ To constrain the response to a specific JSON Schema, you can use the `schema` pr
### Function Calling
The high-level API also provides a simple interface for function calling.
The high-level API also provides a simple interface for function calling. This is possible through the `functionary` pre-trained models chat format or through the generic `chatml-function-calling` chat format.
Note that the only model that supports full function calling at this time is "functionary".
The gguf-converted files for this model can be found here: [functionary-7b-v1](https://huggingface.co/abetlen/functionary-7b-v1-GGUF)
The gguf-converted files for functionary can be found here: [functionary-7b-v1](https://huggingface.co/abetlen/functionary-7b-v1-GGUF)
```python
>>> from llama_cpp import Llama
>>> llm = Llama(model_path="path/to/functionary/llama-model.gguf", chat_format="functionary")
>>> # or
>>> llm = Llama(model_path="path/to/chatml/llama-model.gguf", chat_format="chatml-function-calling")
>>> llm.create_chat_completion(
messages = [
{

View file

@ -0,0 +1,910 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{\n",
" \"name\": \"get_article_details\",\n",
" \"description\": \"Get article details from unstructured article text.\\ndate_published: formatted as \\\"MM/DD/YYYY\\\"\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"title\": {\n",
" \"type\": \"str\"\n",
" },\n",
" \"authors\": {\n",
" \"type\": \"list[str]\"\n",
" },\n",
" \"short_summary\": {\n",
" \"type\": \"str\"\n",
" },\n",
" \"date_published\": {\n",
" \"type\": \"str\"\n",
" },\n",
" \"tags\": {\n",
" \"type\": \"list[str]\"\n",
" }\n",
" }\n",
" },\n",
" \"returns\": \"Article\"\n",
"}\n"
]
}
],
"source": [
"import json\n",
"import inspect\n",
"from typing import get_type_hints\n",
"\n",
"class Article:\n",
" pass\n",
"\n",
"class Weather:\n",
" pass\n",
"\n",
"class Directions:\n",
" pass\n",
"\n",
"def calculate_mortgage_payment(loan_amount: int, interest_rate: float, loan_term: int) -> float:\n",
" \"\"\"Get the monthly mortgage payment given an interest rate percentage.\"\"\"\n",
" \n",
" # TODO: you must implement this to actually call it later\n",
" pass\n",
"\n",
"def get_article_details(title: str, authors: list[str], short_summary: str, date_published: str, tags: list[str]) -> Article:\n",
" '''Get article details from unstructured article text.\n",
"date_published: formatted as \"MM/DD/YYYY\"'''\n",
" \n",
" # TODO: you must implement this to actually call it later\n",
" pass\n",
"\n",
"def get_weather(zip_code: str) -> Weather:\n",
" \"\"\"Get the current weather given a zip code.\"\"\"\n",
" \n",
" # TODO: you must implement this to actually call it later\n",
" pass\n",
"\n",
"def get_directions(start: str, destination: str) -> Directions:\n",
" \"\"\"Get directions from Google Directions API.\n",
"start: start address as a string including zipcode (if any)\n",
"destination: end address as a string including zipcode (if any)\"\"\"\n",
" \n",
" # TODO: you must implement this to actually call it later\n",
" pass\n",
"\n",
"def get_type_name(t):\n",
" name = str(t)\n",
" if \"list\" in name or \"dict\" in name:\n",
" return name\n",
" else:\n",
" return t.__name__\n",
"\n",
"def serialize_function_to_json(func):\n",
" signature = inspect.signature(func)\n",
" type_hints = get_type_hints(func)\n",
"\n",
" function_info = {\n",
" \"name\": func.__name__,\n",
" \"description\": func.__doc__,\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {}\n",
" },\n",
" \"returns\": type_hints.get('return', 'void').__name__\n",
" }\n",
"\n",
" for name, _ in signature.parameters.items():\n",
" param_type = get_type_name(type_hints.get(name, type(None)))\n",
" function_info[\"parameters\"][\"properties\"][name] = {\"type\": param_type}\n",
"\n",
" return json.dumps(function_info, indent=2)\n",
"\n",
"print(serialize_function_to_json(get_article_details))"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import xml.etree.ElementTree as ET\n",
"import re\n",
"\n",
"def extract_function_calls(completion):\n",
" completion = completion.strip()\n",
" pattern = r\"(<multiplefunctions>(.*?)</multiplefunctions>)\"\n",
" match = re.search(pattern, completion, re.DOTALL)\n",
" if not match:\n",
" return None\n",
" \n",
" multiplefn = match.group(1)\n",
" root = ET.fromstring(multiplefn)\n",
" functions = root.findall(\"functioncall\")\n",
" return [json.loads(fn.text) for fn in functions]"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"def generate_hermes_prompt(prompt, functions):\n",
" functions = \"\\n\\n\".join([serialize_function_to_json(fn) for fn in functions])\n",
" prompt = f\"\"\"<|im_start|>system\n",
"You are a helpful assistant with access to the following functions:\n",
"\n",
"{functions}\n",
"\n",
"To use these functions respond with:\n",
"<multiplefunctions>\n",
" <functioncall> {{\"name\": \"function_name\", \"arguments\": {{\"arg_1\": \"value_1\", \"arg_2\": value_2, ...}}}} </functioncall>\n",
" <functioncall> {{\"name\": \"function_name\", \"arguments\": {{\"arg_1\": \"value_1\", \"arg_2\": value_2, ...}}}} </functioncall>\n",
" ...\n",
"</multiplefunctions>\n",
"\n",
"Edge cases you must handle:\n",
"- If there are no functions that match the user request, you will respond politely that you cannot help.<|im_end|>\n",
"<|im_start|>user\n",
"{prompt}<|im_end|>\n",
"<|im_start|>assistant\"\"\"\n",
" return prompt"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<|im_start|>system\n",
"You are a helpful assistant with access to the following functions:\n",
"\n",
"{\n",
" \"name\": \"get_weather\",\n",
" \"description\": \"Get the current weather given a zip code.\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"zip_code\": {\n",
" \"type\": \"str\"\n",
" }\n",
" }\n",
" },\n",
" \"returns\": \"Weather\"\n",
"}\n",
"\n",
"{\n",
" \"name\": \"calculate_mortgage_payment\",\n",
" \"description\": \"Get the monthly mortgage payment given an interest rate percentage.\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"loan_amount\": {\n",
" \"type\": \"int\"\n",
" },\n",
" \"interest_rate\": {\n",
" \"type\": \"float\"\n",
" },\n",
" \"loan_term\": {\n",
" \"type\": \"int\"\n",
" }\n",
" }\n",
" },\n",
" \"returns\": \"float\"\n",
"}\n",
"\n",
"{\n",
" \"name\": \"get_article_details\",\n",
" \"description\": \"Get article details from unstructured article text.\\ndate_published: formatted as \\\"MM/DD/YYYY\\\"\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"title\": {\n",
" \"type\": \"str\"\n",
" },\n",
" \"authors\": {\n",
" \"type\": \"list[str]\"\n",
" },\n",
" \"short_summary\": {\n",
" \"type\": \"str\"\n",
" },\n",
" \"date_published\": {\n",
" \"type\": \"str\"\n",
" },\n",
" \"tags\": {\n",
" \"type\": \"list[str]\"\n",
" }\n",
" }\n",
" },\n",
" \"returns\": \"Article\"\n",
"}\n",
"\n",
"To use these functions respond with:\n",
"<multiplefunctions>\n",
" <functioncall> {\"name\": \"function_name\", \"arguments\": {\"arg_1\": \"value_1\", \"arg_2\": value_2, ...}} </functioncall>\n",
" <functioncall> {\"name\": \"function_name\", \"arguments\": {\"arg_1\": \"value_1\", \"arg_2\": value_2, ...}} </functioncall>\n",
" ...\n",
"</multiplefunctions>\n",
"\n",
"Edge cases you must handle:\n",
"- If there are no functions that match the user request, you will respond politely that you cannot help.<|im_end|>\n",
"<|im_start|>user\n",
"What's the weather in 10001?<|im_end|>\n",
"<|im_start|>assistant\n",
"<|im_start|>system\n",
"You are a helpful assistant with access to the following functions:\n",
"\n",
"{\n",
" \"name\": \"get_weather\",\n",
" \"description\": \"Get the current weather given a zip code.\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"zip_code\": {\n",
" \"type\": \"str\"\n",
" }\n",
" }\n",
" },\n",
" \"returns\": \"Weather\"\n",
"}\n",
"\n",
"{\n",
" \"name\": \"calculate_mortgage_payment\",\n",
" \"description\": \"Get the monthly mortgage payment given an interest rate percentage.\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"loan_amount\": {\n",
" \"type\": \"int\"\n",
" },\n",
" \"interest_rate\": {\n",
" \"type\": \"float\"\n",
" },\n",
" \"loan_term\": {\n",
" \"type\": \"int\"\n",
" }\n",
" }\n",
" },\n",
" \"returns\": \"float\"\n",
"}\n",
"\n",
"{\n",
" \"name\": \"get_article_details\",\n",
" \"description\": \"Get article details from unstructured article text.\\ndate_published: formatted as \\\"MM/DD/YYYY\\\"\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"title\": {\n",
" \"type\": \"str\"\n",
