Compare commits

...

33 commits

Author SHA1 Message Date
da343412ee
Merge https://github.com/abetlen/llama-cpp-python 2024-02-23 18:03:03 +05:30
Andrei Betlen
427d816ebf chore: Bump version 2024-02-23 04:54:08 -05:00
Aditya Purandare
52d9d70076
docs: Update README.md to fix pip install llama cpp server (#1187)
Without the single quotes, when running the command, an error is printed saying no matching packages found on pypi. Adding the quotes fixes it

```bash
$ pip install llama-cpp-python[server]
zsh: no matches found: llama-cpp-python[server]
```

Co-authored-by: Andrei <abetlen@gmail.com>
2024-02-23 04:41:22 -05:00
Alvaro Bartolome
251a8a2cad
feat: Add Google's Gemma formatting via chat_format="gemma" (#1210)
* Add Google's Gemma formatting via `chat_format="gemma"`

* Replace `raise ValueError` with `logger.debug`

Co-authored-by: Andrei <abetlen@gmail.com>

---------

Co-authored-by: Andrei <abetlen@gmail.com>
2024-02-23 04:40:52 -05:00
Andrei Betlen
eebb102df7 feat: Update llama.cpp 2024-02-23 03:42:08 -05:00
Andrei Betlen
5f96621e92 misc: only search tests folder for tests 2024-02-23 03:40:25 -05:00
Andrei Betlen
b9aca612af misc: use typesafe byref for internal classes 2024-02-23 03:40:07 -05:00
Andrei Betlen
a0ce429dc0 misc: use decorator to bind low level api functions, fixes docs 2024-02-23 03:39:38 -05:00
Andrei Betlen
410e02da51 docs: Fix typo 2024-02-23 00:43:31 -05:00
Andrei Betlen
eb56ce2e2a docs: fix low-level api example 2024-02-22 11:33:05 -05:00
Andrei Betlen
0f8cad6cb7 docs: Update README 2024-02-22 11:31:44 -05:00
Andrei Betlen
045cc12670 docs: Update README 2024-02-22 03:53:52 -05:00
Andrei Betlen
e10af30cf1 fix: TypeAlias import error 2024-02-22 03:27:28 -05:00
Andrei Betlen
3561ebf536 Merge branch 'main' of https://github.com/abetlen/llama-cpp-python into main 2024-02-22 03:25:13 -05:00
Andrei Betlen
32efed7b07 docs: Update README 2024-02-22 03:25:11 -05:00
Andrei Betlen
d80c5cf29d docs: fix indentation for mkdocs-material 2024-02-22 02:30:24 -05:00
Andrei Betlen
aefcb8f71a misc: additional type annotations for low level api 2024-02-22 02:00:09 -05:00
Andrei Betlen
3921e10770 feat: support minItems/maxItems in JSON grammar converter (by @nopperl) 2024-02-22 00:17:06 -05:00
Andrei Betlen
e6d6260a91 fix: Update from_pretrained defaults to match hf_hub_download 2024-02-22 00:10:23 -05:00
Andrei Betlen
dd22010e85 fix: Raise exceptions when llama model or context fails to load 2024-02-22 00:09:45 -05:00
Andrei Betlen
3632241e98 chore: Bump version 2024-02-21 23:09:13 -05:00
Andrei Betlen
0653e15c20 feat: Update llama.cpp 2024-02-21 23:04:52 -05:00
Andrei Betlen
7981e9ce1e chore: Bump version 2024-02-21 16:30:59 -05:00
Andrei Betlen
7f3962e11c feat: Update llama.cpp 2024-02-21 16:27:56 -05:00
Andrei Betlen
14191e9036 docs: Add create_chat_completion_openai_v1 to api reference 2024-02-21 16:26:49 -05:00
Andrei Betlen
fe5626cd40 misc: add .local pattern to gitignore 2024-02-21 16:26:30 -05:00
Andrei
7f51b6071f
feat(low-level-api): Improve API static type-safety and performance (#1205) 2024-02-21 16:25:38 -05:00
Andrei
0f8aa4ab5c
feat: Pull models directly from huggingface (#1206)
* Add from_pretrained method to Llama class

* Update docs

* Merge filename and pattern
2024-02-21 16:25:10 -05:00
Andrei Betlen
e42f62c247 chore: Bump version 2024-02-21 11:09:40 -05:00
Andrei Betlen
4edde21b3d feat: Update llama.cpp 2024-02-21 11:05:58 -05:00
Andrei Betlen
f57b01ac9b ci: add debug build to dev makefile 2024-02-21 11:04:30 -05:00
Andrei Betlen
04fe33b999 feat: Update llama.cpp 2024-02-20 02:59:02 -05:00
Andrei Betlen
d122bd7858 feat: Update llama.cpp 2024-02-19 22:10:16 -05:00
15 changed files with 1610 additions and 1160 deletions

2
.gitignore vendored
View file

@ -1,3 +1,5 @@
*.local
.python-version .python-version
.vscode/ .vscode/

View file

@ -7,6 +7,29 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
## [Unreleased] ## [Unreleased]
## [0.2.48]
- feat: Update llama.cpp to ggerganov/llama.cpp@15499eb94227401bdc8875da6eb85c15d37068f7
- feat: Add Google's Gemma formatting via chat_format="gemma" by @alvarobartt in #1210
- feat: support minItems/maxItems in JSON grammar converter by @nopperl in 3921e10770996d95a9eb22c8248bacef39f69365
- fix: Update from_pretrained defaults to match hf_hub_download and pull to local cache folder by @abetlen in e6d6260a91b7831733f7d1f73c7af46a3e8185ed
- fix: Raise exceptions when llama model or context fails to load by @abetlen in dd22010e85265ae840c76ec835d67a29ed852722
- docs: Update README.md to fix pip install llama cpp server by @audip in #1187
## [0.2.47]
- feat: Update llama.cpp to ggerganov/llama.cpp@973053d8b0d04809836b3339a50f68d9c842de90
## [0.2.46]
- feat: Update llama.cpp to ggerganov/llama.cpp@ba2135ccae7462470b3865c6e41d2e1d734eac05
- feat: Pull models directly from huggingface by @abetlen in #1206
- feat(low-level-api): Improve API static type-safety and performance. Low level api functions are positional args only now. by @abetlen in #1205
## [0.2.45]
- feat: Update llama.cpp to ggerganov/llama.cpp@89febfed9322c8849520dc63c93ee4f5fd72556e
## [0.2.44] ## [0.2.44]
- feat: Update llama.cpp to ggerganov/llama.cpp@4524290e87b8e107cc2b56e1251751546f4b9051 - feat: Update llama.cpp to ggerganov/llama.cpp@4524290e87b8e107cc2b56e1251751546f4b9051

View file

@ -12,6 +12,9 @@ deps:
build: build:
python3 -m pip install --verbose -e . python3 -m pip install --verbose -e .
build.debug:
CMAKE_ARGS="-DCMAKE_BUILD_TYPE=Debug" python3 -m pip install --verbose --config-settings=cmake.verbose=true --config-settings=logging.level=INFO --config-settings=install.strip=false --editable .
build.cuda: build.cuda:
CMAKE_ARGS="-DLLAMA_CUBLAS=on" python3 -m pip install --verbose -e . CMAKE_ARGS="-DLLAMA_CUBLAS=on" python3 -m pip install --verbose -e .

