Use EDF schedule algorithm for WeightedRoundRobin

This commit is contained in:
Ma Zi'ang 2020-02-26 18:56:05 +08:00 committed by GitHub
parent 7a5d2a3bd9
commit 98f304f8b0
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
2 changed files with 96 additions and 67 deletions

View file

@ -1,6 +1,7 @@
package wrr
import (
"container/heap"
"fmt"
"net/http"
"sync"
@ -12,7 +13,8 @@ import (
type namedHandler struct {
http.Handler
name string
weight int
weight float64
deadline float64
}
type stickyCookie struct {
@ -23,10 +25,7 @@ type stickyCookie struct {
// New creates a new load balancer.
func New(sticky *dynamic.Sticky) *Balancer {
balancer := &Balancer{
mutex: &sync.Mutex{},
index: -1,
}
balancer := &Balancer{}
if sticky != nil && sticky.Cookie != nil {
balancer.stickyCookie = &stickyCookie{
name: sticky.Cookie.Name,
@ -37,43 +36,48 @@ func New(sticky *dynamic.Sticky) *Balancer {
return balancer
}
// Balancer is a WeightedRoundRobin load balancer.
// Len implements heap.Interface/sort.Interface.
func (b *Balancer) Len() int { return len(b.handlers) }
// Less implements heap.Interface/sort.Interface.
func (b *Balancer) Less(i, j int) bool {
return b.handlers[i].deadline < b.handlers[j].deadline
}
// Swap implements heap.Interface/sort.Interface.
func (b *Balancer) Swap(i, j int) {
b.handlers[i], b.handlers[j] = b.handlers[j], b.handlers[i]
}
// Push implements heap.Interface for pushing an item into the heap.
func (b *Balancer) Push(x interface{}) {
h, ok := x.(*namedHandler)
if !ok {
return
}
b.handlers = append(b.handlers, h)
}
// Pop implements heap.Interface for poping an item from the heap.
// It panics if b.Len() < 1.
func (b *Balancer) Pop() interface{} {
h := b.handlers[len(b.handlers)-1]
b.handlers = b.handlers[0 : len(b.handlers)-1]
return h
}
// Balancer is a WeightedRoundRobin load balancer based on Earliest Deadline First (EDF).
// (https://en.wikipedia.org/wiki/Earliest_deadline_first_scheduling)
// Each pick from the schedule has the earliest deadline entry selected.
// Entries have deadlines set at currentDeadline + 1 / weight,
// providing weighted round robin behavior with floating point weights and an O(log n) pick time.
type Balancer struct {
handlers []*namedHandler
mutex *sync.Mutex
// Current index (starts from -1)
index int
currentWeight int
stickyCookie *stickyCookie
}
func (b *Balancer) maxWeight() int {
max := -1
for _, s := range b.handlers {
if s.weight > max {
max = s.weight
}
}
return max
}
func (b *Balancer) weightGcd() int {
divisor := -1
for _, s := range b.handlers {
if divisor == -1 {
divisor = s.weight
} else {
divisor = gcd(divisor, s.weight)
}
}
return divisor
}
func gcd(a, b int) int {
for b != 0 {
a, b = b, a%b
}
return a
mutex sync.RWMutex
handlers []*namedHandler
curDeadline float64
}
func (b *Balancer) nextServer() (*namedHandler, error) {
@ -84,32 +88,17 @@ func (b *Balancer) nextServer() (*namedHandler, error) {
return nil, fmt.Errorf("no servers in the pool")
}
// The algo below may look messy, but is actually very simple
// it calculates the GCD and subtracts it on every iteration, what interleaves servers
// and allows us not to build an iterator every time we readjust weights
// Pick handler with closest deadline.
handler := heap.Pop(b).(*namedHandler)
// GCD across all enabled servers
gcd := b.weightGcd()
// Maximum weight across all enabled servers
max := b.maxWeight()
// curDeadline should be handler's deadline so that new added entry would have a fair competition environment with the old ones.
b.curDeadline = handler.deadline
handler.deadline += 1 / handler.weight
for {
b.index = (b.index + 1) % len(b.handlers)
if b.index == 0 {
b.currentWeight -= gcd
if b.currentWeight <= 0 {
b.currentWeight = max
if b.currentWeight == 0 {
return nil, fmt.Errorf("all servers have 0 weight")
}
}
}
srv := b.handlers[b.index]
if srv.weight >= b.currentWeight {
log.WithoutContext().Debugf("Service Select: %s", srv.name)
return srv, nil
}
}
heap.Push(b, handler)
log.WithoutContext().Debugf("Service selected by WRR: %s", handler.name)
return handler, nil
}
func (b *Balancer) ServeHTTP(w http.ResponseWriter, req *http.Request) {
@ -146,10 +135,22 @@ func (b *Balancer) ServeHTTP(w http.ResponseWriter, req *http.Request) {
// AddService adds a handler.
// It is not thread safe with ServeHTTP.
// A handler with a non-positive weight is ignored.
func (b *Balancer) AddService(name string, handler http.Handler, weight *int) {
w := 1
if weight != nil {
w = *weight
}
b.handlers = append(b.handlers, &namedHandler{Handler: handler, name: name, weight: w})
if w <= 0 { // non-positive weight is meaningless
return
}
h := &namedHandler{Handler: handler, name: name, weight: float64(w)}
// use RWLock to protect b.curDeadline
b.mutex.RLock()
h.deadline = b.curDeadline + 1/h.weight
b.mutex.RUnlock()
heap.Push(b, h)
}

View file

@ -14,10 +14,12 @@ func Int(v int) *int { return &v }
type responseRecorder struct {
*httptest.ResponseRecorder
save map[string]int
sequence []string
}
func (r *responseRecorder) WriteHeader(statusCode int) {
r.save[r.Header().Get("server")]++
r.sequence = append(r.sequence, r.Header().Get("server"))
r.ResponseRecorder.WriteHeader(statusCode)
}
@ -112,3 +114,29 @@ func TestSticky(t *testing.T) {
assert.Equal(t, 0, recorder.save["first"])
assert.Equal(t, 3, recorder.save["second"])
}
// TestBalancerBias makes sure that the WRR algorithm spreads elements evenly right from the start,
// and that it does not "over-favor" the high-weighted ones with a biased start-up regime.
func TestBalancerBias(t *testing.T) {
balancer := New(nil)
balancer.AddService("first", http.HandlerFunc(func(rw http.ResponseWriter, req *http.Request) {
rw.Header().Set("server", "A")
rw.WriteHeader(http.StatusOK)
}), Int(11))
balancer.AddService("second", http.HandlerFunc(func(rw http.ResponseWriter, req *http.Request) {
rw.Header().Set("server", "B")
rw.WriteHeader(http.StatusOK)
}), Int(3))
recorder := &responseRecorder{ResponseRecorder: httptest.NewRecorder(), save: map[string]int{}}
for i := 0; i < 14; i++ {
balancer.ServeHTTP(recorder, httptest.NewRequest(http.MethodGet, "/", nil))
}
wantSequence := []string{"A", "A", "A", "B", "A", "A", "A", "A", "B", "A", "A", "A", "B", "A"}
assert.Equal(t, wantSequence, recorder.sequence)
}