traefik/vendor/k8s.io/client-go/tools/cache/heap.go
2019-08-05 09:24:03 -07:00

323 lines
8.4 KiB
Go

/*
Copyright 2017 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
// This file implements a heap data structure.
package cache
import (
"container/heap"
"fmt"
"sync"
)
const (
closedMsg = "heap is closed"
)
type LessFunc func(interface{}, interface{}) bool
type heapItem struct {
obj interface{} // The object which is stored in the heap.
index int // The index of the object's key in the Heap.queue.
}
type itemKeyValue struct {
key string
obj interface{}
}
// heapData is an internal struct that implements the standard heap interface
// and keeps the data stored in the heap.
type heapData struct {
// items is a map from key of the objects to the objects and their index.
// We depend on the property that items in the map are in the queue and vice versa.
items map[string]*heapItem
// queue implements a heap data structure and keeps the order of elements
// according to the heap invariant. The queue keeps the keys of objects stored
// in "items".
queue []string
// keyFunc is used to make the key used for queued item insertion and retrieval, and
// should be deterministic.
keyFunc KeyFunc
// lessFunc is used to compare two objects in the heap.
lessFunc LessFunc
}
var (
_ = heap.Interface(&heapData{}) // heapData is a standard heap
)
// Less compares two objects and returns true if the first one should go
// in front of the second one in the heap.
func (h *heapData) Less(i, j int) bool {
if i > len(h.queue) || j > len(h.queue) {
return false
}
itemi, ok := h.items[h.queue[i]]
if !ok {
return false
}
itemj, ok := h.items[h.queue[j]]
if !ok {
return false
}
return h.lessFunc(itemi.obj, itemj.obj)
}
// Len returns the number of items in the Heap.
func (h *heapData) Len() int { return len(h.queue) }
// Swap implements swapping of two elements in the heap. This is a part of standard
// heap interface and should never be called directly.
func (h *heapData) Swap(i, j int) {
h.queue[i], h.queue[j] = h.queue[j], h.queue[i]
item := h.items[h.queue[i]]
item.index = i
item = h.items[h.queue[j]]
item.index = j
}
// Push is supposed to be called by heap.Push only.
func (h *heapData) Push(kv interface{}) {
keyValue := kv.(*itemKeyValue)
n := len(h.queue)
h.items[keyValue.key] = &heapItem{keyValue.obj, n}
h.queue = append(h.queue, keyValue.key)
}
// Pop is supposed to be called by heap.Pop only.
func (h *heapData) Pop() interface{} {
key := h.queue[len(h.queue)-1]
h.queue = h.queue[0 : len(h.queue)-1]
item, ok := h.items[key]
if !ok {
// This is an error
return nil
}
delete(h.items, key)
return item.obj
}
// Heap is a thread-safe producer/consumer queue that implements a heap data structure.
// It can be used to implement priority queues and similar data structures.
type Heap struct {
lock sync.RWMutex
cond sync.Cond
// data stores objects and has a queue that keeps their ordering according
// to the heap invariant.
data *heapData
// closed indicates that the queue is closed.
// It is mainly used to let Pop() exit its control loop while waiting for an item.
closed bool
}
// Close the Heap and signals condition variables that may be waiting to pop
// items from the heap.
func (h *Heap) Close() {
h.lock.Lock()
defer h.lock.Unlock()
h.closed = true
h.cond.Broadcast()
}
// Add inserts an item, and puts it in the queue. The item is updated if it
// already exists.
func (h *Heap) Add(obj interface{}) error {
key, err := h.data.keyFunc(obj)
if err != nil {
return KeyError{obj, err}
}
h.lock.Lock()
defer h.lock.Unlock()
if h.closed {
return fmt.Errorf(closedMsg)
}
if _, exists := h.data.items[key]; exists {
h.data.items[key].obj = obj
heap.Fix(h.data, h.data.items[key].index)
} else {
h.addIfNotPresentLocked(key, obj)
}
h.cond.Broadcast()
return nil
}
// Adds all the items in the list to the queue and then signals the condition
// variable. It is useful when the caller would like to add all of the items
// to the queue before consumer starts processing them.
func (h *Heap) BulkAdd(list []interface{}) error {
h.lock.Lock()
defer h.lock.Unlock()
if h.closed {
return fmt.Errorf(closedMsg)
}
for _, obj := range list {
key, err := h.data.keyFunc(obj)
if err != nil {
return KeyError{obj, err}
}
if _, exists := h.data.items[key]; exists {
h.data.items[key].obj = obj
heap.Fix(h.data, h.data.items[key].index)
} else {
h.addIfNotPresentLocked(key, obj)
}
}
h.cond.Broadcast()
return nil
}
// AddIfNotPresent inserts an item, and puts it in the queue. If an item with
// the key is present in the map, no changes is made to the item.
