b05c9e83d9
Provide a mechanism for users to set aside an amount of VRAM on each GPU to make room for other applications they want to start after Ollama, or workaround memory prediction bugs
359 lines
10 KiB
Go
359 lines
10 KiB
Go
package llm
|
|
|
|
import (
|
|
"fmt"
|
|
"log/slog"
|
|
"strconv"
|
|
"strings"
|
|
|
|
"github.com/ollama/ollama/api"
|
|
"github.com/ollama/ollama/envconfig"
|
|
"github.com/ollama/ollama/format"
|
|
"github.com/ollama/ollama/gpu"
|
|
)
|
|
|
|
// This algorithm looks for a complete fit to determine if we need to unload other models
|
|
func PredictServerFit(allGpus gpu.GpuInfoList, ggml *GGML, adapters, projectors []string, opts api.Options) (bool, uint64) {
|
|
// Split up the GPUs by type and try them
|
|
var estimatedVRAM uint64
|
|
for _, gpus := range allGpus.ByLibrary() {
|
|
var layerCount int
|
|
estimate := EstimateGPULayers(gpus, ggml, projectors, opts)
|
|
layerCount, estimatedVRAM = estimate.Layers, estimate.VRAMSize
|
|
if opts.NumGPU < 0 {
|
|
if layerCount > 0 && layerCount >= int(ggml.KV().BlockCount()+1) {
|
|
return true, estimatedVRAM
|
|
}
|
|
} else {
|
|
if layerCount > 0 && layerCount >= opts.NumGPU {
|
|
return true, estimatedVRAM
|
|
}
|
|
}
|
|
}
|
|
return false, estimatedVRAM
|
|
}
|
|
|
|
type MemoryEstimate struct {
|
|
// How many layers we predict we can load
|
|
Layers int
|
|
|
|
// The size of the graph which occupies the main GPU
|
|
Graph uint64
|
|
|
|
// How much VRAM will be allocated given the number of layers we predict
|
|
VRAMSize uint64
|
|
|
|
// The total size of the model if loaded into VRAM. If all layers are loaded, VRAMSize == TotalSize
|
|
TotalSize uint64
|
|
|
|
// For multi-GPU scenarios, this provides the tensor split parameter
|
|
TensorSplit string
|
|
|
|
// For multi-GPU scenarios, this is the size in bytes per GPU
|
|
GPUSizes []uint64
|
|
|
|
// internal fields for logging purposes
|
|
inferenceLibrary string
|
|
layersRequested int
|
|
layersModel int
|
|
availableList []string
|
|
kv uint64
|
|
allocationsList []string
|
|
memoryWeights uint64
|
|
memoryLayerOutput uint64
|
|
graphFullOffload uint64
|
|
graphPartialOffload uint64
|
|
}
|
|
|
|
// Given a model and one or more GPU targets, predict how many layers and bytes we can load, and the total size
|
|
// The GPUs provided must all be the same Library
|
|
func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts api.Options) MemoryEstimate {
|
|
// Graph size for a partial offload, applies to all GPUs
|
|
var graphPartialOffload uint64
|
|
|
|
// Graph size when all layers are offloaded, applies to all GPUs
|
|
var graphFullOffload uint64
|
|
|
|
// Final graph offload once we know full or partial
|
|
var graphOffload uint64
|
|
|
|
// Projectors loaded into GPU0 only
|
|
var projectorSize uint64
|
|
|
|
// Conditional output size on GPU 0
|
|
var memoryLayerOutput uint64
|
|
|
|
// The sizes of a layer
|
|
var layerSize uint64
|
|
|
|
// The sum of all the layer sizes (just for logging)
|
|
var memoryWeights uint64
|
|
|
|
// True if all the layers are loaded
|
|
var fullyLoaded bool
|
|
|
|
// Overflow that didn't fit into the GPU
|
|
var overflow uint64
|
|
|
|
overhead := envconfig.GpuOverhead()
|
|
availableList := make([]string, len(gpus))
|
|
for i, gpu := range gpus {
|
|
availableList[i] = format.HumanBytes2(gpu.FreeMemory)
|
|
}
|
|
slog.Debug("evaluating", "library", gpus[0].Library, "gpu_count", len(gpus), "available", availableList)
|
|
|
|
for _, projector := range projectors {
|
|
projectorSize += projectorMemoryRequirements(projector)
|
|
|
|