" },\n",
" \"authors\": {\n",
" \"type\": \"list[str]\"\n",
" },\n",
" \"short_summary\": {\n",
" \"type\": \"str\"\n",
" },\n",
" \"date_published\": {\n",
" \"type\": \"str\"\n",
" },\n",
" \"tags\": {\n",
" \"type\": \"list[str]\"\n",
" }\n",
" }\n",
" },\n",
" \"returns\": \"Article\"\n",
"}\n",
"\n",
"To use these functions respond with:\n",
"<multiplefunctions>\n",
" <functioncall> {\"name\": \"function_name\", \"arguments\": {\"arg_1\": \"value_1\", \"arg_2\": value_2, ...}} </functioncall>\n",
" <functioncall> {\"name\": \"function_name\", \"arguments\": {\"arg_1\": \"value_1\", \"arg_2\": value_2, ...}} </functioncall>\n",
" ...\n",
"</multiplefunctions>\n",
"\n",
"Edge cases you must handle:\n",
"- If there are no functions that match the user request, you will respond politely that you cannot help.<|im_end|>\n",
"<|im_start|>user\n",
"Determine the monthly mortgage payment for a loan amount of $200,000, an interest rate of 4%, and a loan term of 30 years.<|im_end|>\n",
"<|im_start|>assistant\n",
"<|im_start|>system\n",
"You are a helpful assistant with access to the following functions:\n",
"\n",
"{\n",
" \"name\": \"get_weather\",\n",
" \"description\": \"Get the current weather given a zip code.\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"zip_code\": {\n",
" \"type\": \"str\"\n",
" }\n",
" }\n",
" },\n",
" \"returns\": \"Weather\"\n",
"}\n",
"\n",
"{\n",
" \"name\": \"calculate_mortgage_payment\",\n",
" \"description\": \"Get the monthly mortgage payment given an interest rate percentage.\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"loan_amount\": {\n",
" \"type\": \"int\"\n",
" },\n",
" \"interest_rate\": {\n",
" \"type\": \"float\"\n",
" },\n",
" \"loan_term\": {\n",
" \"type\": \"int\"\n",
" }\n",
" }\n",
" },\n",
" \"returns\": \"float\"\n",
"}\n",
"\n",
"{\n",
" \"name\": \"get_article_details\",\n",
" \"description\": \"Get article details from unstructured article text.\\ndate_published: formatted as \\\"MM/DD/YYYY\\\"\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"title\": {\n",
" \"type\": \"str\"\n",
" },\n",
" \"authors\": {\n",
" \"type\": \"list[str]\"\n",
" },\n",
" \"short_summary\": {\n",
" \"type\": \"str\"\n",
" },\n",
" \"date_published\": {\n",
" \"type\": \"str\"\n",
" },\n",
" \"tags\": {\n",
" \"type\": \"list[str]\"\n",
" }\n",
" }\n",
" },\n",
" \"returns\": \"Article\"\n",
"}\n",
"\n",
"To use these functions respond with:\n",
"<multiplefunctions>\n",
" <functioncall> {\"name\": \"function_name\", \"arguments\": {\"arg_1\": \"value_1\", \"arg_2\": value_2, ...}} </functioncall>\n",
" <functioncall> {\"name\": \"function_name\", \"arguments\": {\"arg_1\": \"value_1\", \"arg_2\": value_2, ...}} </functioncall>\n",
" ...\n",
"</multiplefunctions>\n",
"\n",
"Edge cases you must handle:\n",
"- If there are no functions that match the user request, you will respond politely that you cannot help.<|im_end|>\n",
"<|im_start|>user\n",
"What's the current exchange rate for USD to EUR?<|im_end|>\n",
"<|im_start|>assistant\n"
]
}
],
"source": [
"prompts = [\n",
" \"What's the weather in 10001?\",\n",
" \"Determine the monthly mortgage payment for a loan amount of $200,000, an interest rate of 4%, and a loan term of 30 years.\",\n",
" \"What's the current exchange rate for USD to EUR?\"\n",
"]\n",
"functions = [get_weather, calculate_mortgage_payment, get_article_details]\n",
"\n",
"for prompt in prompts:\n",
" print(generate_hermes_prompt(prompt, functions))"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"ggml_init_cublas: GGML_CUDA_FORCE_MMQ: no\n",
"ggml_init_cublas: CUDA_USE_TENSOR_CORES: yes\n",
"ggml_init_cublas: found 1 CUDA devices:\n",
" Device 0: NVIDIA GeForce RTX 2060, compute capability 7.5\n",
"llama_model_loader: loaded meta data with 20 key-value pairs and 291 tensors from ../../models/OpenHermes-2.5-Mistral-7B-GGUF/openhermes-2.5-mistral-7b.Q4_K_M.gguf (version GGUF V3 (latest))\n",
"llama_model_loader: - tensor 0: token_embd.weight q4_K [ 4096, 32002, 1, 1 ]\n",
"llama_model_loader: - tensor 1: blk.0.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 2: blk.0.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 3: blk.0.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 4: blk.0.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 5: blk.0.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 6: blk.0.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 7: blk.0.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 8: blk.0.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 9: blk.0.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 10: blk.1.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 11: blk.1.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 12: blk.1.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 13: blk.1.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 14: blk.1.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 15: blk.1.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 16: blk.1.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 17: blk.1.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 18: blk.1.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 19: blk.2.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 20: blk.2.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 21: blk.2.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 22: blk.2.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 23: blk.2.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 24: blk.2.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 25: blk.2.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 26: blk.2.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 27: blk.2.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 28: blk.3.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 29: blk.3.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 30: blk.3.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 31: blk.3.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 32: blk.3.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 33: blk.3.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 34: blk.3.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 35: blk.3.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 36: blk.3.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 37: blk.4.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 38: blk.4.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 39: blk.4.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 40: blk.4.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 41: blk.4.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 42: blk.4.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 43: blk.4.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 44: blk.4.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 45: blk.4.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 46: blk.5.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 47: blk.5.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 48: blk.5.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 49: blk.5.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 50: blk.5.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 51: blk.5.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 52: blk.5.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 53: blk.5.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 54: blk.5.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 55: blk.6.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 56: blk.6.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 57: blk.6.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 58: blk.6.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 59: blk.6.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 60: blk.6.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 61: blk.6.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 62: blk.6.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 63: blk.6.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 64: blk.7.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 65: blk.7.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 66: blk.7.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 67: blk.7.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 68: blk.7.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 69: blk.7.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 70: blk.7.