2023-03-24 23:10:31 +00:00
|
|
|
"""Example FastAPI server for llama.cpp.
|
2023-04-04 00:12:44 +00:00
|
|
|
|
|
|
|
To run this example:
|
|
|
|
|
|
|
|
```bash
|
|
|
|
pip install fastapi uvicorn sse-starlette
|
|
|
|
export MODEL=../models/7B/...
|
|
|
|
uvicorn fastapi_server_chat:app --reload
|
|
|
|
```
|
|
|
|
|
|
|
|
Then visit http://localhost:8000/docs to see the interactive API docs.
|
|
|
|
|
2023-03-24 23:10:31 +00:00
|
|
|
"""
|
2023-04-04 04:52:44 +00:00
|
|
|
import os
|
2023-04-01 17:05:20 +00:00
|
|
|
import json
|
2023-04-05 18:44:26 +00:00
|
|
|
from typing import List, Optional, Literal, Union, Iterator, Dict
|
|
|
|
from typing_extensions import TypedDict
|
2023-03-24 05:41:24 +00:00
|
|
|
|
2023-04-01 17:05:20 +00:00
|
|
|
import llama_cpp
|
2023-03-24 05:41:24 +00:00
|
|
|
|
|
|
|
from fastapi import FastAPI
|
2023-04-01 17:05:20 +00:00
|
|
|
from fastapi.middleware.cors import CORSMiddleware
|
|
|
|
from pydantic import BaseModel, BaseSettings, Field, create_model_from_typeddict
|
|
|
|
from sse_starlette.sse import EventSourceResponse
|
2023-03-24 05:41:24 +00:00
|
|
|
|
2023-03-24 18:35:41 +00:00
|
|
|
|
2023-03-24 05:41:24 +00:00
|
|
|
class Settings(BaseSettings):
|
|
|
|
model: str
|
2023-04-04 04:52:44 +00:00
|
|
|
n_ctx: int = 2048
|
2023-04-05 22:17:29 +00:00
|
|
|
n_batch: int = 8
|
|
|
|
n_threads: int = int(os.cpu_count() / 2) or 1
|
2023-04-04 04:52:44 +00:00
|
|
|
f16_kv: bool = True
|
2023-04-05 22:17:29 +00:00
|
|
|
use_mlock: bool = False # This causes a silent failure on platforms that don't support mlock (e.g. Windows) took forever to figure out...
|
2023-04-04 04:52:44 +00:00
|
|
|
embedding: bool = True
|
|
|
|
last_n_tokens_size: int = 64
|
2023-03-24 05:41:24 +00:00
|
|
|
|
2023-03-24 18:35:41 +00:00
|
|
|
|
2023-03-24 05:41:24 +00:00
|
|
|
app = FastAPI(
|
|
|
|
title="🦙 llama.cpp Python API",
|
|
|
|
version="0.0.1",
|
|
|
|
)
|
2023-04-01 17:05:20 +00:00
|
|
|
app.add_middleware(
|
|
|
|
CORSMiddleware,
|
|
|
|
allow_origins=["*"],
|
|
|
|
allow_credentials=True,
|
|
|
|
allow_methods=["*"],
|
|
|
|
allow_headers=["*"],
|
|
|
|
)
|
2023-03-24 05:41:24 +00:00
|
|
|
settings = Settings()
|
2023-04-01 17:05:20 +00:00
|
|
|
llama = llama_cpp.Llama(
|
|
|
|
settings.model,
|
2023-04-04 04:52:44 +00:00
|
|
|
f16_kv=settings.f16_kv,
|
|
|
|
use_mlock=settings.use_mlock,
|
|
|
|
embedding=settings.embedding,
|
|
|
|
n_threads=settings.n_threads,
|
|
|
|
n_batch=settings.n_batch,
|
|
|
|
n_ctx=settings.n_ctx,
|
|
|
|
last_n_tokens_size=settings.last_n_tokens_size,
|
2023-04-01 17:05:20 +00:00
|
|
|
)
|
2023-03-24 05:41:24 +00:00
|
|
|
|
2023-03-24 18:35:41 +00:00
|
|
|
|
2023-04-01 17:05:20 +00:00
|
|
|
class CreateCompletionRequest(BaseModel):
|
2023-03-24 05:41:24 +00:00
|
|
|
prompt: str
|
|
|
|
suffix: Optional[str] = Field(None)
|
|
|
|
max_tokens: int = 16
|
|
|
|
temperature: float = 0.8
|
|
|
|
top_p: float = 0.95
|
|
|
|
echo: bool = False
|
|
|
|
stop: List[str] = []
|
2023-04-01 17:05:20 +00:00
|
|
|
stream: bool = False
|
2023-03-24 05:41:24 +00:00
|
|
|
|
2023-04-05 18:44:26 +00:00
|
|
|
# ignored or currently unsupported
|
|
|
|
model: Optional[str] = Field(None)
|
|
|
|
n: Optional[int] = 1
|
|
|
|
logprobs: Optional[int] = Field(None)
|
|
|
|
presence_penalty: Optional[float] = 0
|
|
|
|