155
README.md
View file

@ -25,47 +25,81 @@ Documentation is available at [https://llama-cpp-python.readthedocs.io/en/latest
## Installation ## Installation
`llama-cpp-python` can be installed directly from PyPI as a source distribution by running: Requirements:
- Python 3.8+
- C compiler
- Linux: gcc or clang
- Windows: Visual Studio or MinGW
- MacOS: Xcode
To install the package, run:
```bash ```bash
pip install llama-cpp-python pip install llama-cpp-python
``` ```
This will build `llama.cpp` from source using cmake and your system's c compiler (required) and install the library alongside this python package. This will also build `llama.cpp` from source and install it alongside this python package.
If you run into issues during installation add the `--verbose` flag to the `pip install` command to see the full cmake build log. If this fails, add `--verbose` to the `pip install` see the full cmake build log.
### Installation with Specific Hardware Acceleration (BLAS, CUDA, Metal, etc) ### Installation Configuration
The default pip install behaviour is to build `llama.cpp` for CPU only on Linux and Windows and use Metal on MacOS. `llama.cpp` supports a number of hardware acceleration backends to speed up inference as well as backend specific options. See the [llama.cpp README](https://github.com/ggerganov/llama.cpp#build) for a full list.
`llama.cpp` supports a number of hardware acceleration backends depending including OpenBLAS, cuBLAS, CLBlast, HIPBLAS, and Metal. All `llama.cpp` cmake build options can be set via the `CMAKE_ARGS` environment variable or via the `--config-settings / -C` cli flag during installation.
See the [llama.cpp README](https://github.com/ggerganov/llama.cpp#build) for a full list of supported backends.
All of these backends are supported by `llama-cpp-python` and can be enabled by setting the `CMAKE_ARGS` environment variable before installing. <details open>
<summary>Environment Variables</summary>
On Linux and Mac you set the `CMAKE_ARGS` like this:
```bash ```bash
CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python # Linux and Mac
CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" \
pip install llama-cpp-python
``` ```
On Windows you can set the `CMAKE_ARGS` like this: ```powershell
# Windows
```ps
$env:CMAKE_ARGS = "-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" $env:CMAKE_ARGS = "-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS"
pip install llama-cpp-python pip install llama-cpp-python
``` ```
</details>
#### OpenBLAS <details>
<summary>CLI / requirements.txt</summary>
To install with OpenBLAS, set the `LLAMA_BLAS and LLAMA_BLAS_VENDOR` environment variables before installing: They can also be set via `pip install -C / --config-settings` command and saved to a `requirements.txt` file:
```bash
pip install --upgrade pip # ensure pip is up to date
pip install llama-cpp-python \
-C cmake.args="-DLLAMA_BLAS=ON;-DLLAMA_BLAS_VENDOR=OpenBLAS"
```
```txt
# requirements.txt
llama-cpp-python -C cmake.args="-DLLAMA_BLAS=ON;-DLLAMA_BLAS_VENDOR=OpenBLAS"
```
</details>
### Supported Backends
Below are some common backends, their build commands and any additional environment variables required.
<details open>
<summary>OpenBLAS (CPU)</summary>
To install with OpenBLAS, set the `LLAMA_BLAS` and `LLAMA_BLAS_VENDOR` environment variables before installing:
```bash ```bash
CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python
``` ```
</details>
#### cuBLAS <details>
<summary>cuBLAS (CUDA)</summary>
To install with cuBLAS, set the `LLAMA_CUBLAS=on` environment variable before installing: To install with cuBLAS, set the `LLAMA_CUBLAS=on` environment variable before installing:
@ -73,7 +107,10 @@ To install with cuBLAS, set the `LLAMA_CUBLAS=on` environment variable before in
CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python
``` ```
#### Metal </details>
<details>
<summary>Metal</summary>
To install with Metal (MPS), set the `LLAMA_METAL=on` environment variable before installing: To install with Metal (MPS), set the `LLAMA_METAL=on` environment variable before installing:
@ -81,7 +118,10 @@ To install with Metal (MPS), set the `LLAMA_METAL=on` environment variable befor
CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python
``` ```
#### CLBlast </details>
<details>
<summary>CLBlast (OpenCL)</summary>
To install with CLBlast, set the `LLAMA_CLBLAST=on` environment variable before installing: To install with CLBlast, set the `LLAMA_CLBLAST=on` environment variable before installing:
@ -89,7 +129,10 @@ To install with CLBlast, set the `LLAMA_CLBLAST=on` environment variable before
CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python
``` ```
#### hipBLAS </details>
<details>
<summary>hipBLAS (ROCm)</summary>
To install with hipBLAS / ROCm support for AMD cards, set the `LLAMA_HIPBLAS=on` environment variable before installing: To install with hipBLAS / ROCm support for AMD cards, set the `LLAMA_HIPBLAS=on` environment variable before installing:
@ -97,7 +140,10 @@ To install with hipBLAS / ROCm support for AMD cards, set the `LLAMA_HIPBLAS=on`
CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python
``` ```
#### Vulkan </details>
<details>
<summary>Vulkan</summary>
To install with Vulkan support, set the `LLAMA_VULKAN=on` environment variable before installing: To install with Vulkan support, set the `LLAMA_VULKAN=on` environment variable before installing:
@ -105,15 +151,20 @@ To install with Vulkan support, set the `LLAMA_VULKAN=on` environment variable b
CMAKE_ARGS="-DLLAMA_VULKAN=on" pip install llama-cpp-python CMAKE_ARGS="-DLLAMA_VULKAN=on" pip install llama-cpp-python
``` ```
#### Kompute </details>
<details>
<summary>Kompute</summary>
To install with Kompute support, set the `LLAMA_KOMPUTE=on` environment variable before installing: To install with Kompute support, set the `LLAMA_KOMPUTE=on` environment variable before installing:
```bash ```bash
CMAKE_ARGS="-DLLAMA_KOMPUTE=on" pip install llama-cpp-python CMAKE_ARGS="-DLLAMA_KOMPUTE=on" pip install llama-cpp-python
``` ```
</details>
#### SYCL <details>
<summary>SYCL</summary>
To install with SYCL support, set the `LLAMA_SYCL=on` environment variable before installing: To install with SYCL support, set the `LLAMA_SYCL=on` environment variable before installing:
@ -121,9 +172,14 @@ To install with SYCL support, set the `LLAMA_SYCL=on` environment variable befor
source /opt/intel/oneapi/setvars.sh source /opt/intel/oneapi/setvars.sh
CMAKE_ARGS="-DLLAMA_SYCL=on -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx" pip install llama-cpp-python CMAKE_ARGS="-DLLAMA_SYCL=on -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx" pip install llama-cpp-python
``` ```
</details>
### Windows Notes ### Windows Notes
<details>
<summary>Error: Can't find 'nmake' or 'CMAKE_C_COMPILER'</summary>
If you run into issues where it complains it can't find `'nmake'` `'?'` or CMAKE_C_COMPILER, you can extract w64devkit as [mentioned in llama.cpp repo](https://github.com/ggerganov/llama.cpp#openblas) and add those manually to CMAKE_ARGS before running `pip` install: If you run into issues where it complains it can't find `'nmake'` `'?'` or CMAKE_C_COMPILER, you can extract w64devkit as [mentioned in llama.cpp repo](https://github.com/ggerganov/llama.cpp#openblas) and add those manually to CMAKE_ARGS before running `pip` install:
```ps ```ps
@ -132,12 +188,14 @@ $env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on -DCMAKE_C_COMPILER=C:/w64devkit/bin/gcc.e
``` ```
See the above instructions and set `CMAKE_ARGS` to the BLAS backend you want to use. See the above instructions and set `CMAKE_ARGS` to the BLAS backend you want to use.
</details>
### MacOS Notes ### MacOS Notes
Detailed MacOS Metal GPU install documentation is available at [docs/install/macos.md](https://llama-cpp-python.readthedocs.io/en/latest/install/macos/) Detailed MacOS Metal GPU install documentation is available at [docs/install/macos.md](https://llama-cpp-python.readthedocs.io/en/latest/install/macos/)
#### M1 Mac Performance Issue <details>
<summary>M1 Mac Performance Issue</summary>
Note: If you are using Apple Silicon (M1) Mac, make sure you have installed a version of Python that supports arm64 architecture. For example: Note: If you are using Apple Silicon (M1) Mac, make sure you have installed a version of Python that supports arm64 architecture. For example:
@ -147,24 +205,21 @@ bash Miniforge3-MacOSX-arm64.sh
``` ```
Otherwise, while installing it will build the llama.cpp x86 version which will be 10x slower on Apple Silicon (M1) Mac. Otherwise, while installing it will build the llama.cpp x86 version which will be 10x slower on Apple Silicon (M1) Mac.
</details>
#### M Series Mac Error: `(mach-o file, but is an incompatible architecture (have 'x86_64', need 'arm64'))` <details>
<summary>M Series Mac Error: `(mach-o file, but is an incompatible architecture (have 'x86_64', need 'arm64'))`</summary>
Try installing with Try installing with
```bash ```bash
CMAKE_ARGS="-DCMAKE_OSX_ARCHITECTURES=arm64 -DCMAKE_APPLE_SILICON_PROCESSOR=arm64 -DLLAMA_METAL=on" pip install --upgrade --verbose --force-reinstall --no-cache-dir llama-cpp-python CMAKE_ARGS="-DCMAKE_OSX_ARCHITECTURES=arm64 -DCMAKE_APPLE_SILICON_PROCESSOR=arm64 -DLLAMA_METAL=on" pip install --upgrade --verbose --force-reinstall --no-cache-dir llama-cpp-python
``` ```
</details>
### Upgrading and Reinstalling ### Upgrading and Reinstalling
To upgrade or rebuild `llama-cpp-python` add the following flags to ensure that the package is rebuilt correctly: To upgrade and rebuild `llama-cpp-python` add `--upgrade --force-reinstall --no-cache-dir` flags to the `pip install` command to ensure the package is rebuilt from source.
```bash
pip install llama-cpp-python --upgrade --force-reinstall --no-cache-dir
```
This will ensure that all source files are re-built with the most recently set `CMAKE_ARGS` flags.
## High-level API ## High-level API
@ -212,6 +267,21 @@ Below is a short example demonstrating how to use the high-level API to for basi
Text completion is available through the [`__call__`](https://llama-cpp-python.readthedocs.io/en/latest/api-reference/#llama_cpp.Llama.__call__) and [`create_completion`](https://llama-cpp-python.readthedocs.io/en/latest/api-reference/#llama_cpp.Llama.create_completion) methods of the [`Llama`](https://llama-cpp-python.readthedocs.io/en/latest/api-reference/#llama_cpp.Llama) class. Text completion is available through the [`__call__`](https://llama-cpp-python.readthedocs.io/en/latest/api-reference/#llama_cpp.Llama.__call__) and [`create_completion`](https://llama-cpp-python.readthedocs.io/en/latest/api-reference/#llama_cpp.Llama.create_completion) methods of the [`Llama`](https://llama-cpp-python.readthedocs.io/en/latest/api-reference/#llama_cpp.Llama) class.
### Pulling models from Hugging Face Hub
You can download `Llama` models in `gguf` format directly from Hugging Face using the [`from_pretrained`](https://llama-cpp-python.readthedocs.io/en/latest/api-reference/#llama_cpp.Llama.from_pretrained) method.
You'll need to install the `huggingface-hub` package to use this feature (`pip install huggingface-hub`).
```python
llm = Llama.from_pretrained(
repo_id="Qwen/Qwen1.5-0.5B-Chat-GGUF",
filename="*q8_0.gguf",
verbose=False
)
```
By default [`from_pretrained`](https://llama-cpp-python.readthedocs.io/en/latest/api-reference/#llama_cpp.Llama.from_pretrained) will download the model to the huggingface cache directory, you can then manage installed model files with the [`huggingface-cli`](https://huggingface.co/docs/huggingface_hub/en/guides/cli) tool.
### Chat Completion ### Chat Completion
The high-level API also provides a simple interface for chat completion. The high-level API also provides a simple interface for chat completion.
@ -237,13 +307,16 @@ Note that `chat_format` option must be set for the particular model you are usin
Chat completion is available through the [`create_chat_completion`](https://llama-cpp-python.readthedocs.io/en/latest/api-reference/#llama_cpp.Llama.create_chat_completion) method of the [`Llama`](https://llama-cpp-python.readthedocs.io/en/latest/api-reference/#llama_cpp.Llama) class. Chat completion is available through the [`create_chat_completion`](https://llama-cpp-python.readthedocs.io/en/latest/api-reference/#llama_cpp.Llama.create_chat_completion) method of the [`Llama`](https://llama-cpp-python.readthedocs.io/en/latest/api-reference/#llama_cpp.Llama) class.
For OpenAI API v1 compatibility, you use the [`create_chat_completion_openai_v1`](https://llama-cpp-python.readthedocs.io/en/latest/api-reference/#llama_cpp.Llama.create_chat_completion_openai_v1) method which will return pydantic models instead of dicts.
### JSON and JSON Schema Mode ### JSON and JSON Schema Mode
If you want to constrain chat responses to only valid JSON or a specific JSON Schema you can use the `response_format` argument to the `create_chat_completion` method. To constrain chat responses to only valid JSON or a specific JSON Schema use the `response_format` argument in [`create_chat_completion`](http://localhost:8000/api-reference/#llama_cpp.Llama.create_chat_completion).
#### JSON Mode #### JSON Mode
The following example will constrain the response to be valid JSON. The following example will constrain the response to valid JSON strings only.
```python ```python
>>> from llama_cpp import Llama >>> from llama_cpp import Llama
@ -265,7 +338,7 @@ The following example will constrain the response to be valid JSON.
#### JSON Schema Mode #### JSON Schema Mode
To constrain the response to a specific JSON Schema, you can use the `schema` property of the `response_format` argument. To constrain the response further to a specific JSON Schema add the schema to the `schema` property of the `response_format` argument.
```python ```python
>>> from llama_cpp import Llama >>> from llama_cpp import Llama
@ -400,7 +473,7 @@ llama = Llama(
### Embeddings ### Embeddings
`llama-cpp-python` supports generating embeddings from the text. To generate text embeddings use [`create_embedding`](http://localhost:8000/api-reference/#llama_cpp.Llama.create_embedding).
```python ```python
import llama_cpp import llama_cpp
@ -409,7 +482,7 @@ llm = llama_cpp.Llama(model_path="path/to/model.gguf", embeddings=True)
embeddings = llm.create_embedding("Hello, world!") embeddings = llm.create_embedding("Hello, world!")
# or batched # or create multiple embeddings at once
embeddings = llm.create_embedding(["Hello, world!", "Goodbye, world!"]) embeddings = llm.create_embedding(["Hello, world!", "Goodbye, world!"])
``` ```