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 71: blk.7.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 72: blk.7.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 73: blk.8.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 74: blk.8.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 75: blk.8.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 76: blk.8.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 77: blk.8.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 78: blk.8.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 79: blk.8.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 80: blk.8.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 81: blk.8.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 82: blk.9.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 83: blk.9.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 84: blk.9.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 85: blk.9.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 86: blk.9.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 87: blk.9.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 88: blk.9.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 89: blk.9.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 90: blk.9.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 91: blk.10.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 92: blk.10.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 93: blk.10.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 94: blk.10.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 95: blk.10.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 96: blk.10.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 97: blk.10.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 98: blk.10.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 99: blk.10.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 100: blk.11.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 101: blk.11.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 102: blk.11.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 103: blk.11.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 104: blk.11.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 105: blk.11.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 106: blk.11.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 107: blk.11.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 108: blk.11.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 109: blk.12.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 110: blk.12.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 111: blk.12.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 112: blk.12.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 113: blk.12.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 114: blk.12.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 115: blk.12.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 116: blk.12.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 117: blk.12.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 118: blk.13.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 119: blk.13.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 120: blk.13.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 121: blk.13.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 122: blk.13.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 123: blk.13.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 124: blk.13.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 125: blk.13.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 126: blk.13.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 127: blk.14.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 128: blk.14.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 129: blk.14.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 130: blk.14.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 131: blk.14.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 132: blk.14.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 133: blk.14.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 134: blk.14.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 135: blk.14.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 136: blk.15.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 137: blk.15.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 138: blk.15.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 139: blk.15.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 140: blk.15.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 141: blk.15.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 142: blk.15.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 143: blk.15.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 144: blk.15.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 145: blk.16.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 146: blk.16.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 147: blk.16.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 148: blk.16.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 149: blk.16.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 150: blk.16.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 151: blk.16.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 152: blk.16.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 153: blk.16.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 154: blk.17.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 155: blk.17.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 156: blk.17.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 157: blk.17.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 158: blk.17.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 159: blk.17.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 160: blk.17.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 161: blk.17.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 162: blk.17.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 163: blk.18.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 164: blk.18.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 165: blk.18.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 166: blk.18.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 167: blk.18.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 168: blk.18.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 169: blk.18.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 170: blk.18.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 171: blk.18.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 172: blk.19.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 173: blk.19.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 174: blk.19.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 175: blk.19.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 176: blk.19.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 177: blk.19.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 178: blk.19.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 179: blk.19.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 180: blk.19.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 181: blk.20.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 182: blk.20.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 183: blk.20.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 184: blk.20.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 185: blk.20.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 186: blk.20.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 187: blk.20.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 188: blk.20.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 189: blk.20.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 190: blk.21.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 191: blk.21.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 192: blk.21.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 193: blk.21.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 194: blk.21.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 195: blk.21.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 196: blk.21.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 197: blk.21.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 198: blk.21.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 199: blk.22.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 200: blk.22.