2023-04-03 22:54:46 +02:00
|
|
|
|
"""
|
|
|
|
|
This is an example implementation of main.cpp from llama.cpp
|
|
|
|
|
Quirks:
|
|
|
|
|
* Its not exactly alike since this port is designed around programmatic I/O
|
|
|
|
|
* Input is always echoed if on, so it should be turned off when using "input()"
|
|
|
|
|
* The first antiprompt should be the userprompt like "\nUser:",
|
|
|
|
|
because its added when n_predict is reached (aka generation ended prematurely)
|
2023-04-04 11:48:48 +02:00
|
|
|
|
* n_predict can be set to -1 for unlimited length responses (or just a really high value)
|
2023-04-04 16:18:26 +02:00
|
|
|
|
* Instruction mode adds its own antiprompt.
|
|
|
|
|
You should also still be feeding the model with a "primer" prompt that
|
|
|
|
|
shows it the expected format.
|
2023-04-03 22:54:46 +02:00
|
|
|
|
"""
|
2023-04-06 15:30:57 +02:00
|
|
|
|
import sys
|
|
|
|
|
from time import time
|
|
|
|
|
from os import cpu_count
|
|
|
|
|
|
2023-04-03 22:54:46 +02:00
|
|
|
|
import llama_cpp
|
2023-04-06 15:30:57 +02:00
|
|
|
|
from common import GptParams, gpt_params_parse, gpt_random_prompt
|
|
|
|
|
|
|
|
|
|
ANSI_COLOR_RESET = "\x1b[0m"
|
|
|
|
|
ANSI_COLOR_YELLOW = "\x1b[33m"
|
|
|
|
|
ANSI_BOLD = "\x1b[1m"
|
|
|
|
|
ANSI_COLOR_GREEN = "\x1b[32m"
|
|
|
|
|
|
|
|
|
|
CONSOLE_COLOR_DEFAULT = ANSI_COLOR_RESET
|
|
|
|
|
CONSOLE_COLOR_PROMPT = ANSI_COLOR_YELLOW
|
|
|
|
|
CONSOLE_COLOR_USER_INPUT = ANSI_BOLD + ANSI_COLOR_GREEN
|
2023-04-03 22:54:46 +02:00
|
|
|
|
|
2023-04-10 16:35:38 +02:00
|
|
|
|
# Iterative search
|
|
|
|
|
# Actively searches and prevents a pattern from being returned
|
|
|
|
|
class IterSearch:
|
|
|
|
|
def __init__(self, pattern):
|
|
|
|
|
self.pattern = list(pattern)
|
|
|
|
|
self.buffer = []
|
|
|
|
|
|
|
|
|
|
def __call__(self, char):
|
|
|
|
|
self.buffer += [char]
|
|
|
|
|
|
|
|
|
|
if (self.pattern[:len(self.buffer)] == self.buffer):
|
|
|
|
|
if (len(self.buffer) >= len(self.pattern)):
|
|
|
|
|
self.buffer.clear()
|
|
|
|
|
return []
|
|
|
|
|
|
|
|
|
|
_tmp = self.buffer[:]
|
|
|
|
|
self.buffer.clear()
|
|
|
|
|
return _tmp
|
|
|
|
|
|
2023-04-03 22:54:46 +02:00
|
|
|
|
# A LLaMA interactive session
|
|
|
|
|
class LLaMAInteract:
|
2023-04-06 15:30:57 +02:00
|
|
|
|
def __init__(self, params: GptParams) -> None:
|
2023-04-03 22:54:46 +02:00
|
|
|
|
# input args
|
2023-04-06 15:30:57 +02:00
|
|
|
|
self.params = params
|
|
|
|
|
|
|
|
|
|
if (self.params.perplexity):
|
|
|
|
|
raise NotImplementedError("""************
|
|
|
|
|
please use the 'perplexity' tool for perplexity calculations
|
|
|
|
|
************""")
|
|
|
|
|
|
|
|
|
|
if (self.params.embedding):
|
|
|
|
|
raise NotImplementedError("""************
