ac7a842e55
ensure runtime model changes (template, system prompt, messages, options) are captured on model updates without needing to reload the server
1067 lines
30 KiB
Go
1067 lines
30 KiB
Go
package llm
|
|
|
|
import (
|
|
"bufio"
|
|
"bytes"
|
|
"context"
|
|
"encoding/json"
|
|
"errors"
|
|
"fmt"
|
|
"io"
|
|
"log"
|
|
"log/slog"
|
|
"math/rand"
|
|
"net"
|
|
"net/http"
|
|
"os"
|
|
"os/exec"
|
|
"path/filepath"
|
|
"runtime"
|
|
"strconv"
|
|
"strings"
|
|
"time"
|
|
|
|
"golang.org/x/sync/semaphore"
|
|
|
|
"github.com/ollama/ollama/api"
|
|
"github.com/ollama/ollama/envconfig"
|
|
"github.com/ollama/ollama/format"
|
|
"github.com/ollama/ollama/gpu"
|
|
)
|
|
|
|
type LlamaServer interface {
|
|
Ping(ctx context.Context) error
|
|
WaitUntilRunning(ctx context.Context) error
|
|
Completion(ctx context.Context, req CompletionRequest, fn func(CompletionResponse)) error
|
|
Embedding(ctx context.Context, prompt string) ([]float64, error)
|
|
Tokenize(ctx context.Context, content string) ([]int, error)
|
|
Detokenize(ctx context.Context, tokens []int) (string, error)
|
|
Close() error
|
|
EstimatedVRAM() uint64 // Total VRAM across all GPUs
|
|
EstimatedTotal() uint64
|
|
EstimatedVRAMByGPU(gpuID string) uint64
|
|
}
|
|
|
|
// llmServer is an instance of the llama.cpp server
|
|
type llmServer struct {
|
|
port int
|
|
cmd *exec.Cmd
|
|
done chan error // Channel to signal when the process exits
|
|
status *StatusWriter
|
|
options api.Options
|
|
|
|
estimate MemoryEstimate
|
|
totalLayers uint64
|
|
// gpuCount int
|
|
gpus gpu.GpuInfoList // Recorded just before the model loaded, free space will be incorrect
|
|
loadDuration time.Duration // Record how long it took the model to load
|
|
loadProgress float32
|
|
|
|
sem *semaphore.Weighted
|
|
}
|
|
|
|
// LoadModel will load a model from disk. The model must be in the GGML format.
|
|
//
|
|
// It collects array values for arrays with a size less than or equal to
|
|
// maxArraySize. If maxArraySize is 0, the default value of 1024 is used. If
|
|
// the maxArraySize is negative, all arrays are collected.
|
|
func LoadModel(model string, maxArraySize int) (*GGML, error) {
|
|
if _, err := os.Stat(model); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
f, err := os.Open(model)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
defer f.Close()
|
|
|
|
ggml, _, err := DecodeGGML(f, maxArraySize)
|
|
return ggml, err
|
|
}
|
|
|
|
// NewLlamaServer will run a server for the given GPUs
|
|
// The gpu list must be a single family.
|
|
func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, projectors []string, opts api.Options, numParallel int) (LlamaServer, error) {
|
|
var err error
|
|
var cpuRunner string
|
|
var estimate MemoryEstimate
|
|
var systemTotalMemory uint64
|
|
var systemFreeMemory uint64
|
|
|
|
systemMemInfo, err := gpu.GetCPUMem()
|
|
if err != nil {
|
|
slog.Error("failed to lookup system memory", "error", err)
|
|
} else {
|
|
systemTotalMemory = systemMemInfo.TotalMemory
|
|
systemFreeMemory = systemMemInfo.FreeMemory
|
|
slog.Debug("system memory", "total", format.HumanBytes2(systemTotalMemory), "free", systemFreeMemory)
|
|
}
|
|
|
|
// If the user wants zero GPU layers, reset the gpu list to be CPU/system ram info
|
|
if opts.NumGPU == 0 {
|
|
gpus = gpu.GetCPUInfo()
|
|
}
|
|
if len(gpus) == 1 && gpus[0].Library == "cpu" {
|
|
cpuRunner = serverForCpu()
|
|
estimate = EstimateGPULayers(gpus, ggml, projectors, opts)
|
|
} else {
|
|
estimate = EstimateGPULayers(gpus, ggml, projectors, opts)
|
|
|
|
switch {
|
|
case gpus[0].Library == "metal" && estimate.VRAMSize > systemTotalMemory:
|
|
// disable partial offloading when model is greater than total system memory as this