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 201: blk.22.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 202: blk.22.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 203: blk.22.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 204: blk.22.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 205: blk.22.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 206: blk.22.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 207: blk.22.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 208: blk.23.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 209: blk.23.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 210: blk.23.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 211: blk.23.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 212: blk.23.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 213: blk.23.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 214: blk.23.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 215: blk.23.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 216: blk.23.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 217: blk.24.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 218: blk.24.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 219: blk.24.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 220: blk.24.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 221: blk.24.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 222: blk.24.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 223: blk.24.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 224: blk.24.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 225: blk.24.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 226: blk.25.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 227: blk.25.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 228: blk.25.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 229: blk.25.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 230: blk.25.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 231: blk.25.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 232: blk.25.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 233: blk.25.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 234: blk.25.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 235: blk.26.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 236: blk.26.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 237: blk.26.attn_v.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 238: blk.26.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 239: blk.26.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 240: blk.26.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 241: blk.26.ffn_down.weight q4_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 242: blk.26.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 243: blk.26.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 244: blk.27.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 245: blk.27.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 246: blk.27.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 247: blk.27.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 248: blk.27.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 249: blk.27.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 250: blk.27.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 251: blk.27.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 252: blk.27.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 253: blk.28.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 254: blk.28.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 255: blk.28.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 256: blk.28.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 257: blk.28.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 258: blk.28.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 259: blk.28.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 260: blk.28.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 261: blk.28.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 262: blk.29.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 263: blk.29.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 264: blk.29.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 265: blk.29.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 266: blk.29.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 267: blk.29.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 268: blk.29.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 269: blk.29.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 270: blk.29.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 271: blk.30.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 272: blk.30.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 273: blk.30.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 274: blk.30.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 275: blk.30.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 276: blk.30.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 277: blk.30.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 278: blk.30.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 279: blk.30.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 280: blk.31.attn_q.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 281: blk.31.attn_k.weight q4_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 282: blk.31.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]\n",
"llama_model_loader: - tensor 283: blk.31.attn_output.weight q4_K [ 4096, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 284: blk.31.ffn_gate.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 285: blk.31.ffn_up.weight q4_K [ 4096, 14336, 1, 1 ]\n",
"llama_model_loader: - tensor 286: blk.31.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]\n",
"llama_model_loader: - tensor 287: blk.31.attn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 288: blk.31.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 289: output_norm.weight f32 [ 4096, 1, 1, 1 ]\n",
"llama_model_loader: - tensor 290: output.weight q6_K [ 4096, 32002, 1, 1 ]\n",
"llama_model_loader: - kv 0: general.architecture str = llama\n",
"llama_model_loader: - kv 1: general.name str = teknium_openhermes-2.5-mistral-7b\n",
"llama_model_loader: - kv 2: llama.context_length u32 = 32768\n",
"llama_model_loader: - kv 3: llama.embedding_length u32 = 4096\n",
"llama_model_loader: - kv 4: llama.block_count u32 = 32\n",
"llama_model_loader: - kv 5: llama.feed_forward_length u32 = 14336\n",
"llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 128\n",
"llama_model_loader: - kv 7: llama.attention.head_count u32 = 32\n",
"llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 8\n",
"llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010\n",
"llama_model_loader: - kv 10: llama.rope.freq_base f32 = 10000.000000\n",
"llama_model_loader: - kv 11: general.file_type u32 = 15\n",
"llama_model_loader: - kv 12: tokenizer.ggml.model str = llama\n",
"llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,32002] = [\"<unk>\", \"<s>\", \"</s>\", \"<0x00>\", \"<...\n",
"llama_model_loader: - kv 14: tokenizer.ggml.scores arr[f32,32002] = [0.000000, 0.000000, 0.000000, 0.0000...\n",
"llama_model_loader: - kv 15: tokenizer.ggml.token_type arr[i32,32002] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...\n",
"llama_model_loader: - kv 16: tokenizer.ggml.bos_token_id u32 = 1\n",
"llama_model_loader: - kv 17: tokenizer.ggml.eos_token_id u32 = 32000\n",
"llama_model_loader: - kv 18: tokenizer.ggml.padding_token_id u32 = 0\n",
"llama_model_loader: - kv 19: general.quantization_version u32 = 2\n",
"llama_model_loader: - type f32: 65 tensors\n",
"llama_model_loader: - type q4_K: 193 tensors\n",
"llama_model_loader: - type q6_K: 33 tensors\n",
"llm_load_vocab: special tokens definition check successful ( 261/32002 ).\n",
"llm_load_print_meta: format = GGUF V3 (latest)\n",
"llm_load_print_meta: arch = llama\n",
"llm_load_print_meta: vocab type = SPM\n",
"llm_load_print_meta: n_vocab = 32002\n",
"llm_load_print_meta: n_merges = 0\n",
"llm_load_print_meta: n_ctx_train = 32768\n",
"llm_load_print_meta: n_embd = 4096\n",
"llm_load_print_meta: n_head = 32\n",
"llm_load_print_meta: n_head_kv = 8\n",
"llm_load_print_meta: n_layer = 32\n",
"llm_load_print_meta: n_rot = 128\n",
"llm_load_print_meta: n_gqa = 4\n",
"llm_load_print_meta: f_norm_eps = 0.0e+00\n",
