traefik/vendor/github.com/go-kit/kit/metrics/statsd/statsd.go

246 lines
6.9 KiB
Go
Raw Normal View History

// Package statsd provides a StatsD backend for package metrics. StatsD has no
// concept of arbitrary key-value tagging, so label values are not supported,
// and With is a no-op on all metrics.
//
// This package batches observations and emits them on some schedule to the
// remote server. This is useful even if you connect to your StatsD server over
// UDP. Emitting one network packet per observation can quickly overwhelm even
// the fastest internal network.
package statsd
import (
2019-07-18 19:36:05 +00:00
"context"
"fmt"
"io"
"time"
"github.com/go-kit/kit/log"
"github.com/go-kit/kit/metrics"
"github.com/go-kit/kit/metrics/internal/lv"
"github.com/go-kit/kit/metrics/internal/ratemap"
"github.com/go-kit/kit/util/conn"
)
// Statsd receives metrics observations and forwards them to a StatsD server.
// Create a Statsd object, use it to create metrics, and pass those metrics as
// dependencies to the components that will use them.
//
// All metrics are buffered until WriteTo is called. Counters and gauges are
// aggregated into a single observation per timeseries per write. Timings are
// buffered but not aggregated.
//
// To regularly report metrics to an io.Writer, use the WriteLoop helper method.
// To send to a StatsD server, use the SendLoop helper method.
type Statsd struct {
prefix string
rates *ratemap.RateMap
// The observations are collected in an N-dimensional vector space, even
// though they only take advantage of a single dimension (name). This is an
// implementation detail born purely from convenience. It would be more
// accurate to collect them in a map[string][]float64, but we already have
// this nice data structure and helper methods.
counters *lv.Space
gauges *lv.Space
timings *lv.Space
logger log.Logger
}
// New returns a Statsd object that may be used to create metrics. Prefix is
// applied to all created metrics. Callers must ensure that regular calls to
// WriteTo are performed, either manually or with one of the helper methods.
func New(prefix string, logger log.Logger) *Statsd {
return &Statsd{
prefix: prefix,
rates: ratemap.New(),
counters: lv.NewSpace(),
gauges: lv.NewSpace(),
timings: lv.NewSpace(),
logger: logger,
}
}
// NewCounter returns a counter, sending observations to this Statsd object.
func (s *Statsd) NewCounter(name string, sampleRate float64) *Counter {
s.rates.Set(s.prefix+name, sampleRate)
return &Counter{
name: s.prefix + name,
obs: s.counters.Observe,
}
}
// NewGauge returns a gauge, sending observations to this Statsd object.
func (s *Statsd) NewGauge(name string) *Gauge {
return &Gauge{
name: s.prefix + name,
obs: s.gauges.Observe,
2018-04-16 08:28:04 +00:00
add: s.gauges.Add,
}
}
// NewTiming returns a histogram whose observations are interpreted as
// millisecond durations, and are forwarded to this Statsd object.
func (s *Statsd) NewTiming(name string, sampleRate float64) *Timing {
s.rates.Set(s.prefix+name, sampleRate)
return &Timing{
name: s.prefix + name,
obs: s.timings.Observe,
}
}
// WriteLoop is a helper method that invokes WriteTo to the passed writer every
2019-07-18 19:36:05 +00:00
// time the passed channel fires. This method blocks until ctx is canceled,
// so clients probably want to run it in its own goroutine. For typical
// usage, create a time.Ticker and pass its C channel to this method.
2019-07-18 19:36:05 +00:00
func (s *Statsd) WriteLoop(ctx context.Context, c <-chan time.Time, w io.Writer) {
for {
select {
case <-c:
if _, err := s.WriteTo(w); err != nil {
s.logger.Log("during", "WriteTo", "err", err)
}
case <-ctx.Done():
return
}
}
}
// SendLoop is a helper method that wraps WriteLoop, passing a managed
// connection to the network and address. Like WriteLoop, this method blocks
2019-07-18 19:36:05 +00:00
// until ctx is canceled, so clients probably want to start it in its own
// goroutine. For typical usage, create a time.Ticker and pass its C channel to
// this method.
2019-07-18 19:36:05 +00:00
func (s *Statsd) SendLoop(ctx context.Context, c <-chan time.Time, network, address string) {
s.WriteLoop(ctx, c, conn.NewDefaultManager(network, address, s.logger))
}
// WriteTo flushes the buffered content of the metrics to the writer, in
// StatsD format. WriteTo abides best-effort semantics, so observations are
// lost if there is a problem with the write. Clients should be sure to call
// WriteTo regularly, ideally through the WriteLoop or SendLoop helper methods.
func (s *Statsd) WriteTo(w io.Writer) (count int64, err error) {
var n int
s.counters.Reset().Walk(func(name string, _ lv.LabelValues, values []float64) bool {
n, err = fmt.Fprintf(w, "%s:%f|c%s\n", name, sum(values), sampling(s.rates.Get(name)))
if err != nil {
return false
}
count += int64(n)
return true
})
if err != nil {
return count, err
}
s.gauges.Reset().Walk(func(name string, _ lv.LabelValues, values []float64) bool {
n, err = fmt.Fprintf(w, "%s:%f|g\n", name, last(values))
if err != nil {
return false
}
count += int64(n)
return true
})
if err != nil {
return count, err
}
s.timings.Reset().Walk(func(name string, _ lv.LabelValues, values []float64) bool {
sampleRate := s.rates.Get(name)
for _, value := range values {
n, err = fmt.Fprintf(w, "%s:%f|ms%s\n", name, value, sampling(sampleRate))
if err != nil {
return false
}
count += int64(n)
}
return true
})
if err != nil {
return count, err
}
return count, err
}
func sum(a []float64) float64 {
var v float64
for _, f := range a {
v += f
}
return v
}
func last(a []float64) float64 {
return a[len(a)-1]
}
func sampling(r float64) string {
var sv string
if r < 1.0 {
sv = fmt.Sprintf("|@%f", r)
}
return sv
}
type observeFunc func(name string, lvs lv.LabelValues, value float64)
// Counter is a StatsD counter. Observations are forwarded to a Statsd object,
// and aggregated (summed) per timeseries.
type Counter struct {
name string
obs observeFunc
}
// With is a no-op.
func (c *Counter) With(...string) metrics.Counter {
return c
}
// Add implements metrics.Counter.
func (c *Counter) Add(delta float64) {
c.obs(c.name, lv.LabelValues{}, delta)
}
// Gauge is a StatsD gauge. Observations are forwarded to a Statsd object, and
// aggregated (the last observation selected) per timeseries.
type Gauge struct {
name string
obs observeFunc
2018-04-16 08:28:04 +00:00
add observeFunc
}
// With is a no-op.
func (g *Gauge) With(...string) metrics.Gauge {
return g
}
// Set implements metrics.Gauge.
func (g *Gauge) Set(value float64) {
g.obs(g.name, lv.LabelValues{}, value)
}
2018-04-16 08:28:04 +00:00
// Add implements metrics.Gauge.
func (g *Gauge) Add(delta float64) {
g.add(g.name, lv.LabelValues{}, delta)
}
// Timing is a StatsD timing, or metrics.Histogram. Observations are
// forwarded to a Statsd object, and collected (but not aggregated) per
// timeseries.
type Timing struct {
name string
obs observeFunc
}
// With is a no-op.
func (t *Timing) With(...string) metrics.Histogram {
return t
}
// Observe implements metrics.Histogram. Value is interpreted as milliseconds.
func (t *Timing) Observe(value float64) {
t.obs(t.name, lv.LabelValues{}, value)
}