|
|
|
|
|
please use the 'embedding' tool for embedding calculations
|
|
|
|
|
************""")
|
|
|
|
|
|
|
|
|
|
if (self.params.n_ctx > 2048):
|
|
|
|
|
print(f"""warning: model does not support \
|
|
|
|
|
context sizes greater than 2048 tokens ({self.params.n_ctx} \
|
|
|
|
|
specified) expect poor results""", file=sys.stderr)
|
|
|
|
|
|
|
|
|
|
if (self.params.seed <= 0):
|
|
|
|
|
self.params.seed = int(time())
|
|
|
|
|
|
|
|
|
|
print(f"seed = {self.params.seed}", file=sys.stderr)
|
|
|
|
|
|
|
|
|
|
if (self.params.random_prompt):
|
|
|
|
|
self.params.prompt = gpt_random_prompt(self.params.seed)
|
2023-04-03 22:54:46 +02:00
|
|
|
|
|
|
|
|
|
# runtime args
|
|
|
|
|
self.input_consumed = 0
|
|
|
|
|
self.n_past = 0
|
|
|
|
|
self.first_antiprompt = []
|
2023-04-06 15:30:57 +02:00
|
|
|
|
self.remaining_tokens = self.params.n_predict
|
|
|
|
|
self.output_echo = self.params.input_echo
|
2023-04-03 22:54:46 +02:00
|
|
|
|
|
|
|
|
|
# model load
|
|
|
|
|
self.lparams = llama_cpp.llama_context_default_params()
|
2023-04-06 15:30:57 +02:00
|
|
|
|
self.lparams.n_ctx = self.params.n_ctx
|
|
|
|
|
self.lparams.n_parts = self.params.n_parts
|
|
|
|
|
self.lparams.seed = self.params.seed
|
|
|
|
|
self.lparams.memory_f16 = self.params.memory_f16
|
|
|
|
|
self.lparams.use_mlock = self.params.use_mlock
|
2023-04-10 16:35:38 +02:00
|
|
|
|
self.lparams.use_mmap = self.params.use_mmap
|
2023-04-06 15:30:57 +02:00
|
|
|
|
|
|
|
|
|
self.ctx = llama_cpp.llama_init_from_file(self.params.model.encode("utf8"), self.lparams)
|
2023-04-07 13:32:19 +02:00
|
|
|
|
if (not self.ctx):
|
2023-04-06 15:30:57 +02:00
|
|
|
|
raise RuntimeError(f"error: failed to load model '{self.params.model}'")
|
|
|
|
|
|
|
|
|
|
print(file=sys.stderr)
|
|
|
|
|
print(f"system_info: n_threads = {self.params.n_threads} / {cpu_count()} \
|
|
|
|
|
| {llama_cpp.llama_print_system_info().decode('utf8')}", file=sys.stderr)
|
2023-04-03 22:54:46 +02:00
|
|
|
|
|
|
|
|
|
# determine the required inference memory per token:
|
2023-04-06 15:30:57 +02:00
|
|
|
|
if (self.params.mem_test):
|
|
|
|
|
tmp = [0, 1, 2, 3]
|
|
|
|
|
llama_cpp.llama_eval(self.ctx, (llama_cpp.c_int * len(tmp))(*tmp), len(tmp), 0, self.n_threads)
|
|
|
|
|
llama_cpp.llama_print_timings(self.ctx)
|
|
|
|
|
self.exit()
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
# create internal context
|
|
|
|
|
self.n_ctx = llama_cpp.llama_n_ctx(self.ctx)
|
|
|
|
|
|
|
|
|
|
# Add a space in front of the first character to match OG llama tokenizer behavior
|
|
|
|
|
self.params.prompt = " " + self.params.prompt
|
|
|
|
|
|
2023-04-07 13:32:19 +02:00
|
|
|
|
# Load prompt file
|
|
|
|
|
