Chat llama.cpp example implementation

This commit is contained in:
Mug 2023-04-03 22:54:46 +02:00
parent 7d1977e8f0
commit f1615f05e6

View file

@ -0,0 +1,235 @@
"""
This is an example implementation of main.cpp from llama.cpp
Quirks:
* Its not exactly alike since this port is designed around programmatic I/O
* Input is always echoed if on, so it should be turned off when using "input()"
* The first antiprompt should be the userprompt like "\nUser:",
because its added when n_predict is reached (aka generation ended prematurely)
* n_predict can be set to -1 for unlimited length responses
"""
import llama_cpp
def toIntArray(lst):
return [int(i) for i in lst]
# A LLaMA interactive session
class LLaMAInteract:
def __init__(self,
primer: str="",
model: str="./models/30B/ggml-model-q4_0.bin",
n_ctx: int=1024,
seed: int=0,
n_threads: int=8,
antiprompt: list[str]=[],
input_echo: bool=True,
n_predict: int=20,
n_batch: int=8,
repeat_last_n: int=64,
top_k: int=50,
top_p: float=1.,
temp: float=1.0,
repeat_penalty: float=1,
) -> None:
# input args
self.n_threads = n_threads
self.input_echo = input_echo
self.n_predict = n_predict
self.n_batch = n_batch
self.repeat_last_n = repeat_last_n
self.top_k=top_k
self.top_p=top_p
self.temp=temp
self.repeat_penalty=repeat_penalty
self.n_ctx = n_ctx
self.seed = seed
# runtime args
self.input_consumed = 0
self.embd = []
self.embd_inp = []
self.n_past = 0
self.first_antiprompt = []
self.remaining_tokens = self.n_predict
self.output_echo = input_echo
# model load
self.lparams = llama_cpp.llama_context_default_params()
self.lparams.n_ctx = self.n_ctx
self.lparams.seed = self.seed
self.ctx = llama_cpp.llama_init_from_file(model.encode("utf8"), self.lparams)
# determine the required inference memory per token:
tmp = [0, 1, 2, 3]
llama_cpp.llama_eval(self.ctx, (llama_cpp.c_int * len(tmp))(*tmp), len(tmp), 0, self.n_threads)
# determine newline token
self.llama_token_newline = (llama_cpp.llama_token * 1)()
llama_cpp.llama_tokenize(self.ctx, b"\n", self.llama_token_newline, len(self.llama_token_newline), False)
self.llama_token_newline = toIntArray(self.llama_token_newline)
# primer feed
if (len(primer) > 0):
self.input(primer)
self.n_keep = len(self.embd_inp)
# create internal context
self.n_ctx = int(llama_cpp.llama_n_ctx(self.ctx))
self.last_n_tokens = [0]*self.n_ctx #TODO: deque doesnt support slices
# determine antiprompt tokens
for i in antiprompt:
d_antiprompt = (llama_cpp.llama_token * (len(i) + 1))()
n_antiprompt = llama_cpp.llama_tokenize(self.ctx, i.encode("utf8"), d_antiprompt, len(d_antiprompt), False)
self.first_antiprompt.append(toIntArray(d_antiprompt[:n_antiprompt]))
# if an antiprompt is present
def use_antiprompt(self):
return len(self.first_antiprompt) > 0
def generate(self):
while self.remaining_tokens > 0 or self.use_antiprompt():
# predict
if len(self.embd) > 0:
# infinite text generation via context swapping
# if we run out of context:
# - take the n_keep first tokens from the original prompt (via n_past)
# - take half of the last (n_ctx - n_keep) tokens and recompute the logits in a batch
if (self.n_past + len(self.embd) > self.n_ctx):
n_left = self.n_past - self.n_keep
self.n_past = self.n_keep
# insert n_left/2 tokens at the start of embd from last_n_tokens
_insert = self.last_n_tokens[
-(int(n_left/2) - len(self.embd)):-len(self.embd)
]
self.embd[:len(_insert)] = _insert
#TODO: Still untested
if (llama_cpp.llama_eval(
self.ctx, (llama_cpp.llama_token * len(self.embd))(*self.embd), len(self.embd), self.n_past, self.n_threads
) != 0):
raise Exception("Failed to llama_eval!")
self.n_past += len(self.embd)
self.embd = []
if len(self.embd_inp) <= self.input_consumed:
# out of user input, sample next token
_arr = self.last_n_tokens[-min(self.repeat_last_n, self.n_past):]
