2017-11-08 14:14:03 +00:00
|
|
|
// Package influx provides an InfluxDB implementation for metrics. The model is
|
|
|
|
// similar to other push-based instrumentation systems. Observations are
|
|
|
|
// aggregated locally and emitted to the Influx server on regular intervals.
|
|
|
|
package influx
|
|
|
|
|
|
|
|
import (
|
2019-07-18 19:36:05 +00:00
|
|
|
"context"
|
2017-11-08 14:14:03 +00:00
|
|
|
"time"
|
|
|
|
|
2019-07-18 19:36:05 +00:00
|
|
|
influxdb "github.com/influxdata/influxdb1-client/v2"
|
2017-11-08 14:14:03 +00:00
|
|
|
|
|
|
|
"github.com/go-kit/kit/log"
|
|
|
|
"github.com/go-kit/kit/metrics"
|
|
|
|
"github.com/go-kit/kit/metrics/generic"
|
|
|
|
"github.com/go-kit/kit/metrics/internal/lv"
|
|
|
|
)
|
|
|
|
|
|
|
|
// Influx is a store for metrics that will be emitted to an Influx database.
|
|
|
|
//
|
|
|
|
// Influx is a general purpose time-series database, and has no native concepts
|
|
|
|
// of counters, gauges, or histograms. Counters are modeled as a timeseries with
|
|
|
|
// one data point per flush, with a "count" field that reflects all adds since
|
|
|
|
// the last flush. Gauges are modeled as a timeseries with one data point per
|
|
|
|
// flush, with a "value" field that reflects the current state of the gauge.
|
|
|
|
// Histograms are modeled as a timeseries with one data point per combination of tags,
|
|
|
|
// with a set of quantile fields that reflects the p50, p90, p95 & p99.
|
|
|
|
//
|
|
|
|
// Influx tags are attached to the Influx object, can be given to each
|
|
|
|
// metric at construction and can be updated anytime via With function. Influx fields
|
|
|
|
// are mapped to Go kit label values directly by this collector. Actual metric
|
|
|
|
// values are provided as fields with specific names depending on the metric.
|
|
|
|
//
|
|
|
|
// All observations are collected in memory locally, and flushed on demand.
|
|
|
|
type Influx struct {
|
|
|
|
counters *lv.Space
|
|
|
|
gauges *lv.Space
|
|
|
|
histograms *lv.Space
|
|
|
|
tags map[string]string
|
|
|
|
conf influxdb.BatchPointsConfig
|
|
|
|
logger log.Logger
|
|
|
|
}
|
|
|
|
|
|
|
|
// New returns an Influx, ready to create metrics and collect observations. Tags
|
|
|
|
// are applied to all metrics created from this object. The BatchPointsConfig is
|
|
|
|
// used during flushing.
|
|
|
|
func New(tags map[string]string, conf influxdb.BatchPointsConfig, logger log.Logger) *Influx {
|
|
|
|
return &Influx{
|
|
|
|
counters: lv.NewSpace(),
|
|
|
|
gauges: lv.NewSpace(),
|
|
|
|
histograms: lv.NewSpace(),
|
|
|
|
tags: tags,
|
|
|
|
conf: conf,
|
|
|
|
logger: logger,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// NewCounter returns an Influx counter.
|
|
|
|
func (in *Influx) NewCounter(name string) *Counter {
|
|
|
|
return &Counter{
|
|
|
|
name: name,
|
|
|
|
obs: in.counters.Observe,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// NewGauge returns an Influx gauge.
|
|
|
|
func (in *Influx) NewGauge(name string) *Gauge {
|
|
|
|
return &Gauge{
|
|
|
|
name: name,
|
|
|
|
obs: in.gauges.Observe,
|
2018-04-16 08:28:04 +00:00
|
|
|
add: in.gauges.Add,
|
2017-11-08 14:14:03 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// NewHistogram returns an Influx histogram.
|
|
|
|
func (in *Influx) NewHistogram(name string) *Histogram {
|
|
|
|
return &Histogram{
|
|
|
|
name: name,
|
|
|
|
obs: in.histograms.Observe,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// BatchPointsWriter captures a subset of the influxdb.Client methods necessary
|
|
|
|
// for emitting metrics observations.