if (self.params.file):
|
|
|
|
|
with open(self.params.file) as f:
|
|
|
|
|
self.params.prompt = f.read()
|
|
|
|
|
|
2023-04-06 15:30:57 +02:00
|
|
|
|
# tokenize the prompt
|
2023-04-07 13:32:19 +02:00
|
|
|
|
self.embd = []
|
2023-04-06 15:30:57 +02:00
|
|
|
|
self.embd_inp = self._tokenize(self.params.prompt)
|
|
|
|
|
|
|
|
|
|
if (len(self.embd_inp) > self.params.n_ctx - 4):
|
|
|
|
|
raise RuntimeError(f"error: prompt is too long ({len(self.embd_inp)} tokens, max {self.params.n_ctx - 4})")
|
|
|
|
|
|
|
|
|
|
# number of tokens to keep when resetting context
|
|
|
|
|
if (self.params.n_keep < 0 or self.params.n_keep > len(self.embd_inp) or self.params.instruct):
|
|
|
|
|
self.params.n_keep = len(self.embd_inp)
|
|
|
|
|
|
|
|
|
|
self.inp_prefix = self._tokenize(self.params.instruct_inp_prefix)
|
|
|
|
|
self.inp_suffix = self._tokenize(self.params.instruct_inp_suffix, False)
|
|
|
|
|
|
|
|
|
|
# in instruct mode, we inject a prefix and a suffix to each input by the user
|
|
|
|
|
if (self.params.instruct):
|
|
|
|
|
self.params.interactive_start = True
|
2023-04-10 16:35:38 +02:00
|
|
|
|
_ptn = self._tokenize(self.params.instruct_inp_prefix.strip(), False)
|
|
|
|
|
self.first_antiprompt.append(_ptn)
|
|
|
|
|
self.antiecho = IterSearch(_ptn)
|
2023-04-06 15:30:57 +02:00
|
|
|
|
|
|
|
|
|
# enable interactive mode if reverse prompt or interactive start is specified
|
|
|
|
|
if (len(self.params.antiprompt) != 0 or self.params.interactive_start):
|
|
|
|
|
self.params.interactive = True
|
2023-04-03 22:54:46 +02:00
|
|
|
|
|
|
|
|
|
# determine newline token
|
2023-04-04 11:48:48 +02:00
|
|
|
|
self.llama_token_newline = self._tokenize("\n", False)
|
2023-04-17 14:45:28 +02:00
|
|
|
|
self.llama_token_eot = self._tokenize(" [end of text]\n", False)
|
2023-04-04 11:48:48 +02:00
|
|
|
|
|
2023-04-06 15:30:57 +02:00
|
|
|
|
if (self.params.verbose_prompt):
|
|
|
|
|
print(f"""
|
|
|
|
|
prompt: '{self.params.prompt}'
|
|
|
|
|
number of tokens in prompt = {len(self.embd_inp)}""", file=sys.stderr)
|
2023-04-03 22:54:46 +02:00
|
|
|
|
|
2023-04-06 15:30:57 +02:00
|
|
|
|
for i in range(len(self.embd_inp)):
|
|
|
|
|
print(f"{self.embd_inp[i]} -> '{llama_cpp.llama_token_to_str(self.ctx, self.embd_inp[i])}'", file=sys.stderr)
|
2023-04-04 11:48:48 +02:00
|
|
|
|
|
2023-04-06 15:30:57 +02:00
|
|
|
|
if (self.params.n_keep > 0):
|
|
|
|
|
print("static prompt based on n_keep: '")
|
|
|
|
|
for i in range(self.params.n_keep):
|
|
|
|
|
print(llama_cpp.llama_token_to_str(self.ctx, self.embd_inp[i]), file=sys.stderr)
|
|
|
|
|
print("'", file=sys.stderr)
|
|
|
|
|
print(file=sys.stderr)
|
2023-04-03 22:54:46 +02:00
|
|
|
|
|
2023-04-06 15:30:57 +02:00
