traefik/vendor/github.com/go-kit/kit/metrics/influx/influx.go

268 lines
7.3 KiB
Go
Raw Normal View History

// Package influx provides an InfluxDB implementation for metrics. The model is
// similar to other push-based instrumentation systems. Observations are
// aggregated locally and emitted to the Influx server on regular intervals.
package influx
import (
"time"
influxdb "github.com/influxdata/influxdb/client/v2"
"github.com/go-kit/kit/log"
"github.com/go-kit/kit/metrics"
"github.com/go-kit/kit/metrics/generic"
"github.com/go-kit/kit/metrics/internal/lv"
)
// Influx is a store for metrics that will be emitted to an Influx database.
//
// Influx is a general purpose time-series database, and has no native concepts
// of counters, gauges, or histograms. Counters are modeled as a timeseries with
// one data point per flush, with a "count" field that reflects all adds since
// the last flush. Gauges are modeled as a timeseries with one data point per
// flush, with a "value" field that reflects the current state of the gauge.
// Histograms are modeled as a timeseries with one data point per combination of tags,
// with a set of quantile fields that reflects the p50, p90, p95 & p99.
//
// Influx tags are attached to the Influx object, can be given to each
// metric at construction and can be updated anytime via With function. Influx fields
// are mapped to Go kit label values directly by this collector. Actual metric
// values are provided as fields with specific names depending on the metric.
//
// All observations are collected in memory locally, and flushed on demand.
type Influx struct {
counters *lv.Space
gauges *lv.Space
histograms *lv.Space
tags map[string]string
conf influxdb.BatchPointsConfig
logger log.Logger
}
// New returns an Influx, ready to create metrics and collect observations. Tags
// are applied to all metrics created from this object. The BatchPointsConfig is
// used during flushing.
func New(tags map[string]string, conf influxdb.BatchPointsConfig, logger log.Logger) *Influx {
return &Influx{
counters: lv.NewSpace(),
gauges: lv.NewSpace(),
histograms: lv.NewSpace(),
tags: tags,
conf: conf,
logger: logger,
}
}
// NewCounter returns an Influx counter.
func (in *Influx) NewCounter(name string) *Counter {
return &Counter{
name: name,
obs: in.counters.Observe,
}
}
// NewGauge returns an Influx gauge.
func (in *Influx) NewGauge(name string) *Gauge {
return &Gauge{
name: name,
obs: in.gauges.Observe,
2018-04-16 10:28:04 +02:00
add: in.gauges.Add,
}
}
// NewHistogram returns an Influx histogram.
func (in *Influx) NewHistogram(name string) *Histogram {
return &Histogram{
name: name,
obs: in.histograms.Observe,
}
}
// BatchPointsWriter captures a subset of the influxdb.Client methods necessary
// for emitting metrics observations.
type BatchPointsWriter interface {
Write(influxdb.BatchPoints) error
}
// WriteLoop is a helper method that invokes WriteTo to the passed writer every
// time the passed channel fires. This method blocks until the channel is
// closed, so clients probably want to run it in its own goroutine. For typical
// usage, create a time.Ticker and pass its C channel to this method.
func (in *Influx) WriteLoop(c <-chan time.Time, w BatchPointsWriter) {
for range c {
if err := in.WriteTo(w); err != nil {
in.logger.Log("during", "WriteTo", "err", err)
}
}
}
// WriteTo flushes the buffered content of the metrics to the writer, in an
// Influx BatchPoints format. WriteTo abides best-effort semantics, so
// observations are lost if there is a problem with the write. Clients should be
// sure to call WriteTo regularly, ideally through the WriteLoop helper method.