@ -432,14 +505,14 @@ This allows you to use llama.cpp compatible models with any OpenAI compatible cl
To install the server package and get started: To install the server package and get started:
```bash ```bash
pip install llama-cpp-python[server] pip install 'llama-cpp-python[server]'
python3 -m llama_cpp.server --model models/7B/llama-model.gguf python3 -m llama_cpp.server --model models/7B/llama-model.gguf
``` ```
Similar to Hardware Acceleration section above, you can also install with GPU (cuBLAS) support like this: Similar to Hardware Acceleration section above, you can also install with GPU (cuBLAS) support like this:
```bash ```bash
CMAKE_ARGS="-DLLAMA_CUBLAS=on" FORCE_CMAKE=1 pip install llama-cpp-python[server] CMAKE_ARGS="-DLLAMA_CUBLAS=on" FORCE_CMAKE=1 pip install 'llama-cpp-python[server]'
python3 -m llama_cpp.server --model models/7B/llama-model.gguf --n_gpu_layers 35 python3 -m llama_cpp.server --model models/7B/llama-model.gguf --n_gpu_layers 35
``` ```
@ -486,7 +559,7 @@ Below is a short example demonstrating how to use the low-level API to tokenize
```python ```python
>>> import llama_cpp >>> import llama_cpp
>>> import ctypes >>> import ctypes
>>> llama_cpp.llama_backend_init(numa=False) # Must be called once at the start of each program >>> llama_cpp.llama_backend_init(False) # Must be called once at the start of each program
>>> params = llama_cpp.llama_context_default_params() >>> params = llama_cpp.llama_context_default_params()
# use bytes for char * params # use bytes for char * params
>>> model = llama_cpp.llama_load_model_from_file(b"./models/7b/llama-model.gguf", params) >>> model = llama_cpp.llama_load_model_from_file(b"./models/7b/llama-model.gguf", params)
@ -494,7 +567,7 @@ Below is a short example demonstrating how to use the low-level API to tokenize
>>> max_tokens = params.n_ctx >>> max_tokens = params.n_ctx
# use ctypes arrays for array params # use ctypes arrays for array params
>>> tokens = (llama_cpp.llama_token * int(max_tokens))() >>> tokens = (llama_cpp.llama_token * int(max_tokens))()
>>> n_tokens = llama_cpp.llama_tokenize(ctx, b"Q: Name the planets in the solar system? A: ", tokens, max_tokens, add_bos=llama_cpp.c_bool(True)) >>> n_tokens = llama_cpp.llama_tokenize(ctx, b"Q: Name the planets in the solar system? A: ", tokens, max_tokens, llama_cpp.c_bool(True))
>>> llama_cpp.llama_free(ctx) >>> llama_cpp.llama_free(ctx)
``` ```

View file

@ -21,11 +21,13 @@ High-level Python bindings for llama.cpp.
- create_completion - create_completion
- __call__ - __call__
- create_chat_completion - create_chat_completion
- create_chat_completion_openai_v1
- set_cache - set_cache
- save_state - save_state
- load_state - load_state
- token_bos - token_bos
- token_eos - token_eos
- from_pretrained
show_root_heading: true show_root_heading: true
::: llama_cpp.LlamaGrammar ::: llama_cpp.LlamaGrammar

View file

@ -1,4 +1,4 @@
from .llama_cpp import * from .llama_cpp import *
from .llama import * from .llama import *
__version__ = "0.2.44" __version__ = "0.2.48"

View file

@ -51,6 +51,9 @@ class _LlamaModel:
self.path_model.encode("utf-8"), self.params self.path_model.encode("utf-8"), self.params
) )
if self.model is None:
raise ValueError(f"Failed to load model from file: {path_model}")
def __del__(self): def __del__(self):
if self.model is not None and self._llama_free_model is not None: if self.model is not None and self._llama_free_model is not None:
self._llama_free_model(self.model) self._llama_free_model(self.model)
@ -79,7 +82,7 @@ class _LlamaModel:
def desc(self) -> str: def desc(self) -> str:
assert self.model is not None assert self.model is not None
buf = ctypes.create_string_buffer(1024) buf = ctypes.create_string_buffer(1024)
llama_cpp.llama_model_desc(self.model, buf, 1024) # type: ignore llama_cpp.llama_model_desc(self.model, buf, 1024)
return buf.value.decode("utf-8") return buf.value.decode("utf-8")
def size(self) -> int: def size(self) -> int:
@ -108,7 +111,7 @@ class _LlamaModel:
scale, scale,
path_base_model.encode("utf-8") path_base_model.encode("utf-8")
if path_base_model is not None if path_base_model is not None
else llama_cpp.c_char_p(0), else ctypes.c_char_p(0),
n_threads, n_threads,
) )
@ -181,7 +184,7 @@ class _LlamaModel:
def token_to_piece(self, token: int) -> bytes: def token_to_piece(self, token: int) -> bytes:
assert self.model is not None assert self.model is not None
buf = ctypes.create_string_buffer(32) buf = ctypes.create_string_buffer(32)
llama_cpp.llama_token_to_piece(self.model, token, buf, 32) # type: ignore llama_cpp.llama_token_to_piece(self.model, token, buf, 32)
return bytes(buf) return bytes(buf)
def detokenize(self, tokens: List[int]) -> bytes: def detokenize(self, tokens: List[int]) -> bytes:
@ -258,6 +261,9 @@ class _LlamaContext:
self.model.model, self.params self.model.model, self.params
) )
if self.ctx is None:
raise ValueError("Failed to create llama_context")
def __del__(self): def __del__(self):
if self.ctx is not None and self._llama_free is not None: if self.ctx is not None and self._llama_free is not None:
self._llama_free(self.ctx) self._llama_free(self.ctx)
@ -303,8 +309,8 @@ class _LlamaContext:
assert self.ctx is not None assert self.ctx is not None
assert batch.batch is not None assert batch.batch is not None
return_code = llama_cpp.llama_decode( return_code = llama_cpp.llama_decode(
ctx=self.ctx, self.ctx,
batch=batch.batch, batch.batch,
) )
if return_code != 0: if return_code != 0:
raise RuntimeError(f"llama_decode returned {return_code}") raise RuntimeError(f"llama_decode returned {return_code}")
@ -343,7 +349,7 @@ class _LlamaContext:
assert self.ctx is not None assert self.ctx is not None
llama_cpp.llama_sample_repetition_penalties( llama_cpp.llama_sample_repetition_penalties(
self.ctx, self.ctx,
ctypes.byref(candidates.candidates), # type: ignore llama_cpp.byref(candidates.candidates),
last_tokens_data, last_tokens_data,
penalty_last_n, penalty_last_n,
penalty_repeat, penalty_repeat,
@ -361,7 +367,7 @@ class _LlamaContext:
assert guidance_ctx.ctx is not None assert guidance_ctx.ctx is not None
llama_cpp.llama_sample_classifier_free_guidance( llama_cpp.llama_sample_classifier_free_guidance(
self.ctx, self.ctx,
ctypes.byref(candidates.candidates), # type: ignore llama_cpp.byref(candidates.candidates),
guidance_ctx.ctx, guidance_ctx.ctx,
scale, scale,
) )
@ -370,25 +376,25 @@ class _LlamaContext:
assert self.ctx is not None assert self.ctx is not None
llama_cpp.llama_sample_softmax( llama_cpp.llama_sample_softmax(
self.ctx, self.ctx,
ctypes.byref(candidates.candidates), # type: ignore llama_cpp.byref(candidates.candidates),
) )
def sample_top_k(self, candidates: "_LlamaTokenDataArray", k: int, min_keep: int): def sample_top_k(self, candidates: "_LlamaTokenDataArray", k: int, min_keep: int):
assert self.ctx is not None assert self.ctx is not None
llama_cpp.llama_sample_top_k( llama_cpp.llama_sample_top_k(
self.ctx, ctypes.byref(candidates.candidates), k, min_keep # type: ignore self.ctx, llama_cpp.byref(candidates.candidates), k, min_keep
) )
def sample_top_p(self, candidates: "_LlamaTokenDataArray", p: float, min_keep: int): def sample_top_p(self, candidates: "_LlamaTokenDataArray", p: float, min_keep: int):
assert self.ctx is not None assert self.ctx is not None
llama_cpp.llama_sample_top_p( llama_cpp.llama_sample_top_p(