|
|
|
|
if (self.params.interactive):
|
|
|
|
|
print("interactive mode on.", file=sys.stderr)
|
|
|
|
|
|
|
|
|
|
if (len(self.params.antiprompt) > 0):
|
|
|
|
|
for antiprompt in self.params.antiprompt:
|
|
|
|
|
print(f"Reverse prompt: '{antiprompt}'", file=sys.stderr)
|
|
|
|
|
|
|
|
|
|
if len(self.params.input_prefix) > 0:
|
|
|
|
|
print(f"Input prefix: '{self.params.input_prefix}'", file=sys.stderr)
|
|
|
|
|
|
|
|
|
|
print(f"""sampling: temp = {self.params.temp},\
|
|
|
|
|
top_k = {self.params.top_k},\
|
|
|
|
|
top_p = {self.params.top_p},\
|
|
|
|
|
repeat_last_n = {self.params.repeat_last_n},\
|
|
|
|
|
repeat_penalty = {self.params.repeat_penalty}
|
|
|
|
|
|
|
|
|
|
generate: n_ctx = {self.n_ctx}, \
|
|
|
|
|
n_batch = {self.params.n_batch}, \
|
|
|
|
|
n_predict = {self.params.n_predict}, \
|
|
|
|
|
n_keep = {self.params.n_keep}
|
|
|
|
|
""", file=sys.stderr)
|
2023-04-03 22:54:46 +02:00
|
|
|
|
|
|
|
|
|
# determine antiprompt tokens
|
2023-04-06 15:30:57 +02:00
|
|
|
|
for i in self.params.antiprompt:
|
2023-04-04 11:48:48 +02:00
|
|
|
|
self.first_antiprompt.append(self._tokenize(i, False))
|
|
|
|
|
|
2023-04-06 15:30:57 +02:00
|
|
|
|
self.last_n_tokens = [0]*self.n_ctx #TODO: deque doesnt support slices
|
|
|
|
|
|
|
|
|
|
if (params.interactive):
|
|
|
|
|
print("""== Running in interactive mode. ==
|
|
|
|
|
- Press Ctrl+C to interject at any time.
|
|
|
|
|
- Press Return to return control to LLaMa.
|
|
|
|
|
- If you want to submit another line, end your input in '\\'.
|
|
|
|
|
|
|
|
|
|
""", file=sys.stderr)
|
|
|
|
|
self.set_color(CONSOLE_COLOR_PROMPT)
|
|
|
|
|
|
2023-04-04 11:48:48 +02:00
|
|
|
|
# tokenize a prompt
|
|
|
|
|
def _tokenize(self, prompt, bos=True):
|
|
|
|
|
_arr = (llama_cpp.llama_token * (len(prompt) + 1))()
|
|
|
|
|
_n = llama_cpp.llama_tokenize(self.ctx, prompt.encode("utf8"), _arr, len(_arr), bos)
|
|
|
|
|
return _arr[:_n]
|
2023-04-03 22:54:46 +02:00
|
|
|
|
|
2023-04-06 15:30:57 +02:00
|
|
|
|
def set_color(self, c):
|
|
|
|
|
if (self.params.use_color):
|
2023-04-06 15:33:22 +02:00
|
|
|
|
print(c, end="")
|
2023-04-06 15:30:57 +02:00
|
|
|
|
|
2023-04-17 14:45:28 +02:00
|
|
|
|
def use_antiprompt(self):
|
|
|
|
|
return len(self.first_antiprompt) > 0
|
|
|
|
|
|
2023-04-04 11:48:48 +02:00
|
|
|
|
# generate tokens
|
2023-04-03 22:54:46 +02:00
|
|
|
|
def generate(self):
|
2023-04-17 14:45:28 +02:00
|
|
|
|
while self.remaining_tokens > 0 or self.params.interactive or self.params.n_predict == -1:
|
2023-04-03 22:54:46 +02:00
|
|
|
|
# predict
|
|
|
|
|
if len(self.embd) > 0:
|
|
|
|
|
# infinite text generation via context swapping
|
|
|
|
|
# if we run out of context:
|