|
|
|
|
type BatchPointsWriter interface {
|
|
|
|
Write(influxdb.BatchPoints) error
|
|
|
|
}
|
|
|
|
|
|
|
|
// WriteLoop is a helper method that invokes WriteTo to the passed writer every
|
|
|
|
// time the passed channel fires. This method blocks until the channel is
|
|
|
|
// closed, so clients probably want to run it in its own goroutine. For typical
|
|
|
|
// usage, create a time.Ticker and pass its C channel to this method.
|
2019-07-18 19:36:05 +00:00
|
|
|
func (in *Influx) WriteLoop(ctx context.Context, c <-chan time.Time, w BatchPointsWriter) {
|
|
|
|
for {
|
|
|
|
select {
|
|
|
|
case <-c:
|
|
|
|
if err := in.WriteTo(w); err != nil {
|
|
|
|
in.logger.Log("during", "WriteTo", "err", err)
|
|
|
|
}
|
|
|
|
case <-ctx.Done():
|
|
|
|
return
|
2017-11-08 14:14:03 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// WriteTo flushes the buffered content of the metrics to the writer, in an
|
|
|
|
// Influx BatchPoints format. WriteTo abides best-effort semantics, so
|
|
|
|
// observations are lost if there is a problem with the write. Clients should be
|
|
|
|
// sure to call WriteTo regularly, ideally through the WriteLoop helper method.
|
|
|
|
func (in *Influx) WriteTo(w BatchPointsWriter) (err error) {
|
|
|
|
bp, err := influxdb.NewBatchPoints(in.conf)
|
|
|
|
if err != nil {
|
|
|
|
return err
|
|
|
|
}
|
|
|
|
|
|
|
|
now := time.Now()
|
|
|
|
|
|
|
|
in.counters.Reset().Walk(func(name string, lvs lv.LabelValues, values []float64) bool {
|
|
|
|
tags := mergeTags(in.tags, lvs)
|
|
|
|
var p *influxdb.Point
|
|
|
|
fields := map[string]interface{}{"count": sum(values)}
|
|
|
|
p, err = influxdb.NewPoint(name, tags, fields, now)
|
|
|
|
if err != nil {
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
bp.AddPoint(p)
|
|
|
|
return true
|
|
|
|
})
|
|
|
|
if err != nil {
|
|
|
|
return err
|
|
|
|
}
|
|
|
|
|
|
|
|
in.gauges.Reset().Walk(func(name string, lvs lv.LabelValues, values []float64) bool {
|
|
|
|
tags := mergeTags(in.tags, lvs)
|
|
|
|
var p *influxdb.Point
|
|
|
|
fields := map[string]interface{}{"value": last(values)}
|
|
|
|
p, err = influxdb.NewPoint(name, tags, fields, now)
|
|
|
|
if err != nil {
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
bp.AddPoint(p)
|
|
|
|
return true
|
|
|
|
})
|
|
|
|
if err != nil {
|
|
|
|
return err
|
|
|
|
}
|
|
|
|
|
|
|
|
in.histograms.Reset().Walk(func(name string, lvs lv.LabelValues, values []float64) bool {
|
|
|
|
histogram := generic.NewHistogram(name, 50)
|
|
|
|
tags := mergeTags(in.tags, lvs)
|
|
|
|
var p *influxdb.Point
|
|
|
|
for _, v := range values {
|
|
|
|
histogram.Observe(v)
|
|
|
|
}
|
|
|
|
fields := map[string]interface{}{
|
|
|
|
"p50": histogram.Quantile(0.50),
|
|
|
|
"p90": histogram.Quantile(0.90),
|
|
|
|
"p95": histogram.Quantile(0.95),
|
|
|
|
"p99": histogram.Quantile(0.99),
|
|
|
|
}
|
|
|
|
p, err = influxdb.NewPoint(name, tags, fields, now)
|
|
|
|
if err != nil {
|
|
|
|
return false
|
|
|
|
}
|
|
|
|
bp.AddPoint(p)
|
|
|
|
return true
|
|
|
|
})
|
|
|
|
if err != nil {
|
|
|
|
return err
|
|
|
|
}
|
|
|
|
|
|
|
|
return w.Write(bp)
|
|
|
|
}
|
|
|
|
|
|
|
|
func mergeTags(tags map[string]string, labelValues []string) map[string]string {
|
|
|
|
if len(labelValues)%2 != 0 {
|
|
|
|
panic("mergeTags received a labelValues with an odd number of strings")
|
|
|
|
}
|
2018-04-16 08:28:04 +00:00
|
|
|
ret := make(map[string]string, len(tags)+len(labelValues)/2)
|
|
|
|
for k, v := range tags {
|
|
|
|
ret[k] = v
|
|
|
|
}
|
2017-11-08 14:14:03 +00:00
|
|
|
for i := 0; i < len(labelValues); i += 2 {
|
2018-04-16 08:28:04 +00:00
|
|
|
ret[labelValues[i]] = labelValues[i+1]
|
2017-11-08 14:14:03 +00:00
|
|
|
}
|
2018-04-16 08:28:04 +00:00
|
|
|
return ret
|
2017-11-08 14:14:03 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
func sum(a []float64) float64 {
|
|
|
|
var v float64
|
|
|
|
for _, f := range a {
|
|
|
|
v += f
|
|
|
|
}
|
|
|
|
return v
|
|
|
|
}
|
|
|
|
|
|
|
|
func last(a []float64) float64 {
|
|
|
|
return a[len(a)-1]
|
|
|
|
}
|
|
|
|
|
|
|
|
type observeFunc func(name string, lvs lv.LabelValues, value float64)
|
|
|
|
|
|
|
|
// Counter is an Influx counter. Observations are forwarded to an Influx
|
|
|
|
// object, and aggregated (summed) per timeseries.