|
|
// can lead to locking up the system
|
|
opts.NumGPU = 0
|
|
case gpus[0].Library != "metal" && estimate.Layers == 0:
|
|
// Don't bother loading into the GPU if no layers can fit
|
|
cpuRunner = serverForCpu()
|
|
gpus = gpu.GetCPUInfo()
|
|
case opts.NumGPU < 0 && estimate.Layers > 0 && gpus[0].Library != "cpu":
|
|
opts.NumGPU = estimate.Layers
|
|
}
|
|
}
|
|
|
|
estimate.log()
|
|
|
|
// Loop through potential servers
|
|
finalErr := errors.New("no suitable llama servers found")
|
|
|
|
if len(adapters) > 1 {
|
|
return nil, errors.New("ollama supports only one lora adapter, but multiple were provided")
|
|
}
|
|
|
|
availableServers := getAvailableServers()
|
|
if len(availableServers) == 0 {
|
|
if runtime.GOOS != "windows" {
|
|
slog.Warn("llama server binary disappeared, reinitializing payloads")
|
|
err = Init()
|
|
if err != nil {
|
|
slog.Warn("failed to reinitialize payloads", "error", err)
|
|
return nil, err
|
|
}
|
|
availableServers = getAvailableServers()
|
|
} else {
|
|
return nil, finalErr
|
|
}
|
|
}
|
|
var servers []string
|
|
if cpuRunner != "" {
|
|
servers = []string{cpuRunner}
|
|
} else {
|
|
servers = serversForGpu(gpus[0]) // All GPUs in the list are matching Library and Variant
|
|
}
|
|
demandLib := envconfig.LLMLibrary
|
|
if demandLib != "" {
|
|
serverPath := availableServers[demandLib]
|
|
if serverPath == "" {
|
|
slog.Info(fmt.Sprintf("Invalid OLLAMA_LLM_LIBRARY %s - not found", demandLib))
|
|
} else {
|
|
slog.Info("user override", "OLLAMA_LLM_LIBRARY", demandLib, "path", serverPath)
|
|
servers = []string{demandLib}
|
|
if strings.HasPrefix(demandLib, "cpu") {
|
|
// Omit the GPU flag to silence the warning
|
|
opts.NumGPU = -1
|
|
}
|
|
}
|
|
}
|
|
|
|
if len(servers) == 0 {
|
|
return nil, fmt.Errorf("no servers found for %v", gpus)
|
|
}
|
|
|
|
params := []string{
|
|
"--model", model,
|
|
"--ctx-size", fmt.Sprintf("%d", opts.NumCtx),
|
|
"--batch-size", fmt.Sprintf("%d", opts.NumBatch),
|
|
"--embedding",
|
|
}
|
|
|
|
params = append(params, "--log-disable")
|
|
|
|
if opts.NumGPU >= 0 {
|
|
params = append(params, "--n-gpu-layers", fmt.Sprintf("%d", opts.NumGPU))
|
|
}
|
|
|
|
if envconfig.Debug {
|
|
params = append(params, "--verbose")
|
|
}
|
|
|
|
if opts.MainGPU > 0 {
|
|
params = append(params, "--main-gpu", fmt.Sprintf("%d", opts.MainGPU))
|
|
}
|
|
|
|
if len(adapters) > 0 {
|
|
// TODO: applying multiple adapters is not supported by the llama.cpp server yet
|
|
params = append(params, "--lora", adapters[0])
|
|
}
|
|
|
|
if len(projectors) > 0 {
|
|
// TODO: applying multiple projectors is not supported by the llama.cpp server yet
|
|
params = append(params, "--mmproj", projectors[0])
|
|
}
|
|
|
|
if opts.NumThread > 0 {
|
|
params = append(params, "--threads", fmt.Sprintf("%d", opts.NumThread))
|
|
}
|
|
|
|
if !opts.F16KV {
|
|
params = append(params, "--memory-f32")
|
|
}
|
|
|
|
flashAttnEnabled := envconfig.FlashAttention
|
|
|
|
for _, g := range gpus {
|
|
// only cuda (compute capability 7+) and metal support flash attention
|
|
if g.Library != "metal" && (g.Library != "cuda" || g.DriverMajor < 7) {
|
|
flashAttnEnabled = false
|
|
}
|
|
|
|
// mmap has issues with partial offloading on metal
|
|
if g.Library == "metal" &&
|
|
uint64(opts.NumGPU) > 0 &&
|
|
uint64(opts.NumGPU) < ggml.KV().BlockCount()+1 {
|
|
opts.UseMMap = new(bool)
|
|
*opts.UseMMap = false
|
|
}
|
|
}
|
|
|
|
if flashAttnEnabled {
|
|
params = append(params, "--flash-attn")
|
|
}
|
|
|
|
// Windows CUDA should not use mmap for best performance
|
|
// Linux with a model larger than free space, mmap leads to thrashing
|
|