|
|
|
|
# - take the n_keep first tokens from the original prompt (via n_past)
|
|
|
|
|
# - take half of the last (n_ctx - n_keep) tokens and recompute the logits in a batch
|
|
|
|
|
if (self.n_past + len(self.embd) > self.n_ctx):
|
2023-04-06 15:30:57 +02:00
|
|
|
|
n_left = self.n_past - self.params.n_keep
|
|
|
|
|
self.n_past = self.params.n_keep
|
2023-04-03 22:54:46 +02:00
|
|
|
|
|
|
|
|
|
# insert n_left/2 tokens at the start of embd from last_n_tokens
|
|
|
|
|
_insert = self.last_n_tokens[
|
2023-04-04 16:18:26 +02:00
|
|
|
|
self.n_ctx - int(n_left/2) - len(self.embd):-len(self.embd)
|
2023-04-03 22:54:46 +02:00
|
|
|
|
]
|
2023-04-04 16:18:26 +02:00
|
|
|
|
self.embd = _insert + self.embd
|
2023-04-03 22:54:46 +02:00
|
|
|
|
|
|
|
|
|
if (llama_cpp.llama_eval(
|
2023-04-06 15:30:57 +02:00
|
|
|
|
self.ctx, (llama_cpp.llama_token * len(self.embd))(*self.embd), len(self.embd), self.n_past, self.params.n_threads
|
2023-04-03 22:54:46 +02:00
|
|
|
|
) != 0):
|
|
|
|
|
raise Exception("Failed to llama_eval!")
|
|
|
|
|
|
|
|
|
|
self.n_past += len(self.embd)
|
|
|
|
|
self.embd = []
|
|
|
|
|
if len(self.embd_inp) <= self.input_consumed:
|
|
|
|
|
# out of user input, sample next token
|
2023-04-06 15:30:57 +02:00
|
|
|
|
|
2023-04-10 16:35:38 +02:00
|
|
|
|
if (self.params.ignore_eos):
|
|
|
|
|
logits = llama_cpp.llama_get_logits(self.ctx)
|
|
|
|
|
logits[llama_cpp.llama_token_eos()] = llama_cpp.c_float(0)
|
2023-04-06 15:30:57 +02:00
|
|
|
|
|
|
|
|
|
_arr = self.last_n_tokens[-min(self.params.repeat_last_n, self.n_past):]
|
2023-04-03 22:54:46 +02:00
|
|
|
|
id = llama_cpp.llama_sample_top_p_top_k(
|
|
|
|
|
self.ctx,
|
|
|
|
|
(llama_cpp.llama_token * len(_arr))(*_arr),
|
|
|
|
|
len(_arr),
|
2023-04-06 15:30:57 +02:00
|
|
|
|
self.params.top_k,
|
|
|
|
|
self.params.top_p,
|
|
|
|
|
self.params.temp,
|
|
|
|
|
self.params.repeat_penalty,
|
2023-04-03 22:54:46 +02:00
|
|
|
|
)
|
|
|
|
|
self.last_n_tokens.pop(0)
|
2023-04-04 11:48:48 +02:00
|
|
|
|
self.last_n_tokens.append(id)
|
2023-04-03 22:54:46 +02:00
|
|
|
|
|
|
|
|
|
# replace end of text token with newline token when in interactive mode
|
2023-04-06 15:30:57 +02:00
|
|
|
|
if (id == llama_cpp.llama_token_eos() and self.params.interactive and not self.params.instruct):
|
2023-04-03 22:54:46 +02:00
|
|
|
|
id = self.llama_token_newline[0]
|
2023-04-06 15:30:57 +02:00
|
|
|
|
if (self.use_antiprompt()):
|
|
|
|
|
# tokenize and inject first reverse prompt
|
|
|
|
|
self.embd_inp += self.first_antiprompt[0]
|
2023-04-03 22:54:46 +02:00
|
|
|
|
|
|
|
|
|
# add it to the context
|
2023-04-04 11:48:48 +02:00
|
|
|
|
self.embd.append(id)
|
2023-04-03 22:54:46 +02:00
|
|