|
|
|
|
type Counter struct {
|
|
|
|
name string
|
|
|
|
lvs lv.LabelValues
|
|
|
|
obs observeFunc
|
|
|
|
}
|
|
|
|
|
|
|
|
// With implements metrics.Counter.
|
|
|
|
func (c *Counter) With(labelValues ...string) metrics.Counter {
|
|
|
|
return &Counter{
|
|
|
|
name: c.name,
|
|
|
|
lvs: c.lvs.With(labelValues...),
|
|
|
|
obs: c.obs,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Add implements metrics.Counter.
|
|
|
|
func (c *Counter) Add(delta float64) {
|
|
|
|
c.obs(c.name, c.lvs, delta)
|
|
|
|
}
|
|
|
|
|
|
|
|
// Gauge is an Influx gauge. Observations are forwarded to a Dogstatsd
|
|
|
|
// object, and aggregated (the last observation selected) per timeseries.
|
|
|
|
type Gauge struct {
|
|
|
|
name string
|
|
|
|
lvs lv.LabelValues
|
|
|
|
obs observeFunc
|
2018-04-16 08:28:04 +00:00
|
|
|
add observeFunc
|
2017-11-08 14:14:03 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// With implements metrics.Gauge.
|
|
|
|
func (g *Gauge) With(labelValues ...string) metrics.Gauge {
|
|
|
|
return &Gauge{
|
|
|
|
name: g.name,
|
|
|
|
lvs: g.lvs.With(labelValues...),
|
|
|
|
obs: g.obs,
|
2018-04-16 08:28:04 +00:00
|
|
|
add: g.add,
|
2017-11-08 14:14:03 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Set implements metrics.Gauge.
|
|
|
|
func (g *Gauge) Set(value float64) {
|
|
|
|
g.obs(g.name, g.lvs, value)
|
|
|
|
}
|
|
|
|
|
2018-04-16 08:28:04 +00:00
|
|
|
// Add implements metrics.Gauge.
|
|
|
|
func (g *Gauge) Add(delta float64) {
|
|
|
|
g.add(g.name, g.lvs, delta)
|
|
|
|
}
|
|
|
|
|
2017-11-08 14:14:03 +00:00
|
|
|
// Histogram is an Influx histrogram. Observations are aggregated into a
|
|
|
|
// generic.Histogram and emitted as per-quantile gauges to the Influx server.
|
|
|
|
type Histogram struct {
|
|
|
|
name string
|
|
|
|
lvs lv.LabelValues
|
|
|
|
obs observeFunc
|
|
|
|
}
|
|
|
|
|
|
|
|
// With implements metrics.Histogram.
|
|
|
|
func (h *Histogram) With(labelValues ...string) metrics.Histogram {
|
|
|
|
return &Histogram{
|
|
|
|
name: h.name,
|
|
|
|
lvs: h.lvs.With(labelValues...),
|
|
|
|
obs: h.obs,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Observe implements metrics.Histogram.
|
|
|
|
func (h *Histogram) Observe(value float64) {
|
|
|
|
h.obs(h.name, h.lvs, value)
|
|
|
|
}
|