"llm_load_print_meta: f_norm_rms_eps = 1.0e-05\n",
"llm_load_print_meta: f_clamp_kqv = 0.0e+00\n",
"llm_load_print_meta: f_max_alibi_bias = 0.0e+00\n",
"llm_load_print_meta: n_ff = 14336\n",
"llm_load_print_meta: rope scaling = linear\n",
"llm_load_print_meta: freq_base_train = 10000.0\n",
"llm_load_print_meta: freq_scale_train = 1\n",
"llm_load_print_meta: n_yarn_orig_ctx = 32768\n",
"llm_load_print_meta: rope_finetuned = unknown\n",
"llm_load_print_meta: model type = 7B\n",
"llm_load_print_meta: model ftype = mostly Q4_K - Medium\n",
"llm_load_print_meta: model params = 7.24 B\n",
"llm_load_print_meta: model size = 4.07 GiB (4.83 BPW) \n",
"llm_load_print_meta: general.name = teknium_openhermes-2.5-mistral-7b\n",
"llm_load_print_meta: BOS token = 1 '<s>'\n",
"llm_load_print_meta: EOS token = 32000 '<|im_end|>'\n",
"llm_load_print_meta: UNK token = 0 '<unk>'\n",
"llm_load_print_meta: PAD token = 0 '<unk>'\n",
"llm_load_print_meta: LF token = 13 '<0x0A>'\n",
"llm_load_tensors: ggml ctx size = 0.11 MiB\n",
"llm_load_tensors: using CUDA for GPU acceleration\n",
"llm_load_tensors: mem required = 70.42 MiB\n",
"llm_load_tensors: offloading 32 repeating layers to GPU\n",
"llm_load_tensors: offloading non-repeating layers to GPU\n",
"llm_load_tensors: offloaded 35/35 layers to GPU\n",
"llm_load_tensors: VRAM used: 4095.06 MiB\n",
"...............................................................................................\n",
"llama_new_context_with_model: n_ctx = 2048\n",
"llama_new_context_with_model: freq_base = 10000.0\n",
"llama_new_context_with_model: freq_scale = 1\n",
"llama_kv_cache_init: offloading v cache to GPU\n",
"llama_kv_cache_init: offloading k cache to GPU\n",
"llama_kv_cache_init: VRAM kv self = 256.00 MiB\n",
"llama_new_context_with_model: kv self size = 256.00 MiB\n",
"llama_build_graph: non-view tensors processed: 740/740\n",
"llama_new_context_with_model: compute buffer total size = 159.07 MiB\n",
"llama_new_context_with_model: VRAM scratch buffer: 156.00 MiB\n",
"llama_new_context_with_model: total VRAM used: 4507.07 MiB (model: 4095.06 MiB, context: 412.00 MiB)\n"
]
}
],
"source": [
"import llama_cpp\n",
"\n",
"llama = llama_cpp.Llama(model_path=\"../../models/OpenHermes-2.5-Mistral-7B-GGUF/openhermes-2.5-mistral-7b.Q4_K_M.gguf\", n_gpu_layers=-1, n_ctx=2048, verbose=False)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[{'name': 'get_weather', 'arguments': {'zip_code': '10001'}}]\n",
"====================================================================================================\n",
"[{'name': 'calculate_mortgage_payment', 'arguments': {'loan_amount': 200000, 'interest_rate': 0.04, 'loan_term': 30}}]\n",
"====================================================================================================\n",
"Unfortunately, I do not have a built-in function to check currency exchange rates. However, you can use third-party APIs or websites like Google Finance or XE to get this information.\n",
"====================================================================================================\n"
]
}
],
"source": [
"prompts = [\n",
" \"What's the weather in 10001?\",\n",
" \"Determine the monthly mortgage payment for a loan amount of $200,000, an interest rate of 4%, and a loan term of 30 years.\",\n",
" \"What's the current exchange rate for USD to EUR?\"\n",
"]\n",
"functions = [get_weather, calculate_mortgage_payment, get_article_details]\n",
"\n",
"for prompt in prompts:\n",
" prompt = generate_hermes_prompt(prompt, functions)\n",
" completion = llama.create_completion(prompt, max_tokens=-1)[\"choices\"][0][\"text\"]\n",
" function_calls = extract_function_calls(completion)\n",
" if function_calls:\n",
" print(function_calls)\n",
" else:\n",
" print(completion.strip())\n",
" print(\"=\"*100)"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"get_weather\n",
"{'zip_code': '05751'}\n",
"====================================================================================================\n",
"get_weather\n",
"{'zip_code': '05751'}\n",
"get_weather\n",
"{'zip_code': '07030'}\n",
"calculate_mortgage_payment\n",
"{'loan_amount': 250000, 'interest_rate': 4.18, 'loan_term': 30}\n",
"====================================================================================================\n",
"I don't have a function to get exchange rates, but I can provide some resources where you can find this information. You can check websites like Google Finance, XE.com, or Yahoo Finance for up-to-date currency exchange rates.\n",
"====================================================================================================\n"
]
}
],
"source": [
"prompts = [\n",
" \"What's the weather in 05751?\",\n",
" \"I'm planning a trip to Killington, Vermont (05751) from Hoboken, NJ (07030). Can you get me weather for both locations and directions?\",\n",
" \"What's the current exchange rate for USD to EUR?\"\n",
"]\n",
"\n",
"for prompt in prompts:\n",
" completion = llama.create_completion(generate_hermes_prompt(prompt, functions), max_tokens=-1)[\"choices\"][0][\"text\"]\n",
" function_calls = extract_function_calls(completion)\n",
"\n",
" if function_calls:\n",
" for function in function_calls:\n",
" print(function[\"name\"])\n",
" print(function[\"arguments\"])\n",
" else:\n",
" print(completion.strip())\n",
"\n",
" print(\"=\"*100)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.5+"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View file

@ -1,4 +1,4 @@
from .llama_cpp import *
from .llama import *
__version__ = "0.2.38"
__version__ = "0.2.43"

View file

@ -42,6 +42,8 @@ class _LlamaModel:
self._llama_free_model = llama_cpp._lib.llama_free_model # type: ignore
self.model = None
if not os.path.exists(path_model):
raise ValueError(f"Model path does not exist: {path_model}")
@ -248,6 +250,7 @@ class _LlamaContext:
self.verbose = verbose
self._llama_free = llama_cpp._lib.llama_free # type: ignore
self.ctx = None
assert self.model.model is not None
@ -497,6 +500,7 @@ class _LlamaBatch:
self._llama_batch_free = llama_cpp._lib.llama_batch_free # type: ignore
self.batch = None
self.batch = llama_cpp.llama_batch_init(
self.n_tokens, self.embd, self.n_seq_max
)
@ -506,6 +510,14 @@ class _LlamaBatch:
self._llama_batch_free(self.batch)
self.batch = None
def n_tokens(self) -> int:
assert self.batch is not None
return self.batch.n_tokens
def reset(self):
assert self.batch is not None
self.batch.n_tokens = 0
def set_batch(self, batch: Sequence[int], n_past: int, logits_all: bool):
assert self.batch is not None
n_tokens = len(batch)
@ -518,6 +530,20 @@ class _LlamaBatch:
self.batch.logits[i] = logits_all
self.batch.logits[n_tokens - 1] = True
def add_sequence(self, batch: Sequence[int], seq_id: int, logits_all: bool):
assert self.batch is not None
n_tokens = len(batch)
n_tokens0 = self.batch.n_tokens
self.batch.n_tokens += n_tokens
for i in range(n_tokens):
j = n_tokens0 + i
self.batch.token[j] = batch[i]
self.batch.pos[j] = i
self.batch.seq_id[j][0] = seq_id
self.batch.n_seq_id[j] = 1
self.batch.logits[j] = logits_all
self.batch.logits[n_tokens - 1] = True
class _LlamaTokenDataArray:
def __init__(self, *, n_vocab: int):

View file

@ -19,6 +19,8 @@ from collections import deque
import ctypes
from llama_cpp.llama_types import List
from .llama_types import *
from .llama_grammar import LlamaGrammar
from .llama_cache import (
@ -27,6 +29,10 @@ from .llama_cache import (
LlamaDiskCache, # type: ignore
LlamaRAMCache, # type: ignore
)
from .llama_tokenizer import (
BaseLlamaTokenizer,
LlamaTokenizer
)
import llama_cpp.llama_cpp as llama_cpp
import llama_cpp.llama_chat_format as llama_chat_format
@ -44,6 +50,9 @@ from ._internals import (
_LlamaSamplingContext, # type: ignore
)
from ._logger import set_verbose
from ._utils import (
suppress_stdout_stderr
)
class Llama:
@ -95,6 +104,8 @@ class Llama:
chat_handler: Optional[llama_chat_format.LlamaChatCompletionHandler] = None,
# Speculative Decoding
draft_model: Optional[LlamaDraftModel] = None,
# Tokenizer Override
tokenizer: Optional[BaseLlamaTokenizer] = None,
# Misc
verbose: bool = True,
# Extra Params
@ -159,6 +170,7 @@ class Llama:
chat_format: String specifying the chat format to use when calling create_chat_completion.
chat_handler: Optional chat handler to use when calling create_chat_completion.
draft_model: Optional draft model to use for speculative decoding.
tokenizer: Optional tokenizer to override the default tokenizer from llama.cpp.
verbose: Print verbose output to stderr.
