traefik/vendor/gopkg.in/DataDog/dd-trace-go.v1/ddtrace/tracer/spancontext.go

245 lines
7 KiB
Go
Raw Normal View History

package tracer
import (
"sync"
"gopkg.in/DataDog/dd-trace-go.v1/ddtrace"
"gopkg.in/DataDog/dd-trace-go.v1/ddtrace/internal"
)
var _ ddtrace.SpanContext = (*spanContext)(nil)
// SpanContext represents a span state that can propagate to descendant spans
// and across process boundaries. It contains all the information needed to
// spawn a direct descendant of the span that it belongs to. It can be used
// to create distributed tracing by propagating it using the provided interfaces.
type spanContext struct {
// the below group should propagate only locally
trace *trace // reference to the trace that this span belongs too
span *span // reference to the span that hosts this context
drop bool // when true, the span will not be sent to the agent
// the below group should propagate cross-process
traceID uint64
spanID uint64
mu sync.RWMutex // guards below fields
baggage map[string]string
origin string // e.g. "synthetics"
}
// newSpanContext creates a new SpanContext to serve as context for the given
// span. If the provided parent is not nil, the context will inherit the trace,
// baggage and other values from it. This method also pushes the span into the
// new context's trace and as a result, it should not be called multiple times
// for the same span.
func newSpanContext(span *span, parent *spanContext) *spanContext {
context := &spanContext{
traceID: span.TraceID,
spanID: span.SpanID,
span: span,
}
if parent != nil {
context.trace = parent.trace
context.drop = parent.drop
context.origin = parent.origin
parent.ForeachBaggageItem(func(k, v string) bool {
context.setBaggageItem(k, v)
return true
})
}
if context.trace == nil {
context.trace = newTrace()
}
if context.trace.root == nil {
// first span in the trace can safely be assumed to be the root
context.trace.root = span
}
// put span in context's trace
context.trace.push(span)
return context
}
// SpanID implements ddtrace.SpanContext.
func (c *spanContext) SpanID() uint64 { return c.spanID }
// TraceID implements ddtrace.SpanContext.
func (c *spanContext) TraceID() uint64 { return c.traceID }
// ForeachBaggageItem implements ddtrace.SpanContext.
func (c *spanContext) ForeachBaggageItem(handler func(k, v string) bool) {
c.mu.RLock()
defer c.mu.RUnlock()
for k, v := range c.baggage {
if !handler(k, v) {
break
}
}
}
func (c *spanContext) setSamplingPriority(p int) {
if c.trace == nil {
c.trace = newTrace()
}
c.trace.setSamplingPriority(float64(p))
}
func (c *spanContext) samplingPriority() int {
if c.trace == nil {
return 0
}
return c.trace.samplingPriority()
}
func (c *spanContext) hasSamplingPriority() bool {
return c.trace != nil && c.trace.hasSamplingPriority()
}
func (c *spanContext) setBaggageItem(key, val string) {
c.mu.Lock()
defer c.mu.Unlock()
if c.baggage == nil {
c.baggage = make(map[string]string, 1)
}
c.baggage[key] = val
}
func (c *spanContext) baggageItem(key string) string {
c.mu.RLock()
defer c.mu.RUnlock()
return c.baggage[key]
}
// finish marks this span as finished in the trace.
func (c *spanContext) finish() { c.trace.finishedOne(c.span) }
// trace contains shared context information about a trace, such as sampling
// priority, the root reference and a buffer of the spans which are part of the
// trace, if these exist.
type trace struct {
mu sync.RWMutex // guards below fields
spans []*span // all the spans that are part of this trace
finished int // the number of finished spans
full bool // signifies that the span buffer is full
priority *float64 // sampling priority
locked bool // specifies if the sampling priority can be altered
// root specifies the root of the trace, if known; it is nil when a span
// context is extracted from a carrier, at which point there are no spans in
// the trace yet.
root *span
}
var (
// traceStartSize is the initial size of our trace buffer,
// by default we allocate for a handful of spans within the trace,
// reasonable as span is actually way bigger, and avoids re-allocating
// over and over. Could be fine-tuned at runtime.
traceStartSize = 10
// traceMaxSize is the maximum number of spans we keep in memory.
// This is to avoid memory leaks, if above that value, spans are randomly
// dropped and ignore, resulting in corrupted tracing data, but ensuring
// original program continues to work as expected.
traceMaxSize = int(1e5)
)
// newTrace creates a new trace using the given callback which will be called
// upon completion of the trace.
func newTrace() *trace {
return &trace{spans: make([]*span, 0, traceStartSize)}
}
func (t *trace) hasSamplingPriority() bool {
t.mu.RLock()
defer t.mu.RUnlock()
return t.priority != nil
}
func (t *trace) samplingPriority() int {
t.mu.RLock()
defer t.mu.RUnlock()
if t.priority == nil {
return 0
}
return int(*t.priority)
}
func (t *trace) setSamplingPriority(p float64) {
t.mu.Lock()
defer t.mu.Unlock()
t.setSamplingPriorityLocked(p)
}
func (t *trace) setSamplingPriorityLocked(p float64) {
if t.locked {
return
}
if t.root == nil {
// this trace is distributed (no local root); modifications
// to the sampling priority are not allowed.
t.locked = true
}
if t.priority == nil {
t.priority = new(float64)
}
*t.priority = p
}
// push pushes a new span into the trace. If the buffer is full, it returns
// a errBufferFull error.
func (t *trace) push(sp *span) {
t.mu.Lock()
defer t.mu.Unlock()
if t.full {
return
}
if len(t.spans) >= traceMaxSize {
// capacity is reached, we will not be able to complete this trace.
t.full = true
t.spans = nil // GC
if tr, ok := internal.GetGlobalTracer().(*tracer); ok {
// we have a tracer we can submit errors too.
tr.pushError(&spanBufferFullError{})
}
return
}
if v, ok := sp.Metrics[keySamplingPriority]; ok {
t.setSamplingPriorityLocked(v)
}
t.spans = append(t.spans, sp)
}
// finishedOne aknowledges that another span in the trace has finished, and checks
// if the trace is complete, in which case it calls the onFinish function. It uses
// the given priority, if non-nil, to mark the root span.
func (t *trace) finishedOne(s *span) {
t.mu.Lock()
defer t.mu.Unlock()
if t.full {
// capacity has been reached, the buffer is no longer tracking
// all the spans in the trace, so the below conditions will not
// be accurate and would trigger a pre-mature flush, exposing us
// to a race condition where spans can be modified while flushing.
return
}
t.finished++
if s == t.root && t.priority != nil {
// after the root has finished we lock down the priority;
// we won't be able to make changes to a span after finishing
// without causing a race condition.
t.root.Metrics[keySamplingPriority] = *t.priority
t.locked = true
}
if len(t.spans) != t.finished {
return
}
if tr, ok := internal.GetGlobalTracer().(*tracer); ok {
// we have a tracer that can receive completed traces.
tr.pushTrace(t.spans)
}
t.spans = nil
t.finished = 0 // important, because a buffer can be used for several flushes
}