self.ctx, ctypes.byref(candidates.candidates), p, min_keep # type: ignore self.ctx, llama_cpp.byref(candidates.candidates), p, min_keep
) )
def sample_min_p(self, candidates: "_LlamaTokenDataArray", p: float, min_keep: int): def sample_min_p(self, candidates: "_LlamaTokenDataArray", p: float, min_keep: int):
assert self.ctx is not None assert self.ctx is not None
llama_cpp.llama_sample_min_p( llama_cpp.llama_sample_min_p(
self.ctx, ctypes.byref(candidates.candidates), p, min_keep # type: ignore self.ctx, llama_cpp.byref(candidates.candidates), p, min_keep
) )
def sample_tail_free( def sample_tail_free(
@ -396,7 +402,7 @@ class _LlamaContext:
): ):
assert self.ctx is not None assert self.ctx is not None
llama_cpp.llama_sample_tail_free( llama_cpp.llama_sample_tail_free(
self.ctx, ctypes.byref(candidates.candidates), z, min_keep # type: ignore self.ctx, llama_cpp.byref(candidates.candidates), z, min_keep
) )
def sample_typical( def sample_typical(
@ -404,13 +410,13 @@ class _LlamaContext:
): ):
assert self.ctx is not None assert self.ctx is not None
llama_cpp.llama_sample_typical( llama_cpp.llama_sample_typical(
self.ctx, ctypes.byref(candidates.candidates), p, min_keep # type: ignore self.ctx, llama_cpp.byref(candidates.candidates), p, min_keep
) )
def sample_temp(self, candidates: "_LlamaTokenDataArray", temp: float): def sample_temp(self, candidates: "_LlamaTokenDataArray", temp: float):
assert self.ctx is not None assert self.ctx is not None
llama_cpp.llama_sample_temp( llama_cpp.llama_sample_temp(
self.ctx, ctypes.byref(candidates.candidates), temp # type: ignore self.ctx, llama_cpp.byref(candidates.candidates), temp
) )
def sample_grammar(self, candidates: "_LlamaTokenDataArray", grammar: LlamaGrammar): def sample_grammar(self, candidates: "_LlamaTokenDataArray", grammar: LlamaGrammar):
@ -418,7 +424,7 @@ class _LlamaContext:
assert grammar.grammar is not None assert grammar.grammar is not None
llama_cpp.llama_sample_grammar( llama_cpp.llama_sample_grammar(
self.ctx, self.ctx,
ctypes.byref(candidates.candidates), # type: ignore llama_cpp.byref(candidates.candidates),
grammar.grammar, grammar.grammar,
) )
@ -428,12 +434,12 @@ class _LlamaContext:
tau: float, tau: float,
eta: float, eta: float,
m: int, m: int,
mu: ctypes._Pointer[ctypes.c_float], # type: ignore mu: llama_cpp.CtypesPointerOrRef[ctypes.c_float],
) -> int: ) -> int:
assert self.ctx is not None assert self.ctx is not None
return llama_cpp.llama_sample_token_mirostat( return llama_cpp.llama_sample_token_mirostat(
self.ctx, self.ctx,
ctypes.byref(candidates.candidates), # type: ignore llama_cpp.byref(candidates.candidates),
tau, tau,
eta, eta,
m, m,
@ -441,12 +447,12 @@ class _LlamaContext:
) )
def sample_token_mirostat_v2( def sample_token_mirostat_v2(
self, candidates: "_LlamaTokenDataArray", tau: float, eta: float, mu: ctypes._Pointer[ctypes.c_float] # type: ignore self, candidates: "_LlamaTokenDataArray", tau: float, eta: float, mu: llama_cpp.CtypesPointerOrRef[ctypes.c_float]
) -> int: ) -> int:
assert self.ctx is not None assert self.ctx is not None
return llama_cpp.llama_sample_token_mirostat_v2( return llama_cpp.llama_sample_token_mirostat_v2(
self.ctx, self.ctx,
ctypes.byref(candidates.candidates), # type: ignore llama_cpp.byref(candidates.candidates),
tau, tau,
eta, eta,
mu, mu,
@ -456,14 +462,14 @@ class _LlamaContext:
assert self.ctx is not None assert self.ctx is not None
return llama_cpp.llama_sample_token_greedy( return llama_cpp.llama_sample_token_greedy(
self.ctx, self.ctx,
ctypes.byref(candidates.candidates), # type: ignore llama_cpp.byref(candidates.candidates),
) )
def sample_token(self, candidates: "_LlamaTokenDataArray") -> int: def sample_token(self, candidates: "_LlamaTokenDataArray") -> int:
assert self.ctx is not None assert self.ctx is not None
return llama_cpp.llama_sample_token( return llama_cpp.llama_sample_token(
self.ctx, self.ctx,
ctypes.byref(candidates.candidates), # type: ignore llama_cpp.byref(candidates.candidates),
) )
# Grammar # Grammar
@ -493,7 +499,7 @@ class _LlamaBatch:
def __init__( def __init__(
self, *, n_tokens: int, embd: int, n_seq_max: int, verbose: bool = True self, *, n_tokens: int, embd: int, n_seq_max: int, verbose: bool = True
): ):
self.n_tokens = n_tokens self._n_tokens = n_tokens
self.embd = embd self.embd = embd
self.n_seq_max = n_seq_max self.n_seq_max = n_seq_max
self.verbose = verbose self.verbose = verbose
@ -502,7 +508,7 @@ class _LlamaBatch:
self.batch = None self.batch = None
self.batch = llama_cpp.llama_batch_init( self.batch = llama_cpp.llama_batch_init(
self.n_tokens, self.embd, self.n_seq_max self._n_tokens, self.embd, self.n_seq_max
) )
def __del__(self): def __del__(self):
@ -560,7 +566,7 @@ class _LlamaTokenDataArray:
size=self.n_vocab, size=self.n_vocab,
sorted=False, sorted=False,
) )
self.default_candidates_data_id = np.arange(self.n_vocab, dtype=np.intc) self.default_candidates_data_id = np.arange(self.n_vocab, dtype=np.intc) # type: ignore
self.default_candidates_data_p = np.zeros(self.n_vocab, dtype=np.single) self.default_candidates_data_p = np.zeros(self.n_vocab, dtype=np.single)
def copy_logits(self, logits: npt.NDArray[np.single]): def copy_logits(self, logits: npt.NDArray[np.single]):
@ -570,12 +576,13 @@ class _LlamaTokenDataArray:
self.candidates.data = self.candidates_data.ctypes.data_as( self.candidates.data = self.candidates_data.ctypes.data_as(
llama_cpp.llama_token_data_p llama_cpp.llama_token_data_p
) )
self.candidates.sorted = llama_cpp.c_bool(False) self.candidates.sorted = ctypes.c_bool(False)
self.candidates.size = llama_cpp.c_size_t(self.n_vocab) self.candidates.size = ctypes.c_size_t(self.n_vocab)
# Python wrappers over common/common # Python wrappers over common/common
def _tokenize(model: _LlamaModel, text: str, add_bos: bool, special: bool) -> list[int]: def _tokenize(model: _LlamaModel, text: str, add_bos: bool, special: bool) -> list[int]:
assert model.model is not None
n_tokens = len(text) + 1 if add_bos else len(text) n_tokens = len(text) + 1 if add_bos else len(text)
result = (llama_cpp.llama_token * n_tokens)() result = (llama_cpp.llama_token * n_tokens)()
n_tokens = llama_cpp.llama_tokenize( n_tokens = llama_cpp.llama_tokenize(
@ -747,7 +754,7 @@ class _LlamaSamplingContext:
ctx_main.sample_repetition_penalties( ctx_main.sample_repetition_penalties(
token_data_array, token_data_array,
# TODO: Only create this once # TODO: Only create this once
(llama_cpp.llama_token * len(self.prev))(*self.prev), # type: ignore (llama_cpp.llama_token * len(self.prev))(*self.prev),
self.params.penalty_last_n, self.params.penalty_last_n,
self.params.penalty_repeat, self.params.penalty_repeat,
self.params.penalty_freq, self.params.penalty_freq,

View file

@ -4,6 +4,8 @@ import os
import sys import sys
import uuid import uuid
import time import time
import json
import fnmatch
import multiprocessing import multiprocessing
from typing import ( from typing import (
List, List,
@ -16,6 +18,7 @@ from typing import (
Callable, Callable,
) )
from collections import deque from collections import deque
from pathlib import Path
import ctypes import ctypes
@ -29,10 +32,7 @@ from .llama_cache import (
LlamaDiskCache, # type: ignore LlamaDiskCache, # type: ignore
LlamaRAMCache, # type: ignore LlamaRAMCache, # type: ignore
) )
from .llama_tokenizer import ( from .llama_tokenizer import BaseLlamaTokenizer, LlamaTokenizer