Raises:
@ -173,7 +185,8 @@ class Llama:
self.numa = numa
if not Llama.__backend_initialized:
llama_cpp.llama_backend_init(self.numa)
with suppress_stdout_stderr(disable=verbose):
llama_cpp.llama_backend_init(self.numa)
Llama.__backend_initialized = True
self.model_path = model_path
@ -235,6 +248,7 @@ class Llama:
self.n_threads_batch = n_threads_batch or max(
multiprocessing.cpu_count() // 2, 1
)
# Context Params
self.context_params = llama_cpp.llama_context_default_params()
self.context_params.seed = seed
@ -267,7 +281,7 @@ class Llama:
)
self.context_params.yarn_orig_ctx = yarn_orig_ctx if yarn_orig_ctx != 0 else 0
self.context_params.mul_mat_q = mul_mat_q
self.context_params.logits_all = logits_all
self.context_params.logits_all = logits_all if draft_model is None else True # Must be set to True for speculative decoding
self.context_params.embedding = embedding
self.context_params.offload_kqv = offload_kqv
@ -286,6 +300,10 @@ class Llama:
self._model = _LlamaModel(
path_model=self.model_path, params=self.model_params, verbose=self.verbose
)
# Override tokenizer
self.tokenizer_ = tokenizer or LlamaTokenizer(self)
# Set the default value for the context and correct the batch
if n_ctx == 0:
n_ctx = self._model.n_ctx_train()
@ -431,18 +449,19 @@ class Llama:
Returns:
A list of tokens.
"""
return self._model.tokenize(text, add_bos, special)
return self.tokenizer_.tokenize(text, add_bos, special)
def detokenize(self, tokens: List[int]) -> bytes:
def detokenize(self, tokens: List[int], prev_tokens: Optional[List[int]] = None) -> bytes:
"""Detokenize a list of tokens.
Args:
tokens: The list of tokens to detokenize.
prev_tokens: The list of previous tokens. Offset mapping will be performed if provided
Returns:
The detokenized string.
"""
return self._model.detokenize(tokens)
return self.tokenizer_.detokenize(tokens, prev_tokens)
def set_cache(self, cache: Optional[BaseLlamaCache]):
"""Set the cache.
@ -538,7 +557,7 @@ class Llama:
logits[:] = (
logits_processor(self._input_ids, logits)
if idx is None
else logits_processor(self._input_ids[:idx], logits)
else logits_processor(self._input_ids[:idx + 1], logits)
)
sampling_params = _LlamaSamplingParams(
@ -698,10 +717,53 @@ class Llama:
Returns:
An embedding object.
"""
assert self._ctx.ctx is not None
assert self._model.model is not None
model_name: str = model if model is not None else self.model_path
# get numeric embeddings
embeds: List[List[float]]
total_tokens: int
embeds, total_tokens = self.embed(input, return_count=True) # type: ignore
# convert to CreateEmbeddingResponse
data: List[Embedding] = [
{
"object": "embedding",
"embedding": emb,
"index": idx,
}
for idx, emb in enumerate(embeds)
]
return {
"object": "list",
"data": data,
"model": model_name,
"usage": {
"prompt_tokens": total_tokens,
"total_tokens": total_tokens,
},
}
def embed(
self,
input: Union[str, List[str]],
normalize: bool = True,
truncate: bool = True,
return_count: bool = False,
):
"""Embed a string.
Args:
input: The utf-8 encoded string to embed.
Returns:
A list of embeddings
"""
assert self._ctx.ctx is not None
n_embd = self.n_embd()
n_ctx = self.n_ctx()
if self.context_params.embedding == False:
raise RuntimeError(
"Llama model must be created with embedding=True to call this method"
@ -715,48 +777,72 @@ class Llama:
else:
inputs = input
data: List[Embedding] = []
# reset batch
self._batch.reset()
# decode and fetch embeddings
data: List[List[float]] = []
def decode_batch(sizes: List[int]):
assert self._ctx.ctx is not None
llama_cpp.llama_kv_cache_clear(self._ctx.ctx)
self._ctx.decode(self._batch)
self._batch.reset()
# store embeddings
for i, s in enumerate(sizes):
embedding = llama_cpp.llama_get_embeddings_ith(self._ctx.ctx, i)[
:n_embd
]
norm = np.linalg.norm(embedding) if normalize else s
embedding: List[float] = [v / float(norm) for v in embedding]
data.append(embedding)
# init state
total_tokens = 0
for index, input in enumerate(inputs):
tokens = self.tokenize(input.encode("utf-8"), special=True)
self.reset()
self.eval(tokens)
t_batch = 0
s_sizes: List[int] = []
# accumulate batches and encode
for text in inputs:
tokens = self.tokenize(text.encode("utf-8"))
if truncate:
tokens = tokens[:n_ctx]
n_tokens = len(tokens)
total_tokens += n_tokens
embedding = llama_cpp.llama_get_embeddings(self._ctx.ctx)[
: llama_cpp.llama_n_embd(self._model.model)
]
data.append(
{
"object": "embedding",
"embedding": embedding,
"index": index,
}
)
# check for overrun
if n_tokens > n_ctx:
raise ValueError(
f"Requested tokens ({n_tokens}) exceed context window of {n_ctx}"
)
# time to eval batch
if t_batch + n_tokens > self._n_ctx:
decode_batch(s_sizes)
t_batch = 0
s_sizes = []
# add to batch
self._batch.add_sequence(tokens, len(s_sizes), False)
t_batch += n_tokens
s_sizes.append(n_tokens)
# hanlde last batch
decode_batch(s_sizes)
if self.verbose:
llama_cpp.llama_print_timings(self._ctx.ctx)
return {
"object": "list",
"data": data,
"model": model_name,
"usage": {
"prompt_tokens": total_tokens,
"total_tokens": total_tokens,
},
}
output = data[0] if isinstance(input, str) else data
def embed(self, input: str) -> List[float]:
"""Embed a string.
llama_cpp.llama_kv_cache_clear(self._ctx.ctx)
self.reset()
Args:
input: The utf-8 encoded string to embed.
Returns:
A list of embeddings
"""
return list(map(float, self.create_embedding(input)["data"][0]["embedding"]))
if return_count:
return output, total_tokens
else:
return output
def _create_completion(
self,
@ -1552,6 +1638,38 @@ class Llama:
logit_bias=logit_bias,
)
def create_chat_completion_openai_v1(
self,
*args: Any,
**kwargs: Any,
):
"""Generate a chat completion with return type based on the the OpenAI v1 API.
OpenAI python package is required to use this method.
You can install it with `pip install openai`.
Args:
*args: Positional arguments to pass to create_chat_completion.
**kwargs: Keyword arguments to pass to create_chat_completion.
Returns:
Generated chat completion or a stream of chat completion chunks.