frequency_penalty: Optional[float] = 0
|
|
|
|
best_of: Optional[int] = 1
|
|
|
|
logit_bias: Optional[Dict[str, float]] = Field(None)
|
|
|
|
user: Optional[str] = Field(None)
|
|
|
|
|
|
|
|
# llama.cpp specific parameters
|
|
|
|
top_k: int = 40
|
|
|
|
repeat_penalty: float = 1.1
|
|
|
|
|
2023-03-24 05:41:24 +00:00
|
|
|
class Config:
|
|
|
|
schema_extra = {
|
|
|
|
"example": {
|
2023-03-24 18:34:15 +00:00
|
|
|
"prompt": "\n\n### Instructions:\nWhat is the capital of France?\n\n### Response:\n",
|
2023-03-24 18:35:41 +00:00
|
|
|
"stop": ["\n", "###"],
|
2023-03-24 05:41:24 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2023-04-01 17:05:20 +00:00
|
|
|
CreateCompletionResponse = create_model_from_typeddict(llama_cpp.Completion)
|
|
|
|
|
|
|
|
|
|
|
|
@app.post(
|
|
|
|
"/v1/completions",
|
|
|
|
response_model=CreateCompletionResponse,
|
|
|
|
)
|
|
|
|
def create_completion(request: CreateCompletionRequest):
|
|
|
|
if request.stream:
|
|
|
|
chunks: Iterator[llama_cpp.CompletionChunk] = llama(**request.dict()) # type: ignore
|
|
|
|
return EventSourceResponse(dict(data=json.dumps(chunk)) for chunk in chunks)
|
2023-04-05 18:44:26 +00:00
|
|
|
return llama(
|
|
|
|
**request.dict(
|
|
|
|
exclude={
|
|
|
|
"model",
|
|
|
|
"n",
|
|
|
|
"logprobs",
|
|
|
|
"frequency_penalty",
|
|
|
|
"presence_penalty",
|
|
|
|
"best_of",
|
|
|
|
"logit_bias",
|
|
|
|
"user",
|
|
|
|
}
|
|
|
|
)
|
|
|
|
)
|
2023-04-01 17:05:20 +00:00
|
|
|
|
|
|
|
|
|
|
|
class CreateEmbeddingRequest(BaseModel):
|
|
|
|
model: Optional[str]
|
|
|
|
input: str
|
|
|
|
user: Optional[str]
|
|
|
|
|
|
|
|
class Config:
|
|
|
|
schema_extra = {
|
|
|
|
"example": {
|
|
|
|
"input": "The food was delicious and the waiter...",
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
CreateEmbeddingResponse = create_model_from_typeddict(llama_cpp.Embedding)
|
|
|
|
|
|
|
|
|
|
|
|
@app.post(
|
|
|
|
"/v1/embeddings",
|
|
|
|
response_model=CreateEmbeddingResponse,
|
|
|
|
)
|
|
|
|
def create_embedding(request: CreateEmbeddingRequest):
|
2023-04-04 00:12:44 +00:00
|
|
|
return llama.create_embedding(**request.dict(exclude={"model", "user"}))
|
|
|
|
|
|
|
|
|
|
|
|
class ChatCompletionRequestMessage(BaseModel):
|
|
|
|
role: Union[Literal["system"], Literal["user"], Literal["assistant"]]
|
|
|
|
content: str
|
|
|
|
user: Optional[str] = None
|
|
|
|
|
|
|
|
|
|
|
|
class CreateChatCompletionRequest(BaseModel):
|
|
|
|
model: Optional[str]
|
|
|
|
messages: List[ChatCompletionRequestMessage]
|
|
|
|
temperature: float = 0.8
|
|
|
|
top_p: float = 0.95
|
|
|
|
stream: bool = False
|
|
|
|
stop: List[str] = []
|
|
|
|
max_tokens: int = 128
|
2023-04-05 18:44:26 +00:00
|
|
|
|
|
|
|
# ignored or currently unsupported
|
|
|
|
model: Optional[str] = Field(None)
|
|
|
|
n: Optional[int] = 1
|
|
|
|
presence_penalty: Optional[float] = 0
|
|
|
|
frequency_penalty: Optional[float] = 0
|
|
|
|
logit_bias: Optional[Dict[str, float]] = Field(None)
|
|
|
|
user: Optional[str] = Field(None)
|
|
|
|
|
|
|
|
# llama.cpp specific parameters
|
2023-04-04 00:12:44 +00:00
|
|
|
repeat_penalty: float = 1.1
|
|
|
|
|
|
|
|
class Config:
|
|
|
|
schema_extra = {
|
|
|
|
"example": {
|
|
|
|
"messages": [
|
|
|
|
ChatCompletionRequestMessage(
|
|
|
|
role="system", content="You are a helpful assistant."
