docs: Update README
This commit is contained in:
parent
045cc12670
commit
0f8cad6cb7
1 changed files with 12 additions and 8 deletions
20
README.md
20
README.md
|
@ -84,6 +84,7 @@ llama-cpp-python -C cmake.args="-DLLAMA_BLAS=ON;-DLLAMA_BLAS_VENDOR=OpenBLAS"
|
|||
|
||||
</details>
|
||||
|
||||
https://github.com/abetlen/llama-cpp-python/releases/download/${VERSION}/
|
||||
|
||||
### Supported Backends
|
||||
|
||||
|
@ -268,9 +269,9 @@ Below is a short example demonstrating how to use the high-level API to for basi
|
|||
|
||||
Text completion is available through the [`__call__`](https://llama-cpp-python.readthedocs.io/en/latest/api-reference/#llama_cpp.Llama.__call__) and [`create_completion`](https://llama-cpp-python.readthedocs.io/en/latest/api-reference/#llama_cpp.Llama.create_completion) methods of the [`Llama`](https://llama-cpp-python.readthedocs.io/en/latest/api-reference/#llama_cpp.Llama) class.
|
||||
|
||||
## Pulling models from Hugging Face
|
||||
### Pulling models from Hugging Face Hub
|
||||
|
||||
You can pull `Llama` models from Hugging Face using the `from_pretrained` method.
|
||||
You can download `Llama` models in `gguf` format directly from Hugging Face using the [`from_pretrained`](https://llama-cpp-python.readthedocs.io/en/latest/api-reference/#llama_cpp.Llama.from_pretrained) method.
|
||||
You'll need to install the `huggingface-hub` package to use this feature (`pip install huggingface-hub`).
|
||||
|
||||
```python
|
||||
|
@ -281,7 +282,7 @@ llm = Llama.from_pretrained(
|
|||
)
|
||||
```
|
||||
|
||||
By default the `from_pretrained` method will download the model to the huggingface cache directory so you can manage installed model files with the `huggingface-cli` tool.
|
||||
By default [`from_pretrained`](https://llama-cpp-python.readthedocs.io/en/latest/api-reference/#llama_cpp.Llama.from_pretrained) will download the model to the huggingface cache directory, you can then manage installed model files with the [`huggingface-cli`](https://huggingface.co/docs/huggingface_hub/en/guides/cli) tool.
|
||||
|
||||
### Chat Completion
|
||||
|
||||
|
@ -308,13 +309,16 @@ Note that `chat_format` option must be set for the particular model you are usin
|
|||
|
||||
Chat completion is available through the [`create_chat_completion`](https://llama-cpp-python.readthedocs.io/en/latest/api-reference/#llama_cpp.Llama.create_chat_completion) method of the [`Llama`](https://llama-cpp-python.readthedocs.io/en/latest/api-reference/#llama_cpp.Llama) class.
|
||||
|
||||
For OpenAI API v1 compatibility, you use the [`create_chat_completion_openai_v1`](https://llama-cpp-python.readthedocs.io/en/latest/api-reference/#llama_cpp.Llama.create_chat_completion_openai_v1) method which will return pydantic models instead of dicts.
|
||||
|
||||
|
||||
### JSON and JSON Schema Mode
|
||||
|
||||
If you want to constrain chat responses to only valid JSON or a specific JSON Schema you can use the `response_format` argument to the `create_chat_completion` method.
|
||||
To constrain chat responses to only valid JSON or a specific JSON Schema use the `response_format` argument in [`create_chat_completion`](http://localhost:8000/api-reference/#llama_cpp.Llama.create_chat_completion).
|
||||
|
||||
#### JSON Mode
|
||||
|
||||
The following example will constrain the response to be valid JSON.
|
||||
The following example will constrain the response to valid JSON strings only.
|
||||
|
||||
```python
|
||||
>>> from llama_cpp import Llama
|
||||
|
@ -336,7 +340,7 @@ The following example will constrain the response to be valid JSON.
|
|||
|
||||
#### JSON Schema Mode
|
||||
|
||||
To constrain the response to a specific JSON Schema, you can use the `schema` property of the `response_format` argument.
|
||||
To constrain the response further to a specific JSON Schema add the schema to the `schema` property of the `response_format` argument.
|
||||
|
||||
```python
|
||||
>>> from llama_cpp import Llama
|
||||
|
@ -471,7 +475,7 @@ llama = Llama(
|
|||
|
||||
### Embeddings
|
||||
|
||||
`llama-cpp-python` supports generating embeddings from the text.
|
||||
To generate text embeddings use [`create_embedding`](http://localhost:8000/api-reference/#llama_cpp.Llama.create_embedding).
|
||||
|
||||
```python
|
||||
import llama_cpp
|
||||
|
@ -480,7 +484,7 @@ llm = llama_cpp.Llama(model_path="path/to/model.gguf", embeddings=True)
|
|||
|
||||
embeddings = llm.create_embedding("Hello, world!")
|
||||
|
||||
# or batched
|
||||
# or create multiple embeddings at once
|
||||
|
||||
embeddings = llm.create_embedding(["Hello, world!", "Goodbye, world!"])
|
||||
```
|
||||
|
|
Loading…
Add table
Reference in a new issue