"""
try:
from openai.types.chat import ChatCompletion, ChatCompletionChunk
stream = kwargs.get("stream", False) # type: ignore
assert isinstance(stream, bool)
if stream:
return (ChatCompletionChunk(**chunk) for chunk in self.create_chat_completion(*args, **kwargs)) # type: ignore
else:
return ChatCompletion(**self.create_chat_completion(*args, **kwargs)) # type: ignore
except ImportError:
raise ImportError(
"To use create_chat_completion_openai_v1, you must install the openai package."
"You can install it with `pip install openai`."
)
def __getstate__(self):
return dict(
model_path=self.model_path,
@ -1693,8 +1811,8 @@ class Llama:
"""Return the vocabulary size."""
return self._model.n_vocab()
def tokenizer(self) -> "LlamaTokenizer":
"""Return the tokenizer for this model."""
def tokenizer(self) -> LlamaTokenizer:
"""Return the llama tokenizer for this model."""
return LlamaTokenizer(self)
def token_eos(self) -> int:
@ -1738,21 +1856,6 @@ class Llama:
return longest_prefix
class LlamaTokenizer:
def __init__(self, llama: Llama):
self.llama = llama
def encode(self, text: str, add_bos: bool = True) -> List[int]:
return self.llama.tokenize(
text.encode("utf-8", errors="ignore"), add_bos=add_bos, special=True
)
def decode(self, tokens: List[int]) -> str:
return self.llama.detokenize(tokens).decode("utf-8", errors="ignore")
@classmethod
def from_ggml_file(cls, path: str) -> "LlamaTokenizer":
return cls(Llama(model_path=path, vocab_only=True))
class LlamaState:

File diff suppressed because it is too large Load diff

View file

@ -139,9 +139,11 @@ llama_seq_id = c_int32
# enum llama_vocab_type {
# LLAMA_VOCAB_TYPE_SPM = 0, // SentencePiece
# LLAMA_VOCAB_TYPE_BPE = 1, // Byte Pair Encoding
# LLAMA_VOCAB_TYPE_WPM = 2, // WordPiece
# };
LLAMA_VOCAB_TYPE_SPM = 0
LLAMA_VOCAB_TYPE_BPE = 1
LLAMA_VOCAB_TYPE_WPM = 2
# enum llama_token_type {
@ -468,6 +470,7 @@ class llama_model_params(Structure):
# bool logits_all; // the llama_eval() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
# bool embedding; // embedding mode only
# bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
# bool do_pooling; // whether to pool (sum) embedding results by sequence id (ignored if no pooling layer)
# };
class llama_context_params(Structure):
"""Parameters for llama_context
@ -494,6 +497,7 @@ class llama_context_params(Structure):
logits_all (bool): the llama_eval() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
embedding (bool): embedding mode only
offload_kqv (bool): whether to offload the KQV ops (including the KV cache) to GPU
do_pooling (bool): whether to pool (sum) embedding results by sequence id (ignored if no pooling layer)
"""
_fields_ = [
@ -518,6 +522,7 @@ class llama_context_params(Structure):
("logits_all", c_bool),
("embedding", c_bool),
("offload_kqv", c_bool),
("do_pooling", c_bool),
]
@ -1697,6 +1702,21 @@ _lib.llama_get_embeddings.argtypes = [llama_context_p]
_lib.llama_get_embeddings.restype = c_float_p
# // Get the embeddings for the ith sequence
# // llama_get_embeddings(ctx) + i*n_embd
# LLAMA_API float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i);
def llama_get_embeddings_ith(
ctx: llama_context_p, i: Union[c_int32, int]
): # type: (...) -> Array[float] # type: ignore
"""Get the embeddings for the ith sequence
llama_get_embeddings(ctx) + i*n_embd"""
return _lib.llama_get_embeddings_ith(ctx, i)
_lib.llama_get_embeddings_ith.argtypes = [llama_context_p, c_int32]
_lib.llama_get_embeddings_ith.restype = c_float_p
# //
# // Vocab
# //

View file

@ -1471,12 +1471,15 @@ class SchemaConverter:
if schema_type == "object" and "properties" in schema:
# TODO: `required` keyword
prop_order = self._prop_order
prop_pairs = sorted(
schema["properties"].items(),
# sort by position in prop_order (if specified) then by key
key=lambda kv: (prop_order.get(kv[0], len(prop_order)), kv[0]),
)
if self._prop_order:
prop_order = self._prop_order
prop_pairs = sorted(
schema["properties"].items(),
# sort by position in prop_order (if specified) then by key
key=lambda kv: (prop_order.get(kv[0], len(prop_order)), kv[0]),
)
else:
prop_pairs = schema["properties"].items()
rule = '"{" space'
for i, (prop_name, prop_schema) in enumerate(prop_pairs):

View file

@ -0,0 +1,95 @@
from __future__ import annotations
import abc
from typing import (
List,
Optional,
Any,
)
import llama_cpp
from llama_cpp.llama_types import List
class BaseLlamaTokenizer(abc.ABC):
@abc.abstractmethod
def tokenize(
self, text: bytes, add_bos: bool = True, special: bool = True
) -> List[int]:
raise NotImplementedError
@abc.abstractmethod
def detokenize(
self, tokens: List[int], prev_tokens: Optional[List[int]] = None
) -> bytes:
raise NotImplementedError
class LlamaTokenizer(BaseLlamaTokenizer):
def __init__(self, llama: llama_cpp.Llama):
self._model = llama._model # type: ignore
def tokenize(
self, text: bytes, add_bos: bool = True, special: bool = True
) -> List[int]:
return self._model.tokenize(text, add_bos=add_bos, special=special)
def detokenize(
self, tokens: List[int], prev_tokens: Optional[List[int]] = None
) -> bytes:
if prev_tokens is not None:
return self._model.detokenize(tokens[len(prev_tokens) :])
else:
return self._model.detokenize(tokens)
def encode(
self, text: str, add_bos: bool = True, special: bool = True
) -> List[int]:
return self.tokenize(
text.encode("utf-8", errors="ignore"), add_bos=add_bos, special=special
)
def decode(self, tokens: List[int]) -> str:
return self.detokenize(tokens).decode("utf-8", errors="ignore")
@classmethod
def from_ggml_file(cls, path: str) -> "LlamaTokenizer":
return cls(llama_cpp.Llama(model_path=path, vocab_only=True))
class LlamaHFTokenizer(BaseLlamaTokenizer):
def __init__(self, hf_tokenizer: Any):
self.hf_tokenizer = hf_tokenizer
def tokenize(
self, text: bytes, add_bos: bool = True, special: bool = True
) -> List[int]:
return self.hf_tokenizer.encode(
text.decode("utf-8", errors="ignore"), add_special_tokens=special
)
def detokenize(
self, tokens: List[int], prev_tokens: Optional[List[int]] = None
) -> bytes:
if prev_tokens is not None:
text = self.hf_tokenizer.decode(tokens).encode("utf-8", errors="ignore")
prev_text = self.hf_tokenizer.decode(prev_tokens).encode(
"utf-8", errors="ignore"
)
return text[len(prev_text) :]
else:
return self.hf_tokenizer.decode(tokens).encode("utf-8", errors="ignore")
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: str) -> "LlamaHFTokenizer":
try:
from transformers import AutoTokenizer
except ImportError:
raise ImportError(
"The `transformers` library is required to use the `HFTokenizer`."