|
|
|
|
),
|
|
|
|
ChatCompletionRequestMessage(
|
|
|
|
role="user", content="What is the capital of France?"
|
|
|
|
),
|
|
|
|
]
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
CreateChatCompletionResponse = create_model_from_typeddict(llama_cpp.ChatCompletion)
|
|
|
|
|
|
|
|
|
|
|
|
@app.post(
|
|
|
|
"/v1/chat/completions",
|
|
|
|
response_model=CreateChatCompletionResponse,
|
|
|
|
)
|
|
|
|
async def create_chat_completion(
|
|
|
|
request: CreateChatCompletionRequest,
|
|
|
|
) -> Union[llama_cpp.ChatCompletion, EventSourceResponse]:
|
|
|
|
completion_or_chunks = llama.create_chat_completion(
|
2023-04-05 18:44:26 +00:00
|
|
|
**request.dict(
|
|
|
|
exclude={
|
|
|
|
"model",
|
|
|
|
"n",
|
|
|
|
"presence_penalty",
|
|
|
|
"frequency_penalty",
|
|
|
|
"logit_bias",
|
|
|
|
"user",
|
|
|
|
}
|
|
|
|
),
|
2023-04-04 00:12:44 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
if request.stream:
|
|
|
|
|
|
|
|
async def server_sent_events(
|
|
|
|
chat_chunks: Iterator[llama_cpp.ChatCompletionChunk],
|
|
|
|
):
|
|
|
|
for chat_chunk in chat_chunks:
|
|
|
|
yield dict(data=json.dumps(chat_chunk))
|
|
|
|
yield dict(data="[DONE]")
|
|
|
|
|
|
|
|
chunks: Iterator[llama_cpp.ChatCompletionChunk] = completion_or_chunks # type: ignore
|
|
|
|
|
|
|
|
return EventSourceResponse(
|
|
|
|
server_sent_events(chunks),
|
|
|
|
)
|
|
|
|
completion: llama_cpp.ChatCompletion = completion_or_chunks # type: ignore
|
|
|
|
return completion
|
2023-04-05 18:44:26 +00:00
|
|
|
|
|
|
|
|
|
|
|
class ModelData(TypedDict):
|
|
|
|
id: str
|
|
|
|
object: Literal["model"]
|
|
|
|
owned_by: str
|
|
|
|
permissions: List[str]
|
|
|
|
|
|
|
|
|
|
|
|
class ModelList(TypedDict):
|
|
|
|
object: Literal["list"]
|
|
|
|
data: List[ModelData]
|
|
|
|
|
|
|
|
|
|
|
|
GetModelResponse = create_model_from_typeddict(ModelList)
|
|
|
|
|
|
|
|
|
|
|
|
@app.get("/v1/models", response_model=GetModelResponse)
|
|
|
|
def get_models() -> ModelList:
|
|
|
|
return {
|
|
|
|
"object": "list",
|
|
|
|
"data": [
|
|
|
|
{
|
|
|
|
"id": llama.model_path,
|
|
|
|
"object": "model",
|
|
|
|
"owned_by": "me",
|
|
|
|
"permissions": [],
|
|
|
|
}
|
|
|
|
],
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
import os
|
|
|
|
import uvicorn
|
|
|
|
|
|
|
|
uvicorn.run(app, host=os.getenv("HOST", "localhost"), port=os.getenv("PORT", 8000))
|