BaseLlamaTokenizer,
LlamaTokenizer
)
import llama_cpp.llama_cpp as llama_cpp import llama_cpp.llama_cpp as llama_cpp
import llama_cpp.llama_chat_format as llama_chat_format import llama_cpp.llama_chat_format as llama_chat_format
@ -50,9 +50,7 @@ from ._internals import (
_LlamaSamplingContext, # type: ignore _LlamaSamplingContext, # type: ignore
) )
from ._logger import set_verbose from ._logger import set_verbose
from ._utils import ( from ._utils import suppress_stdout_stderr
suppress_stdout_stderr
)
class Llama: class Llama:
@ -189,7 +187,11 @@ class Llama:
Llama.__backend_initialized = True Llama.__backend_initialized = True
if isinstance(numa, bool): if isinstance(numa, bool):
self.numa = llama_cpp.GGML_NUMA_STRATEGY_DISTRIBUTE if numa else llama_cpp.GGML_NUMA_STRATEGY_DISABLED self.numa = (
llama_cpp.GGML_NUMA_STRATEGY_DISTRIBUTE
if numa
else llama_cpp.GGML_NUMA_STRATEGY_DISABLED
)
else: else:
self.numa = numa self.numa = numa
@ -246,9 +248,9 @@ class Llama:
else: else:
raise ValueError(f"Unknown value type for {k}: {v}") raise ValueError(f"Unknown value type for {k}: {v}")
self._kv_overrides_array[ self._kv_overrides_array[-1].key = (
-1 b"\0" # ensure sentinel element is zeroed
].key = b"\0" # ensure sentinel element is zeroed )
self.model_params.kv_overrides = self._kv_overrides_array self.model_params.kv_overrides = self._kv_overrides_array
self.n_batch = min(n_ctx, n_batch) # ??? self.n_batch = min(n_ctx, n_batch) # ???
@ -289,7 +291,9 @@ class Llama:
) )
self.context_params.yarn_orig_ctx = yarn_orig_ctx if yarn_orig_ctx != 0 else 0 self.context_params.yarn_orig_ctx = yarn_orig_ctx if yarn_orig_ctx != 0 else 0
self.context_params.mul_mat_q = mul_mat_q self.context_params.mul_mat_q = mul_mat_q
self.context_params.logits_all = logits_all if draft_model is None else True # Must be set to True for speculative decoding self.context_params.logits_all = (
logits_all if draft_model is None else True
) # Must be set to True for speculative decoding
self.context_params.embedding = embedding self.context_params.embedding = embedding
self.context_params.offload_kqv = offload_kqv self.context_params.offload_kqv = offload_kqv
@ -379,8 +383,14 @@ class Llama:
if self.verbose: if self.verbose:
print(f"Model metadata: {self.metadata}", file=sys.stderr) print(f"Model metadata: {self.metadata}", file=sys.stderr)
if self.chat_format is None and self.chat_handler is None and "tokenizer.chat_template" in self.metadata: if (
chat_format = llama_chat_format.guess_chat_format_from_gguf_metadata(self.metadata) self.chat_format is None
and self.chat_handler is None
and "tokenizer.chat_template" in self.metadata
):
chat_format = llama_chat_format.guess_chat_format_from_gguf_metadata(
self.metadata
)
if chat_format is not None: if chat_format is not None:
self.chat_format = chat_format self.chat_format = chat_format
@ -406,9 +416,7 @@ class Llama:
print(f"Using chat bos_token: {bos_token}", file=sys.stderr) print(f"Using chat bos_token: {bos_token}", file=sys.stderr)
self.chat_handler = llama_chat_format.Jinja2ChatFormatter( self.chat_handler = llama_chat_format.Jinja2ChatFormatter(
template=template, template=template, eos_token=eos_token, bos_token=bos_token
eos_token=eos_token,
bos_token=bos_token
).to_chat_handler() ).to_chat_handler()
if self.chat_format is None and self.chat_handler is None: if self.chat_format is None and self.chat_handler is None:
@ -459,7 +467,9 @@ class Llama:
""" """
return self.tokenizer_.tokenize(text, add_bos, special) return self.tokenizer_.tokenize(text, add_bos, special)
def detokenize(self, tokens: List[int], prev_tokens: Optional[List[int]] = None) -> bytes: def detokenize(
self, tokens: List[int], prev_tokens: Optional[List[int]] = None
) -> bytes:
"""Detokenize a list of tokens. """Detokenize a list of tokens.
Args: Args:
@ -565,7 +575,7 @@ class Llama:
logits[:] = ( logits[:] = (
logits_processor(self._input_ids, logits) logits_processor(self._input_ids, logits)
if idx is None if idx is None
else logits_processor(self._input_ids[:idx + 1], logits) else logits_processor(self._input_ids[: idx + 1], logits)
) )
sampling_params = _LlamaSamplingParams( sampling_params = _LlamaSamplingParams(
@ -707,7 +717,9 @@ class Llama:
if self.draft_model is not None: if self.draft_model is not None:
self.input_ids[self.n_tokens : self.n_tokens + len(tokens)] = tokens self.input_ids[self.n_tokens : self.n_tokens + len(tokens)] = tokens
draft_tokens = self.draft_model(self.input_ids[:self.n_tokens + len(tokens)]) draft_tokens = self.draft_model(
self.input_ids[: self.n_tokens + len(tokens)]
)
tokens.extend( tokens.extend(
draft_tokens.astype(int)[ draft_tokens.astype(int)[
: self._n_ctx - self.n_tokens - len(tokens) : self._n_ctx - self.n_tokens - len(tokens)
@ -792,6 +804,7 @@ class Llama:
# decode and fetch embeddings # decode and fetch embeddings
data: List[List[float]] = [] data: List[List[float]] = []
def decode_batch(n_seq: int): def decode_batch(n_seq: int):
assert self._ctx.ctx is not None assert self._ctx.ctx is not None
llama_cpp.llama_kv_cache_clear(self._ctx.ctx) llama_cpp.llama_kv_cache_clear(self._ctx.ctx)
@ -800,9 +813,9 @@ class Llama:
# store embeddings # store embeddings
for i in range(n_seq): for i in range(n_seq):
embedding: List[float] = llama_cpp.llama_get_embeddings_ith(self._ctx.ctx, i)[ embedding: List[float] = llama_cpp.llama_get_embeddings_ith(
:n_embd self._ctx.ctx, i
] )[:n_embd]
if normalize: if normalize:
norm = float(np.linalg.norm(embedding)) norm = float(np.linalg.norm(embedding))
embedding = [v / norm for v in embedding] embedding = [v / norm for v in embedding]
@ -1669,6 +1682,7 @@ class Llama:
""" """
try: try:
from openai.types.chat import ChatCompletion, ChatCompletionChunk from openai.types.chat import ChatCompletion, ChatCompletionChunk
stream = kwargs.get("stream", False) # type: ignore stream = kwargs.get("stream", False) # type: ignore
assert isinstance(stream, bool) assert isinstance(stream, bool)
if stream: if stream:
@ -1804,7 +1818,7 @@ class Llama:
self.input_ids = state.input_ids.copy() self.input_ids = state.input_ids.copy()
self.n_tokens = state.n_tokens self.n_tokens = state.n_tokens
state_size = state.llama_state_size state_size = state.llama_state_size
LLamaStateArrayType = llama_cpp.c_uint8 * state_size LLamaStateArrayType = ctypes.c_uint8 * state_size
llama_state = LLamaStateArrayType.from_buffer_copy(state.llama_state) llama_state = LLamaStateArrayType.from_buffer_copy(state.llama_state)
if llama_cpp.llama_set_state_data(self._ctx.ctx, llama_state) != state_size: if llama_cpp.llama_set_state_data(self._ctx.ctx, llama_state) != state_size:
@ -1866,7 +1880,100 @@ class Llama:
break break
return longest_prefix return longest_prefix
@classmethod
def from_pretrained(
cls,
repo_id: str,
filename: Optional[str],
local_dir: Optional[Union[str, os.PathLike[str]]] = None,
local_dir_use_symlinks: Union[bool, Literal["auto"]] = "auto",
cache_dir: Optional[Union[str, os.PathLike[str]]] = None,
**kwargs: Any,
) -> "Llama":
"""Create a Llama model from a pretrained model name or path.
This method requires the huggingface-hub package.
You can install it with `pip install huggingface-hub`.
Args:
repo_id: The model repo id.
filename: A filename or glob pattern to match the model file in the repo.
local_dir: The local directory to save the model to.