"You can install it with `pip install transformers`."
)
hf_tokenizer = AutoTokenizer.from_pretrained(
pretrained_model_name_or_path=pretrained_model_name_or_path
)
return cls(hf_tokenizer)

View file

@ -97,7 +97,7 @@ class CreateChatCompletionResponse(TypedDict):
class ChatCompletionMessageToolCallChunkFunction(TypedDict):
name: str
name: Optional[str]
arguments: str
@ -118,12 +118,12 @@ class ChatCompletionStreamResponseDeltaFunctionCall(TypedDict):
class ChatCompletionStreamResponseDelta(TypedDict):
content: NotRequired[str]
content: NotRequired[Optional[str]]
function_call: NotRequired[
ChatCompletionStreamResponseDeltaFunctionCall
Optional[ChatCompletionStreamResponseDeltaFunctionCall]
] # DEPRECATED
tool_calls: NotRequired[List[ChatCompletionMessageToolCallChunk]]
role: NotRequired[Literal["system", "user", "assistant", "tool"]]
tool_calls: NotRequired[Optional[List[ChatCompletionMessageToolCallChunk]]]
role: NotRequired[Optional[Literal["system", "user", "assistant", "tool"]]]
class ChatCompletionStreamResponseChoice(TypedDict):
@ -132,6 +132,7 @@ class ChatCompletionStreamResponseChoice(TypedDict):
ChatCompletionStreamResponseDelta, ChatCompletionStreamResponseDeltaEmpty
]
finish_reason: Optional[Literal["stop", "length", "tool_calls", "function_call"]]
logprobs: NotRequired[Optional[CompletionLogprobs]]
class CreateChatCompletionStreamResponse(TypedDict):

View file

@ -146,30 +146,8 @@ _libllava.llava_eval_image_embed.restype = c_bool
################################################
# struct clip_vision_hparams {
# int32_t image_size;
# int32_t patch_size;
# int32_t hidden_size;
# int32_t n_intermediate;
# int32_t projection_dim;
# int32_t n_head;
# int32_t n_layer;
# float eps;
# };
class clip_vision_hparams(Structure):
_fields_ = [
("image_size", c_int32),
("patch_size", c_int32),
("hidden_size", c_int32),
("n_intermediate", c_int32),
("projection_dim", c_int32),
("n_head", c_int32),
("n_layer", c_int32),
("eps", c_float),
]
# /** load mmproj model */
# CLIP_API struct clip_ctx * clip_model_load(const char * fname, const int verbosity);
# CLIP_API struct clip_ctx * clip_model_load (const char * fname, int verbosity);
def clip_model_load(fname: bytes, verbosity: Union[c_int, int]) -> clip_ctx_p:
return _libllava.clip_model_load(fname, verbosity)
@ -183,50 +161,3 @@ def clip_free(ctx: clip_ctx_p):
_libllava.clip_free.argtypes = [clip_ctx_p]
_libllava.clip_free.restype = None
# size_t clip_embd_nbytes(const struct clip_ctx * ctx);
# int clip_n_patches(const struct clip_ctx * ctx);
# int clip_n_mmproj_embd(const struct clip_ctx * ctx);
# // RGB uint8 image
# struct clip_image_u8 {
# int nx;
# int ny;
# uint8_t * data = NULL;
# size_t size;
# };
# // RGB float32 image (NHWC)
# // Memory layout: RGBRGBRGB...
# struct clip_image_f32 {
# int nx;
# int ny;
# float * data = NULL;
# size_t size;
# };
# struct clip_image_u8_batch {
# struct clip_image_u8 * data;
# size_t size;
# };
# struct clip_image_f32_batch {
# struct clip_image_f32 * data;
# size_t size;
# };
# struct clip_image_u8 * make_clip_image_u8();
# struct clip_image_f32 * make_clip_image_f32();
# CLIP_API void clip_image_u8_free(clip_image_u8 * img);
# CLIP_API void clip_image_f32_free(clip_image_f32 * img);
# CLIP_API bool clip_image_load_from_file(const char * fname, struct clip_image_u8 * img);
# /** interpret bytes as an image file with length bytes_length, and use the result to populate img */
# CLIP_API bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img);
# bool clip_image_preprocess(const struct clip_ctx * ctx, const struct clip_image_u8 * img, struct clip_image_f32 * res, const bool pad2square);
# bool clip_image_encode(const struct clip_ctx * ctx, const int n_threads, struct clip_image_f32 * img, float * vec);
# bool clip_image_batch_encode(const struct clip_ctx * ctx, const int n_threads, const struct clip_image_f32_batch * imgs,
# float * vec);
# bool clip_model_quantize(const char * fname_inp, const char * fname_out, const int itype);

View file

@ -6,6 +6,7 @@ from typing import Dict, Optional, Union, List
import llama_cpp
import llama_cpp.llama_speculative as llama_speculative
import llama_cpp.llama_tokenizer as llama_tokenizer
from llama_cpp.server.settings import ModelSettings
@ -93,6 +94,10 @@ class LlamaProxy:
)
)
tokenizer: Optional[llama_cpp.BaseLlamaTokenizer] = None
if settings.hf_pretrained_model_name_or_path is not None:
tokenizer = llama_tokenizer.LlamaHFTokenizer.from_pretrained(settings.hf_pretrained_model_name_or_path)
draft_model = None
if settings.draft_model is not None:
draft_model = llama_speculative.LlamaPromptLookupDecoding(
@ -156,6 +161,8 @@ class LlamaProxy:
chat_handler=chat_handler,
# Speculative Decoding
draft_model=draft_model,
# Tokenizer
tokenizer=tokenizer,
# Misc
verbose=settings.verbose,
)

2
vendor/llama.cpp vendored

@ -1 +1 @@
Subproject commit 098f6d737b65134cf220d12b9b706e8cfc5e4610
Subproject commit 8084d554406b767d36b3250b3b787462d5dd626f