|
|
|
|
|
|
|
# echo this to console
|
|
|
|
|
self.output_echo = True
|
|
|
|
|
|
|
|
|
|
# decrement remaining sampling budget
|
|
|
|
|
self.remaining_tokens -= 1
|
|
|
|
|
else:
|
|
|
|
|
# output to console if input echo is on
|
2023-04-06 15:30:57 +02:00
|
|
|
|
self.output_echo = self.params.input_echo
|
2023-04-03 22:54:46 +02:00
|
|
|
|
|
|
|
|
|
# some user input remains from prompt or interaction, forward it to processing
|
|
|
|
|
while len(self.embd_inp) > self.input_consumed:
|
2023-04-04 11:48:48 +02:00
|
|
|
|
self.embd.append(self.embd_inp[self.input_consumed])
|
2023-04-03 22:54:46 +02:00
|
|
|
|
self.last_n_tokens.pop(0)
|
2023-04-04 11:48:48 +02:00
|
|
|
|
self.last_n_tokens.append(self.embd_inp[self.input_consumed])
|
2023-04-03 22:54:46 +02:00
|
|
|
|
self.input_consumed += 1
|
2023-04-06 15:30:57 +02:00
|
|
|
|
if len(self.embd) >= self.params.n_batch:
|
2023-04-03 22:54:46 +02:00
|
|
|
|
break
|
|
|
|
|
|
|
|
|
|
# display tokens
|
|
|
|
|
if self.output_echo:
|
|
|
|
|
for id in self.embd:
|
2023-04-10 16:35:38 +02:00
|
|
|
|
if self.params.instruct:
|
|
|
|
|
for r in self.antiecho(id):
|
|
|
|
|
yield r
|
|
|
|
|
else:
|
|
|
|
|
yield id
|
2023-04-03 22:54:46 +02:00
|
|
|
|
|
2023-04-06 15:30:57 +02:00
|
|
|
|
# reset color to default if we there is no pending user input
|
|
|
|
|
if (self.params.input_echo and len(self.embd_inp) == self.input_consumed):
|
|
|
|
|
self.set_color(CONSOLE_COLOR_DEFAULT)
|
|
|
|
|
|
|
|
|
|
if (self.params.interactive and len(self.embd_inp) <= self.input_consumed):
|
2023-04-04 11:48:48 +02:00
|
|
|
|
# if antiprompt is present, stop
|
|
|
|
|
if (self.use_antiprompt()):
|
2023-04-05 14:47:24 +02:00
|
|
|
|
if True in [
|
|
|
|
|
i == self.last_n_tokens[-len(i):]
|
|
|
|
|
for i in self.first_antiprompt
|
|
|
|
|
]:
|
|
|
|
|
break
|
2023-04-04 11:48:48 +02:00
|
|
|
|
|
|
|
|
|
# if we are using instruction mode, and we have processed the initial prompt
|
2023-04-10 16:35:38 +02:00
|
|
|
|
if (self.params.interactive_start):
|
2023-04-04 11:48:48 +02:00
|
|
|
|
break
|
2023-04-03 22:54:46 +02:00
|
|
|
|
|
2023-04-06 15:30:57 +02:00
|
|
|
|
# end of text token
|
2023-04-03 22:54:46 +02:00
|
|
|
|
if len(self.embd) > 0 and self.embd[-1] == llama_cpp.llama_token_eos():
|
2023-04-06 15:30:57 +02:00
|
|
|
|
if (not self.params.instruct):
|
2023-04-17 14:45:28 +02:00
|
|
|
|
for i in self.llama_token_eot:
|
2023-04-06 15:30:57 +02:00
|
|
|
|
yield i
|
2023-04-03 22:54:46 +02:00
|
|
|
|
break
|
|
|
|
|
|
|
|
|
|
# respect n_predict even if antiprompt is present
|
2023-04-06 15:30:57 +02:00
|
|
|
|
if (self.params.interactive and self.remaining_tokens <= 0 and self.params.n_predict != -1):