local_dir_use_symlinks: Whether to use symlinks when downloading the model.
**kwargs: Additional keyword arguments to pass to the Llama constructor.
Returns:
A Llama model."""
try:
from huggingface_hub import hf_hub_download, HfFileSystem
from huggingface_hub.utils import validate_repo_id
except ImportError:
raise ImportError(
"Llama.from_pretrained requires the huggingface-hub package. "
"You can install it with `pip install huggingface-hub`."
)
validate_repo_id(repo_id)
hffs = HfFileSystem()
files = [
file["name"] if isinstance(file, dict) else file
for file in hffs.ls(repo_id)
]
# split each file into repo_id, subfolder, filename
file_list: List[str] = []
for file in files:
rel_path = Path(file).relative_to(repo_id)
file_list.append(str(rel_path))
matching_files = [file for file in file_list if fnmatch.fnmatch(file, filename)] # type: ignore
if len(matching_files) == 0:
raise ValueError(
f"No file found in {repo_id} that match {filename}\n\n"
f"Available Files:\n{json.dumps(file_list)}"
)
if len(matching_files) > 1:
raise ValueError(
f"Multiple files found in {repo_id} matching {filename}\n\n"
f"Available Files:\n{json.dumps(files)}"
)
(matching_file,) = matching_files
subfolder = str(Path(matching_file).parent)
filename = Path(matching_file).name
# download the file
hf_hub_download(
repo_id=repo_id,
filename=filename,
subfolder=subfolder,
local_dir=local_dir,
local_dir_use_symlinks=local_dir_use_symlinks,
cache_dir=cache_dir,
)
if local_dir is None:
model_path = hf_hub_download(
repo_id=repo_id,
filename=filename,
subfolder=subfolder,
local_dir=local_dir,
local_dir_use_symlinks=local_dir_use_symlinks,
cache_dir=cache_dir,
local_files_only=True,
)
else:
model_path = os.path.join(local_dir, filename)
return cls(
model_path=model_path,
**kwargs,
)
class LlamaState: class LlamaState:

View file

@ -14,6 +14,7 @@ import llama_cpp.llama as llama
import llama_cpp.llama_types as llama_types import llama_cpp.llama_types as llama_types
import llama_cpp.llama_grammar as llama_grammar import llama_cpp.llama_grammar as llama_grammar
from ._logger import logger
from ._utils import suppress_stdout_stderr, Singleton from ._utils import suppress_stdout_stderr, Singleton
### Common Chat Templates and Special Tokens ### ### Common Chat Templates and Special Tokens ###
@ -993,6 +994,26 @@ def format_saiga(
return ChatFormatterResponse(prompt=_prompt.strip()) return ChatFormatterResponse(prompt=_prompt.strip())
# Chat format for Google's Gemma models, see more details and available models:
# https://huggingface.co/collections/google/gemma-release-65d5efbccdbb8c4202ec078b
@register_chat_format("gemma")
def format_gemma(
messages: List[llama_types.ChatCompletionRequestMessage],
**kwargs: Any,
) -> ChatFormatterResponse:
system_message = _get_system_message(messages)
if system_message is not None and system_message != "":
logger.debug(
"`role='system'` messages are not allowed on Google's Gemma models."
)
_roles = dict(user="<start_of_turn>user\n", assistant="<start_of_turn>model\n")
_sep = "<end_of_turn>\n"
_messages = _map_roles(messages, _roles)
_messages.append((_roles["assistant"], None))
_prompt = _format_no_colon_single(system_message="", messages=_messages, sep=_sep)
return ChatFormatterResponse(prompt=_prompt, stop=_sep)
# Tricky chat formats that require custom chat handlers # Tricky chat formats that require custom chat handlers

File diff suppressed because it is too large Load diff

View file

@ -1498,9 +1498,21 @@ class SchemaConverter:
item_rule_name = self.visit( item_rule_name = self.visit(
schema["items"], f'{name}{"-" if name else ""}item' schema["items"], f'{name}{"-" if name else ""}item'
) )
rule = ( list_item_operator = f'("," space {item_rule_name})'
f'"[" space ({item_rule_name} ("," space {item_rule_name})*)? "]" space' successive_items = ""
) min_items = schema.get("minItems", 0)
if min_items > 0:
first_item = f"({item_rule_name})"
successive_items = list_item_operator * (min_items - 1)
min_items -= 1
else:
first_item = f"({item_rule_name})?"
max_items = schema.get("maxItems")
if max_items is not None and max_items > min_items:
successive_items += (list_item_operator + "?") * (max_items - min_items - 1)
else:
successive_items += list_item_operator + "*"
rule = f'"[" space {first_item} {successive_items} "]" space'
return self._add_rule(rule_name, rule) return self._add_rule(rule_name, rule)
else: else:

View file

@ -5,21 +5,15 @@ from ctypes import (
c_bool, c_bool,
c_char_p, c_char_p,
c_int, c_int,
c_int8,
c_int32,
c_uint8, c_uint8,
c_uint32,
c_size_t,
c_float, c_float,
c_double,
c_void_p, c_void_p,
POINTER, POINTER,
_Pointer, # type: ignore _Pointer, # type: ignore
Structure, Structure,
Array,
) )
import pathlib import pathlib
from typing import List, Union from typing import List, Union, NewType, Optional
import llama_cpp.llama_cpp as llama_cpp import llama_cpp.llama_cpp as llama_cpp
@ -67,7 +61,7 @@ def _load_shared_library(lib_base_name: str):
for _lib_path in _lib_paths: for _lib_path in _lib_paths:
if _lib_path.exists(): if _lib_path.exists():
try: try:
return ctypes.CDLL(str(_lib_path), **cdll_args) return ctypes.CDLL(str(_lib_path), **cdll_args) # type: ignore
except Exception as e: except Exception as e:
raise RuntimeError(f"Failed to load shared library '{_lib_path}': {e}") raise RuntimeError(f"Failed to load shared library '{_lib_path}': {e}")
@ -88,7 +82,8 @@ _libllava = _load_shared_library(_libllava_base_name)
################################################ ################################################
# struct clip_ctx; # struct clip_ctx;
clip_ctx_p = c_void_p clip_ctx_p = NewType("clip_ctx_p", int)
clip_ctx_p_ctypes = c_void_p
# struct llava_image_embed { # struct llava_image_embed {
# float * embed; # float * embed;
@ -102,43 +97,48 @@ class llava_image_embed(Structure):
# /** sanity check for clip <-> llava embed size match */ # /** sanity check for clip <-> llava embed size match */
# LLAVA_API bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx * ctx_clip); # LLAVA_API bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx * ctx_clip);
def llava_validate_embed_size(ctx_llama: llama_cpp.llama_context_p, ctx_clip: clip_ctx_p) -> bool: def llava_validate_embed_size(ctx_llama: llama_cpp.llama_context_p, ctx_clip: clip_ctx_p, /) -> bool:
return _libllava.llava_validate_embed_size(ctx_llama, ctx_clip) ...
_libllava.llava_validate_embed_size.argtypes = [llama_cpp.llama_context_p, clip_ctx_p] llava_validate_embed_size = _libllava.llava_validate_embed_size
_libllava.llava_validate_embed_size.restype = c_bool llava_validate_embed_size.argtypes = [llama_cpp.llama_context_p_ctypes, clip_ctx_p_ctypes]
llava_validate_embed_size.restype = c_bool
# /** build an image embed from image file bytes */ # /** build an image embed from image file bytes */
# LLAVA_API struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * ctx_clip, int n_threads, const unsigned char * image_bytes, int image_bytes_length); # LLAVA_API struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * ctx_clip, int n_threads, const unsigned char * image_bytes, int image_bytes_length);
def llava_image_embed_make_with_bytes(ctx_clip: clip_ctx_p, n_threads: Union[c_int, int], image_bytes: bytes, image_bytes_length: Union[c_int, int]) -> "_Pointer[llava_image_embed]": def llava_image_embed_make_with_bytes(ctx_clip: clip_ctx_p, n_threads: Union[c_int, int], image_bytes: bytes, image_bytes_length: Union[c_int, int], /) -> "_Pointer[llava_image_embed]":