// multimodal models require at least 2048 context
|
|
opts.NumCtx = max(opts.NumCtx, 2048)
|
|
}
|
|
|
|
layers := ggml.Tensors().Layers()
|
|
// add one layer worth of memory as a buffer
|
|
if blk0, ok := layers["blk.0"]; ok {
|
|
layerSize = blk0.size()
|
|
} else {
|
|
slog.Warn("model missing blk.0 layer size")
|
|
}
|
|
|
|
// fp16 k,v = sizeof(float16) * n_ctx * n_layer * (n_embd_head_k + n_embd_head_v) * n_head_kv
|
|
var kv uint64 = 2 * uint64(opts.NumCtx) * ggml.KV().BlockCount() * (ggml.KV().EmbeddingHeadCountK() + ggml.KV().EmbeddingHeadCountV()) * ggml.KV().HeadCountKV()
|
|
|
|
// KV is proportional to the number of layers
|
|
layerSize += kv / ggml.KV().BlockCount()
|
|
|
|
graphPartialOffload, graphFullOffload = ggml.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch)))
|
|
if graphPartialOffload == 0 {
|
|
graphPartialOffload = ggml.KV().GQA() * kv / 6
|
|
}
|
|
if graphFullOffload == 0 {
|
|
graphFullOffload = graphPartialOffload
|
|
}
|
|
|
|
// on metal there's no partial offload overhead
|
|
if gpus[0].Library == "metal" {
|
|
graphPartialOffload = graphFullOffload
|
|
} else if len(gpus) > 1 {
|
|
// multigpu should always use the partial graph size
|
|
graphFullOffload = graphPartialOffload
|
|
}
|
|
|
|
if layer, ok := layers["output_norm"]; ok {
|
|
memoryLayerOutput += layer.size()
|
|
}
|
|
if layer, ok := layers["output"]; ok {
|
|
memoryLayerOutput += layer.size()
|
|
} else if layer, ok := layers["token_embd"]; ok {
|
|
memoryLayerOutput += layer.size()
|
|
}
|
|
|
|
// Output layer handled at the end if we have space
|
|
gpuZeroOverhead := projectorSize
|
|
|
|
// Reduce set of GPUs to only those that have sufficient space to fit overhead and at least one layer
|
|
var layerCount int
|
|
layerCounts := make([]int, len(gpus))
|
|
gpuAllocations := make([]uint64, len(gpus))
|
|
type gs struct {
|
|
i int
|
|
g *gpu.GpuInfo
|
|
}
|
|
gpusWithSpace := []gs{}
|
|
for i := range gpus {
|
|
var gzo uint64
|
|
if len(gpusWithSpace) == 0 {
|
|
gzo = gpuZeroOverhead
|
|
}
|
|
// Only include GPUs that can fit the graph, gpu minimum, the layer buffer and at least more layer
|
|
if (gpus[i].FreeMemory - overhead) < gzo+max(graphPartialOffload, graphFullOffload)+gpus[i].MinimumMemory+2*layerSize {
|
|
slog.Debug("gpu has too little memory to allocate any layers", "gpu", gpus[i])
|
|
continue
|
|
}
|
|
gpusWithSpace = append(gpusWithSpace, gs{i, &gpus[i]})
|
|
gpuAllocations[i] += gpus[i].MinimumMemory + layerSize // We hold off on graph until we know partial vs. full
|
|
}
|
|
|
|
var gpuZeroID int
|
|
if len(gpusWithSpace) > 0 {
|
|
gpuZeroID = gpusWithSpace[0].i
|
|
gpuAllocations[gpuZeroID] += gpuZeroOverhead
|
|
}
|
|
|
|
// For all the layers, find where they can fit on the GPU(s)
|
|
for i := range int(ggml.KV().BlockCount()) {
|
|
// Some models have inconsistent layer sizes
|
|
if blk, ok := layers[fmt.Sprintf("blk.%d", i)]; ok {
|
|
layerSize = blk.size()
|
|
layerSize += kv / ggml.KV().BlockCount()
|
|
}
|
|
memoryWeights += layerSize
|
|
|
|
if opts.NumGPU >= 0 && layerCount >= opts.NumGPU {
|
|
// Stop allocating on GPU(s) once we hit the users target NumGPU
|
|
continue
|
|
}
|
|
|
|
// distribute the layers across the GPU(s) that have space
|
|
for j := len(gpusWithSpace); j > 0; j-- {
|
|
g := gpusWithSpace[i%j]
|
|
used := gpuAllocations[g.i] + max(graphPartialOffload, graphFullOffload)
|
|
if (g.g.FreeMemory - overhead) > used+layerSize {
|
|
gpuAllocations[g.i] += layerSize
|
|
layerCounts[g.i]++
|
|
layerCount++
|
|
break
|
|
} else {
|
|
gpusWithSpace = append(gpusWithSpace[:i%j], gpusWithSpace[i%j+1:]...)