|
|
|
|
|
# If we arent in instruction mode, fix the current generation by appending the antiprompt.
|
|
|
|
|
# Makes it so if chat ends prematurely you dont append the AI's text etc.
|
|
|
|
|
if not self.params.instruct:
|
2023-04-04 17:54:47 +02:00
|
|
|
|
self.embd_inp += self.first_antiprompt[0]
|
2023-04-06 15:30:57 +02:00
|
|
|
|
self.n_remain = self.params.n_predict
|
2023-04-03 22:54:46 +02:00
|
|
|
|
break
|
|
|
|
|
|
2023-04-06 15:30:57 +02:00
|
|
|
|
self.params.interactive_start = False
|
2023-04-05 14:47:24 +02:00
|
|
|
|
|
2023-04-04 16:18:26 +02:00
|
|
|
|
def __enter__(self):
|
|
|
|
|
return self
|
|
|
|
|
|
|
|
|
|
def __exit__(self, type, value, tb):
|
2023-04-06 15:30:57 +02:00
|
|
|
|
self.exit()
|
|
|
|
|
|
|
|
|
|
def exit(self):
|
2023-04-04 16:18:26 +02:00
|
|
|
|
llama_cpp.llama_free(self.ctx)
|
2023-04-06 15:30:57 +02:00
|
|
|
|
self.set_color(CONSOLE_COLOR_DEFAULT)
|
2023-04-04 16:18:26 +02:00
|
|
|
|
|
2023-04-04 11:48:48 +02:00
|
|
|
|
# return past text
|
2023-04-03 22:54:46 +02:00
|
|
|
|
def past(self):
|
|
|
|
|
for id in self.last_n_tokens[-self.n_past:]:
|
|
|
|
|
yield llama_cpp.llama_token_to_str(self.ctx, id).decode("utf-8")
|
|
|
|
|
|
2023-04-04 11:48:48 +02:00
|
|
|
|
# write input
|
2023-04-03 22:54:46 +02:00
|
|
|
|
def input(self, prompt: str):
|
2023-04-06 15:30:57 +02:00
|
|
|
|
if (self.params.instruct and self.last_n_tokens[-len(self.inp_prefix):] != self.inp_prefix):
|
2023-04-04 11:48:48 +02:00
|
|
|
|
self.embd_inp += self.inp_prefix
|
2023-04-04 16:18:26 +02:00
|
|
|
|
self.embd_inp += self._tokenize(prompt)
|
2023-04-06 15:30:57 +02:00
|
|
|
|
if (self.params.instruct):
|
2023-04-04 11:48:48 +02:00
|
|
|
|
self.embd_inp += self.inp_suffix
|
2023-04-03 22:54:46 +02:00
|
|
|
|
|
2023-04-04 11:48:48 +02:00
|
|
|
|
# write output
|
2023-04-03 22:54:46 +02:00
|
|
|
|
def output(self):
|
2023-04-06 15:30:57 +02:00
|
|
|
|
self.remaining_tokens = self.params.n_predict
|
2023-04-03 22:54:46 +02:00
|
|
|
|
for id in self.generate():
|
|
|
|
|
yield llama_cpp.llama_token_to_str(self.ctx, id).decode("utf-8")
|
|
|
|
|
|
2023-04-06 15:30:57 +02:00
|
|
|
|
# read user input
|
|
|
|
|
def read_input(self):
|
|
|
|
|
out = ""
|
|
|
|
|
while (t := input()).endswith("\\"):
|
|
|
|
|
out += t[:-1] + "\n"
|
|
|
|
|
return out + t + "\n"
|
|
|
|
|
|
|
|
|
|
# interactive mode
|
|
|
|
|
def interact(self):
|
|
|
|
|
for i in self.output():
|
|
|
|
|
print(i,end="",flush=True)
|
|
|
|
|
self.params.input_echo = False
|
|
|
|
|
|
|
|
|
|
while self.params.interactive:
|
|
|
|
|
self.set_color(CONSOLE_COLOR_USER_INPUT)
|
|
|
|
|
if (self.params.instruct):
|
|
|
|
|
print('\n> ', end="")
|
|
|
|
|
self.input(self.read_input())
|
|
|
|
|
else:
|
|
|
|
|
print(self.params.input_prefix, end="")
|
|
|
|
|
self.input(f"{self.params.input_prefix}{self.read_input()}{self.params.output_postfix}")
|
|
|
|
|
print(self.params.output_postfix,end="")
|
|
|
|
|
self.set_color(CONSOLE_COLOR_DEFAULT)
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
for i in self.output():
|
|
|
|
|
print(i,end="",flush=True)
|
|
|
|
|
except KeyboardInterrupt:
|
|
|
|
|
self.set_color(CONSOLE_COLOR_DEFAULT)
|
|
|
|
|
if not self.params.instruct:
|
|
|
|
|
print(self.params.fix_prefix,end="")
|
|
|
|
|
self.input(self.params.fix_prefix)
|
|
|
|
|
|
2023-04-03 22:54:46 +02:00
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
from datetime import datetime
|
|
|
|
|
|
|
|
|
|
USER_NAME="User"
|
|
|
|
|
AI_NAME="ChatLLaMa"
|
2023-04-04 11:48:48 +02:00
|
|
|
|
|
2023-04-03 22:54:46 +02:00
|
|
|
|
time_now = datetime.now()
|
|
|
|
|
prompt = f"""Text transcript of a never ending dialog, where {USER_NAME} interacts with an AI assistant named {AI_NAME}.
|
|
|
|
|
{AI_NAME} is helpful, kind, honest, friendly, good at writing and never fails to answer {USER_NAME}’s requests immediately and with details and precision.
|
|
|
|
|
There are no annotations like (30 seconds passed...) or (to himself), just what {USER_NAME} and {AI_NAME} say aloud to each other.
|
|
|
|
|
The dialog lasts for years, the entirety of it is shared below. It's 10000 pages long.
|
|
|
|
|
The transcript only includes text, it does not include markup like HTML and Markdown.
|
|
|
|
|
|
|
|
|
|
{USER_NAME}: Hello, {AI_NAME}!
|
|
|
|
|
{AI_NAME}: Hello {USER_NAME}! How may I help you today?
|
|
|
|
|
{USER_NAME}: What time is it?
|
|
|
|
|
{AI_NAME}: It is {time_now.strftime("%H:%M")}.
|
|
|
|
|
{USER_NAME}: What year is it?
|
|
|
|
|
{AI_NAME}: We are in {time_now.strftime("%Y")}.
|
|
|
|
|
{USER_NAME}: What is a cat?
|
|
|
|
|
{AI_NAME}: A cat is a domestic species of small carnivorous mammal. It is the only domesticated species in the family Felidae.
|
|
|
|
|
{USER_NAME}: Name a color.
|
|
|
|
|
{AI_NAME}: Blue
|
|
|
|
|
{USER_NAME}:"""
|
2023-04-06 15:30:57 +02:00
|
|
|
|
args = gpt_params_parse()
|
2023-04-07 13:32:19 +02:00
|
|
|
|
params = GptParams(**vars(args))
|
2023-04-04 16:18:26 +02:00
|
|
|
|
|
2023-04-07 13:32:19 +02:00
|
|
|
|
with LLaMAInteract(params) as m:
|
2023-04-06 15:30:57 +02:00
|
|
|
|
m.interact()
|