return _libllava.llava_image_embed_make_with_bytes(ctx_clip, n_threads, image_bytes, image_bytes_length) ...
_libllava.llava_image_embed_make_with_bytes.argtypes = [clip_ctx_p, c_int, POINTER(c_uint8), c_int] llava_image_embed_make_with_bytes = _libllava.llava_image_embed_make_with_bytes
_libllava.llava_image_embed_make_with_bytes.restype = POINTER(llava_image_embed) llava_image_embed_make_with_bytes.argtypes = [clip_ctx_p_ctypes, c_int, POINTER(c_uint8), c_int]
llava_image_embed_make_with_bytes.restype = POINTER(llava_image_embed)
# /** build an image embed from a path to an image filename */ # /** build an image embed from a path to an image filename */
# LLAVA_API struct llava_image_embed * llava_image_embed_make_with_filename(struct clip_ctx * ctx_clip, int n_threads, const char * image_path); # LLAVA_API struct llava_image_embed * llava_image_embed_make_with_filename(struct clip_ctx * ctx_clip, int n_threads, const char * image_path);
def llava_image_embed_make_with_filename(ctx_clip: clip_ctx_p, n_threads: Union[c_int, int], image_path: bytes) -> "_Pointer[llava_image_embed]": def llava_image_embed_make_with_filename(ctx_clip: clip_ctx_p, n_threads: Union[c_int, int], image_path: bytes, /) -> "_Pointer[llava_image_embed]":
return _libllava.llava_image_embed_make_with_filename(ctx_clip, n_threads, image_path) ...
_libllava.llava_image_embed_make_with_filename.argtypes = [clip_ctx_p, c_int, c_char_p] llava_image_embed_make_with_filename = _libllava.llava_image_embed_make_with_filename
_libllava.llava_image_embed_make_with_filename.restype = POINTER(llava_image_embed) llava_image_embed_make_with_filename.argtypes = [clip_ctx_p_ctypes, c_int, c_char_p]
llava_image_embed_make_with_filename.restype = POINTER(llava_image_embed)
# LLAVA_API void llava_image_embed_free(struct llava_image_embed * embed); # LLAVA_API void llava_image_embed_free(struct llava_image_embed * embed);
# /** free an embedding made with llava_image_embed_make_* */ # /** free an embedding made with llava_image_embed_make_* */
def llava_image_embed_free(embed: "_Pointer[llava_image_embed]"): def llava_image_embed_free(embed: "_Pointer[llava_image_embed]", /):
return _libllava.llava_image_embed_free(embed) ...
_libllava.llava_image_embed_free.argtypes = [POINTER(llava_image_embed)] llava_image_embed_free = _libllava.llava_image_embed_free
_libllava.llava_image_embed_free.restype = None llava_image_embed_free.argtypes = [POINTER(llava_image_embed)]
llava_image_embed_free.restype = None
# /** write the image represented by embed into the llama context with batch size n_batch, starting at context pos n_past. on completion, n_past points to the next position in the context after the image embed. */ # /** write the image represented by embed into the llama context with batch size n_batch, starting at context pos n_past. on completion, n_past points to the next position in the context after the image embed. */
# LLAVA_API bool llava_eval_image_embed(struct llama_context * ctx_llama, const struct llava_image_embed * embed, int n_batch, int * n_past); # LLAVA_API bool llava_eval_image_embed(struct llama_context * ctx_llama, const struct llava_image_embed * embed, int n_batch, int * n_past);
def llava_eval_image_embed(ctx_llama: llama_cpp.llama_context_p, embed: "_Pointer[llava_image_embed]", n_batch: Union[c_int, int], n_past: "_Pointer[c_int]") -> bool: def llava_eval_image_embed(ctx_llama: llama_cpp.llama_context_p, embed: "_Pointer[llava_image_embed]", n_batch: Union[c_int, int], n_past: "_Pointer[c_int]", /) -> bool:
return _libllava.llava_eval_image_embed(ctx_llama, embed, n_batch, n_past) ...
_libllava.llava_eval_image_embed.argtypes = [llama_cpp.llama_context_p, POINTER(llava_image_embed), c_int, POINTER(c_int)] llava_eval_image_embed = _libllava.llava_eval_image_embed
_libllava.llava_eval_image_embed.restype = c_bool llava_eval_image_embed.argtypes = [llama_cpp.llama_context_p_ctypes, POINTER(llava_image_embed), c_int, POINTER(c_int)]
llava_eval_image_embed.restype = c_bool
################################################ ################################################
@ -148,16 +148,18 @@ _libllava.llava_eval_image_embed.restype = c_bool
# /** load mmproj model */ # /** load mmproj model */
# CLIP_API struct clip_ctx * clip_model_load (const char * fname, int verbosity); # CLIP_API struct clip_ctx * clip_model_load (const char * fname, int verbosity);
def clip_model_load(fname: bytes, verbosity: Union[c_int, int]) -> clip_ctx_p: def clip_model_load(fname: bytes, verbosity: Union[c_int, int], /) -> Optional[clip_ctx_p]:
return _libllava.clip_model_load(fname, verbosity) ...
_libllava.clip_model_load.argtypes = [c_char_p, c_int] clip_model_load = _libllava.clip_model_load
_libllava.clip_model_load.restype = clip_ctx_p clip_model_load.argtypes = [c_char_p, c_int]
clip_model_load.restype = clip_ctx_p_ctypes
# /** free mmproj model */ # /** free mmproj model */
# CLIP_API void clip_free(struct clip_ctx * ctx); # CLIP_API void clip_free(struct clip_ctx * ctx);
def clip_free(ctx: clip_ctx_p): def clip_free(ctx: clip_ctx_p, /):
return _libllava.clip_free(ctx) ...
_libllava.clip_free.argtypes = [clip_ctx_p] clip_free = _libllava.clip_free
_libllava.clip_free.restype = None clip_free.argtypes = [clip_ctx_p_ctypes]
clip_free.restype = None

View file

@ -72,4 +72,4 @@ Documentation = "https://llama-cpp-python.readthedocs.io/en/latest/"
Changelog = "https://llama-cpp-python.readthedocs.io/en/latest/changelog/" Changelog = "https://llama-cpp-python.readthedocs.io/en/latest/changelog/"
[tool.pytest.ini_options] [tool.pytest.ini_options]
addopts = "--ignore=vendor" testpaths = "tests"

View file

@ -54,7 +54,7 @@ def mock_llama(monkeypatch):
output_tokens = llama.tokenize( output_tokens = llama.tokenize(
output_text.encode("utf-8"), add_bos=True, special=True output_text.encode("utf-8"), add_bos=True, special=True
) )
logits = (llama_cpp.c_float * (n_vocab * n_ctx))(-100.0) logits = (ctypes.c_float * (n_vocab * n_ctx))(-100.0)
for i in range(n_ctx): for i in range(n_ctx):
output_idx = i + 1 # logits for first tokens predict second token output_idx = i + 1 # logits for first tokens predict second token
if output_idx < len(output_tokens): if output_idx < len(output_tokens):
@ -90,9 +90,9 @@ def mock_llama(monkeypatch):
assert n > 0, "mock_llama_decode not called" assert n > 0, "mock_llama_decode not called"
assert last_n_tokens > 0, "mock_llama_decode not called" assert last_n_tokens > 0, "mock_llama_decode not called"
# Return view of logits for last_n_tokens # Return view of logits for last_n_tokens
return (llama_cpp.c_float * (last_n_tokens * n_vocab)).from_address( return (ctypes.c_float * (last_n_tokens * n_vocab)).from_address(
ctypes.addressof(logits) ctypes.addressof(logits)
+ (n - last_n_tokens) * n_vocab * ctypes.sizeof(llama_cpp.c_float) + (n - last_n_tokens) * n_vocab * ctypes.sizeof(ctypes.c_float)
) )
monkeypatch.setattr("llama_cpp.llama_cpp.llama_decode", mock_decode) monkeypatch.setattr("llama_cpp.llama_cpp.llama_decode", mock_decode)

2
vendor/llama.cpp vendored

@ -1 +1 @@
Subproject commit f53119cec4f073b6d214195ecbe1fad3abdf2b34 Subproject commit 15499eb94227401bdc8875da6eb85c15d37068f7