|
|
}
|
|
}
|
|
}
|
|
if layerCount >= int(ggml.KV().BlockCount()) {
|
|
fullyLoaded = true
|
|
} else {
|
|
for i := layerCount; i < int(ggml.KV().BlockCount()); i++ {
|
|
overflow += layerSize
|
|
}
|
|
}
|
|
|
|
// Determine if we need to consider output then find where it fits
|
|
if memoryLayerOutput > 0 && (opts.NumGPU < 0 || layerCount < opts.NumGPU) {
|
|
for j := len(gpusWithSpace); j > 0; j-- {
|
|
g := gpusWithSpace[layerCount%j]
|
|
used := gpuAllocations[g.i] + max(graphPartialOffload, graphFullOffload)
|
|
if (g.g.FreeMemory - overhead) > used+memoryLayerOutput {
|
|
gpuAllocations[g.i] += memoryLayerOutput
|
|
layerCounts[g.i]++
|
|
layerCount++
|
|
break
|
|
}
|
|
}
|
|
|
|
if layerCount < int(ggml.KV().BlockCount())+1 {
|
|
fullyLoaded = false
|
|
overflow += memoryLayerOutput
|
|
}
|
|
}
|
|
|
|
// Add the applicable (full or partial) graph allocations
|
|
for i := range gpus {
|
|
if layerCounts[i] <= 0 {
|
|
continue
|
|
}
|
|
if fullyLoaded {
|
|
gpuAllocations[i] += graphFullOffload
|
|
} else {
|
|
gpuAllocations[i] += graphPartialOffload
|
|
}
|
|
}
|
|
if fullyLoaded {
|
|
graphOffload = graphFullOffload
|
|
} else {
|
|
graphOffload = graphPartialOffload
|
|
}
|
|
|
|
// Summaries for the log
|
|
var memoryRequiredPartial, memoryRequiredTotal uint64
|
|
for i := range gpuAllocations {
|
|
memoryRequiredPartial += gpuAllocations[i]
|
|
}
|
|
memoryRequiredTotal = memoryRequiredPartial + overflow
|
|
|
|
tensorSplit := ""
|
|
if len(gpus) > 1 {
|
|
splits := make([]string, len(gpus))
|
|
for i, count := range layerCounts {
|
|
splits[i] = strconv.Itoa(count)
|
|
}
|
|
tensorSplit = strings.Join(splits, ",")
|
|
}
|
|
allocationsList := []string{}
|
|
for _, a := range gpuAllocations {
|
|
allocationsList = append(allocationsList, format.HumanBytes2(a))
|
|
}
|
|
|
|
estimate := MemoryEstimate{
|
|
TotalSize: memoryRequiredTotal,
|
|
Layers: 0,
|
|
Graph: 0,
|
|
VRAMSize: 0,
|
|
GPUSizes: []uint64{},
|
|
|
|
inferenceLibrary: gpus[0].Library,
|
|
layersRequested: opts.NumGPU,
|
|
layersModel: int(ggml.KV().BlockCount()) + 1,
|
|
availableList: availableList,
|
|
kv: kv,
|
|
allocationsList: allocationsList,
|
|
memoryWeights: memoryWeights,
|
|
memoryLayerOutput: memoryLayerOutput,
|
|
graphFullOffload: graphFullOffload,
|
|
graphPartialOffload: graphPartialOffload,
|
|
}
|
|
|
|
if gpus[0].Library == "cpu" {
|
|
return estimate
|
|
}
|
|
if layerCount == 0 {
|
|
slog.Debug("insufficient VRAM to load any model layers")
|
|
return estimate
|
|
}
|
|
estimate.Layers = layerCount
|
|
estimate.Graph = graphOffload
|
|
estimate.VRAMSize = memoryRequiredPartial
|
|
estimate.TotalSize = memoryRequiredTotal
|
|
estimate.TensorSplit = tensorSplit
|
|
estimate.GPUSizes = gpuAllocations
|
|
return estimate
|
|
}
|
|
|
|
func (m MemoryEstimate) log() {
|
|
overhead := envconfig.GpuOverhead()
|
|
slog.Info(
|
|
"offload to "+m.inferenceLibrary,
|
|
slog.Group(
|
|
"layers",
|
|
// requested number of layers to offload
|
|
"requested", m.layersRequested,
|
|
// The number of layers the model has (including output)
|
|
"model", m.layersModel,
|
|
// estimated number of layers that can be offloaded
|
|
"offload", m.Layers,
|
|
// multi-gpu split for tensors
|
|
"split", m.TensorSplit,
|
|
),
|
|
slog.Group(
|
|
"memory",
|
|
// memory available by GPU for offloading
|
|
"available", m.availableList,
|
|
"gpu_overhead", format.HumanBytes2(overhead),
|
|
slog.Group(
|
|
"required",
|
|
// memory required for full offloading
|
|
"full", format.HumanBytes2(m.TotalSize),
|
|
// memory required to offload layers.estimate layers
|
|
"partial", format.HumanBytes2(m.VRAMSize),
|
|
// memory of KV cache
|
|
"kv", format.HumanBytes2(m.kv),
|
|
// Allocations across the GPUs
|
|
"allocations", m.allocationsList,
|
|
),
|
|
slog.Group(
|
|
"weights",
|
|
// memory of the weights
|
|
"total", format.HumanBytes2(m.memoryWeights),
|
|
// memory of repeating layers
|
|
"repeating", format.HumanBytes2(m.memoryWeights-m.memoryLayerOutput),
|
|
// memory of non-repeating layers
|
|
"nonrepeating", format.HumanBytes2(m.memoryLayerOutput),
|
|
),
|
|
slog.Group(
|
|
"graph",
|
|
// memory of graph when fully offloaded
|
|
"full", format.HumanBytes2(m.graphFullOffload),
|
|
// memory of graph when not fully offloaded
|
|
"partial", format.HumanBytes2(m.graphPartialOffload),
|
|
),
|
|
),
|
|
)
|
|
}
|