id = llama_cpp.llama_sample_top_p_top_k(
self.ctx,
(llama_cpp.llama_token * len(_arr))(*_arr),
len(_arr),
self.top_k,
self.top_p,
self.temp,
self.repeat_penalty,
)
self.last_n_tokens.pop(0)
self.last_n_tokens.append(int(id))
# replace end of text token with newline token when in interactive mode
if (id == llama_cpp.llama_token_eos() and self.use_antiprompt()):
id = self.llama_token_newline[0]
# tokenize and inject first reverse prompt
self.embd_inp += self.first_antiprompt[0]
# add it to the context
self.embd.append(int(id))
# echo this to console
self.output_echo = True
# decrement remaining sampling budget
self.remaining_tokens -= 1
else:
# output to console if input echo is on
self.output_echo = self.input_echo
# some user input remains from prompt or interaction, forward it to processing
while len(self.embd_inp) > self.input_consumed:
self.embd.append(int(self.embd_inp[self.input_consumed]))
self.last_n_tokens.pop(0)
self.last_n_tokens.append(int(self.embd_inp[self.input_consumed]))
self.input_consumed += 1
if len(self.embd) >= self.n_batch:
break
# display tokens
if self.output_echo:
for id in self.embd:
yield id
# if antiprompt is present, stop
if (self.use_antiprompt() and len(self.embd_inp) <= self.input_consumed):
for i in self.first_antiprompt:
if i == self.last_n_tokens[-len(i):]:
return
# if end of generation
if len(self.embd) > 0 and self.embd[-1] == llama_cpp.llama_token_eos():
break
# respect n_predict even if antiprompt is present
if (self.use_antiprompt() and self.remaining_tokens <= 0 and self.n_predict != -1):
self.embd_inp += self.first_antiprompt[0]
break
def past(self):
for id in self.last_n_tokens[-self.n_past:]:
yield llama_cpp.llama_token_to_str(self.ctx, id).decode("utf-8")
def input(self, prompt: str):
embd_arr = (llama_cpp.llama_token * (len(prompt) + 1))()
n_of_tok = llama_cpp.llama_tokenize(self.ctx, prompt.encode("utf8"), embd_arr, len(embd_arr), True)
self.embd_inp += toIntArray(embd_arr[:n_of_tok])
def output(self):
self.remaining_tokens = self.n_predict
for id in self.generate():
yield llama_cpp.llama_token_to_str(self.ctx, id).decode("utf-8")
if __name__ == "__main__":
from datetime import datetime
USER_NAME="User"
AI_NAME="ChatLLaMa"
time_now = datetime.now()
prompt = f"""Text transcript of a never ending dialog, where {USER_NAME} interacts with an AI assistant named {AI_NAME}.
{AI_NAME} is helpful, kind, honest, friendly, good at writing and never fails to answer {USER_NAME}s requests immediately and with details and precision.
There are no annotations like (30 seconds passed...) or (to himself), just what {USER_NAME} and {AI_NAME} say aloud to each other.
The dialog lasts for years, the entirety of it is shared below. It's 10000 pages long.
The transcript only includes text, it does not include markup like HTML and Markdown.
{USER_NAME}: Hello, {AI_NAME}!
{AI_NAME}: Hello {USER_NAME}! How may I help you today?
{USER_NAME}: What time is it?
{AI_NAME}: It is {time_now.strftime("%H:%M")}.
{USER_NAME}: What year is it?
{AI_NAME}: We are in {time_now.strftime("%Y")}.
{USER_NAME}: What is a cat?
{AI_NAME}: A cat is a domestic species of small carnivorous mammal. It is the only domesticated species in the family Felidae.
{USER_NAME}: Name a color.
{AI_NAME}: Blue
{USER_NAME}:"""
print("Loading model...")
ll = LLaMAInteract(prompt,
model="./models/30B/ggml-model-q4_0.bin",
n_ctx=2048,
antiprompt=[f"\n{USER_NAME}:"],
repeat_last_n=256,
n_predict=2048,
temp=0.7, top_p=0.5, top_k=40, repeat_penalty=1.17647
)
print("Loaded model!")
for i in ll.output():
print(i,end="",flush=True)
ll.input_echo = False
inp = lambda x: f" {x}\n"
while True:
ll.input(inp(input(' ')))
for i in ll.output():
print(i,end="",flush=True)