Add streaming and embedding endpoints to fastapi example

This commit is contained in:
Andrei Betlen 2023-04-01 13:05:20 -04:00
parent 0503e7f9b4
commit ed6f2a049e

View file

@ -1,11 +1,14 @@
"""Example FastAPI server for llama.cpp.
"""
from typing import List, Optional
import json
from typing import List, Optional, Iterator
from llama_cpp import Llama
import llama_cpp
from fastapi import FastAPI
from pydantic import BaseModel, BaseSettings, Field
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, BaseSettings, Field, create_model_from_typeddict
from sse_starlette.sse import EventSourceResponse
class Settings(BaseSettings):
@ -16,11 +19,24 @@ app = FastAPI(
title="🦙 llama.cpp Python API",
version="0.0.1",
)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
settings = Settings()
llama = Llama(settings.model)
llama = llama_cpp.Llama(
settings.model,
f16_kv=True,
use_mlock=True,
n_threads=6,
n_batch=2048,
)
class CompletionRequest(BaseModel):
class CreateCompletionRequest(BaseModel):
prompt: str
suffix: Optional[str] = Field(None)
max_tokens: int = 16
@ -31,6 +47,7 @@ class CompletionRequest(BaseModel):
stop: List[str] = []
repeat_penalty: float = 1.1
top_k: int = 40
stream: bool = False
class Config:
schema_extra = {
@ -41,6 +58,39 @@ class CompletionRequest(BaseModel):
}
@app.post("/v1/completions")
def completions(request: CompletionRequest):
CreateCompletionResponse = create_model_from_typeddict(llama_cpp.Completion)
@app.post(
"/v1/completions",
response_model=CreateCompletionResponse,
)
def create_completion(request: CreateCompletionRequest):
if request.stream:
chunks: Iterator[llama_cpp.CompletionChunk] = llama(**request.dict()) # type: ignore
return EventSourceResponse(dict(data=json.dumps(chunk)) for chunk in chunks)
return llama(**request.dict())
class CreateEmbeddingRequest(BaseModel):
model: Optional[str]
input: str
user: Optional[str]
class Config:
schema_extra = {
"example": {
"input": "The food was delicious and the waiter...",
}
}
CreateEmbeddingResponse = create_model_from_typeddict(llama_cpp.Embedding)
@app.post(
"/v1/embeddings",
response_model=CreateEmbeddingResponse,
)
def create_embedding(request: CreateEmbeddingRequest):
return llama.create_embedding(**request.dict())