func (in *Influx) WriteTo(w BatchPointsWriter) (err error) {
bp, err := influxdb.NewBatchPoints(in.conf)
if err != nil {
return err
}
now := time.Now()
in.counters.Reset().Walk(func(name string, lvs lv.LabelValues, values []float64) bool {
tags := mergeTags(in.tags, lvs)
var p *influxdb.Point
fields := map[string]interface{}{"count": sum(values)}
p, err = influxdb.NewPoint(name, tags, fields, now)
if err != nil {
return false
}
bp.AddPoint(p)
return true
})
if err != nil {
return err
}
in.gauges.Reset().Walk(func(name string, lvs lv.LabelValues, values []float64) bool {
tags := mergeTags(in.tags, lvs)
var p *influxdb.Point
fields := map[string]interface{}{"value": last(values)}
p, err = influxdb.NewPoint(name, tags, fields, now)
if err != nil {
return false
}
bp.AddPoint(p)
return true
})
if err != nil {
return err
}
in.histograms.Reset().Walk(func(name string, lvs lv.LabelValues, values []float64) bool {
histogram := generic.NewHistogram(name, 50)
tags := mergeTags(in.tags, lvs)
var p *influxdb.Point
for _, v := range values {
histogram.Observe(v)
}
fields := map[string]interface{}{
"p50": histogram.Quantile(0.50),
"p90": histogram.Quantile(0.90),
"p95": histogram.Quantile(0.95),
"p99": histogram.Quantile(0.99),
}
p, err = influxdb.NewPoint(name, tags, fields, now)
if err != nil {
return false
}
bp.AddPoint(p)
return true
})
if err != nil {
return err
}
return w.Write(bp)
}
func mergeTags(tags map[string]string, labelValues []string) map[string]string {
if len(labelValues)%2 != 0 {
panic("mergeTags received a labelValues with an odd number of strings")
}
2018-04-16 10:28:04 +02:00
ret := make(map[string]string, len(tags)+len(labelValues)/2)
for k, v := range tags {
ret[k] = v
}
for i := 0; i < len(labelValues); i += 2 {
2018-04-16 10:28:04 +02:00
ret[labelValues[i]] = labelValues[i+1]
}
2018-04-16 10:28:04 +02:00
return ret
}
func sum(a []float64) float64 {
var v float64
for _, f := range a {
v += f
}
return v
}
func last(a []float64) float64 {
return a[len(a)-1]
}
type observeFunc func(name string, lvs lv.LabelValues, value float64)
// Counter is an Influx counter. Observations are forwarded to an Influx
// object, and aggregated (summed) per timeseries.
type Counter struct {
name string
lvs lv.LabelValues
obs observeFunc
}
// With implements metrics.Counter.
func (c *Counter) With(labelValues ...string) metrics.Counter {
return &Counter{
name: c.name,
lvs: c.lvs.With(labelValues...),
obs: c.obs,
}
}
// Add implements metrics.Counter.
func (c *Counter) Add(delta float64) {
c.obs(c.name, c.lvs, delta)
}
// Gauge is an Influx gauge. Observations are forwarded to a Dogstatsd
// object, and aggregated (the last observation selected) per timeseries.
type Gauge struct {
name string
lvs lv.LabelValues
obs observeFunc
2018-04-16 10:28:04 +02:00
add observeFunc
}
// With implements metrics.Gauge.
func (g *Gauge) With(labelValues ...string) metrics.Gauge {
return &Gauge{
name: g.name,
lvs: g.lvs.With(labelValues...),
obs: g.obs,
2018-04-16 10:28:04 +02:00
add: g.add,
}
}
// Set implements metrics.Gauge.
func (g *Gauge) Set(value float64) {
g.obs(g.name, g.lvs, value)
}
2018-04-16 10:28:04 +02:00
// Add implements metrics.Gauge.
func (g *Gauge) Add(delta float64) {
g.add(g.name, g.lvs, delta)
}
// Histogram is an Influx histrogram. Observations are aggregated into a
// generic.Histogram and emitted as per-quantile gauges to the Influx server.
type Histogram struct {
name string
lvs lv.LabelValues
obs observeFunc
}
// With implements metrics.Histogram.
func (h *Histogram) With(labelValues ...string) metrics.Histogram {
return &Histogram{
name: h.name,
lvs: h.lvs.With(labelValues...),
obs: h.obs,
}
}
// Observe implements metrics.Histogram.
func (h *Histogram) Observe(value float64) {
h.obs(h.name, h.lvs, value)
}