//
// This is useful in a single producer/consumer scenario so that the consumer can
// safely retry items without contending with the producer and potentially enqueueing
// stale items.
func (h *Heap) AddIfNotPresent(obj interface{}) error {
id, err := h.data.keyFunc(obj)
if err != nil {
return KeyError{obj, err}
}
h.lock.Lock()
defer h.lock.Unlock()
if h.closed {
return fmt.Errorf(closedMsg)
}
h.addIfNotPresentLocked(id, obj)
h.cond.Broadcast()
return nil
}
// addIfNotPresentLocked assumes the lock is already held and adds the provided
// item to the queue if it does not already exist.
func (h *Heap) addIfNotPresentLocked(key string, obj interface{}) {
if _, exists := h.data.items[key]; exists {
return
}
heap.Push(h.data, &itemKeyValue{key, obj})
}
// Update is the same as Add in this implementation. When the item does not
// exist, it is added.
func (h *Heap) Update(obj interface{}) error {
return h.Add(obj)
}
// Delete removes an item.
func (h *Heap) Delete(obj interface{}) error {
key, err := h.data.keyFunc(obj)
if err != nil {
return KeyError{obj, err}
}
h.lock.Lock()
defer h.lock.Unlock()
if item, ok := h.data.items[key]; ok {
heap.Remove(h.data, item.index)
return nil
}
return fmt.Errorf("object not found")
}
// Pop waits until an item is ready. If multiple items are
// ready, they are returned in the order given by Heap.data.lessFunc.
func (h *Heap) Pop() (interface{}, error) {
h.lock.Lock()
defer h.lock.Unlock()
for len(h.data.queue) == 0 {
// When the queue is empty, invocation of Pop() is blocked until new item is enqueued.
// When Close() is called, the h.closed is set and the condition is broadcast,
// which causes this loop to continue and return from the Pop().
if h.closed {
return nil, fmt.Errorf("heap is closed")
}
h.cond.Wait()
}
obj := heap.Pop(h.data)
if obj != nil {
return obj, nil
} else {
return nil, fmt.Errorf("object was removed from heap data")
}
}
// List returns a list of all the items.
func (h *Heap) List() []interface{} {
h.lock.RLock()
defer h.lock.RUnlock()
list := make([]interface{}, 0, len(h.data.items))
for _, item := range h.data.items {
list = append(list, item.obj)
}
return list
}
// ListKeys returns a list of all the keys of the objects currently in the Heap.
func (h *Heap) ListKeys() []string {
h.lock.RLock()
defer h.lock.RUnlock()
list := make([]string, 0, len(h.data.items))
for key := range h.data.items {
list = append(list, key)
}
return list
}
// Get returns the requested item, or sets exists=false.
func (h *Heap) Get(obj interface{}) (interface{}, bool, error) {
key, err := h.data.keyFunc(obj)
if err != nil {
return nil, false, KeyError{obj, err}
}
return h.GetByKey(key)
}
// GetByKey returns the requested item, or sets exists=false.
func (h *Heap) GetByKey(key string) (interface{}, bool, error) {
h.lock.RLock()
defer h.lock.RUnlock()
item, exists := h.data.items[key]
if !exists {
return nil, false, nil
}
return item.obj, true, nil
}
// IsClosed returns true if the queue is closed.
func (h *Heap) IsClosed() bool {
h.lock.RLock()
defer h.lock.RUnlock()
if h.closed {
return true
}
return false
}
// NewHeap returns a Heap which can be used to queue up items to process.
func NewHeap(keyFn KeyFunc, lessFn LessFunc) *Heap {
h := &Heap{
data: &heapData{
items: map[string]*heapItem{},
queue: []string{},
keyFunc: keyFn,
lessFunc: lessFn,
},
}
h.cond.L = &h.lock
return h
}