// For CPU loads we want the memory to be allocated, not FS cache
|
|
if (runtime.GOOS == "windows" && gpus[0].Library == "cuda" && opts.UseMMap == nil) ||
|
|
(runtime.GOOS == "linux" && systemFreeMemory < estimate.TotalSize && opts.UseMMap == nil) ||
|
|
(gpus[0].Library == "cpu" && opts.UseMMap == nil) ||
|
|
(opts.UseMMap != nil && !*opts.UseMMap) {
|
|
params = append(params, "--no-mmap")
|
|
}
|
|
|
|
if opts.UseMLock {
|
|
params = append(params, "--mlock")
|
|
}
|
|
|
|
if opts.UseNUMA {
|
|
params = append(params, "--numa")
|
|
}
|
|
|
|
params = append(params, "--parallel", fmt.Sprintf("%d", numParallel))
|
|
|
|
if estimate.TensorSplit != "" {
|
|
params = append(params, "--tensor-split", estimate.TensorSplit)
|
|
}
|
|
|
|
if estimate.TensorSplit != "" {
|
|
params = append(params, "--tensor-split", estimate.TensorSplit)
|
|
}
|
|
|
|
for i := range len(servers) {
|
|
dir := availableServers[servers[i]]
|
|
if dir == "" {
|
|
// Shouldn't happen
|
|
finalErr = fmt.Errorf("[%d] server %s not listed in available servers %v", i, servers[i], availableServers)
|
|
slog.Error("server list inconsistent", "error", finalErr)
|
|
continue
|
|
}
|
|
|
|
if strings.HasPrefix(servers[i], "cpu") {
|
|
gpus = gpu.GetCPUInfo()
|
|
}
|
|
|
|
// Find an availableServers port, retry on each iteration in case the failure was a port conflict race
|
|
port := 0
|
|
if a, err := net.ResolveTCPAddr("tcp", "localhost:0"); err == nil {
|
|
var l *net.TCPListener
|
|
if l, err = net.ListenTCP("tcp", a); err == nil {
|
|
port = l.Addr().(*net.TCPAddr).Port
|
|
l.Close()
|
|
}
|
|
}
|
|
if port == 0 {
|
|
slog.Debug("ResolveTCPAddr failed ", "error", err)
|
|
port = rand.Intn(65535-49152) + 49152 // get a random port in the ephemeral range
|
|
}
|
|
finalParams := append(params, "--port", strconv.Itoa(port))
|
|
|
|
pathEnv := "LD_LIBRARY_PATH"
|
|
if runtime.GOOS == "windows" {
|
|
pathEnv = "PATH"
|
|
}
|
|
// prepend the server directory to LD_LIBRARY_PATH/PATH and the parent dir for common dependencies
|
|
libraryPaths := []string{dir, filepath.Dir(dir)}
|
|
|
|
if libraryPath, ok := os.LookupEnv(pathEnv); ok {
|
|
// Append our runner directory to the path
|
|
// This will favor system libraries over our bundled library dependencies
|
|
libraryPaths = append(libraryPaths, filepath.SplitList(libraryPath)...)
|
|
}
|
|
|
|
// Note: we always put the dependency path first
|
|
// since this was the exact version we verified for AMD GPUs
|
|
// and we favor what the user had in their path
|
|
if gpus[0].DependencyPath != "" {
|
|
// TODO refine for multi-gpu support
|
|
libraryPaths = append([]string{gpus[0].DependencyPath}, libraryPaths...)
|
|
}
|
|
|
|
server := filepath.Join(dir, "ollama_llama_server")
|
|
if runtime.GOOS == "windows" {
|
|
server += ".exe"
|
|
}
|
|
|
|
// Detect tmp cleaners wiping out the file
|
|
_, err := os.Stat(server)
|
|
if errors.Is(err, os.ErrNotExist) {
|
|
slog.Warn("llama server disappeared, reinitializing payloads", "path", server, "error", err)
|
|
err = Init()
|
|
if err != nil {
|
|
slog.Warn("failed to reinitialize payloads", "error", err)
|
|
return nil, err
|
|
}
|
|
}
|
|
|
|
s := &llmServer{
|
|
port: port,
|
|
cmd: exec.Command(server, finalParams...),
|
|
status: NewStatusWriter(os.Stderr),
|
|
options: opts,
|
|
estimate: estimate,
|
|
sem: semaphore.NewWeighted(int64(numParallel)),
|
|
totalLayers: ggml.KV().BlockCount() + 1,
|
|
gpus: gpus,
|
|
done: make(chan error, 1),
|
|
}
|
|
|
|
s.cmd.Env = os.Environ()
|
|
s.cmd.Stdout = os.Stdout
|
|
s.cmd.Stderr = s.status
|
|
|
|
envWorkarounds := [][2]string{}
|
|
for _, gpu := range gpus {
|
|
envWorkarounds = append(envWorkarounds, gpu.EnvWorkarounds...)
|
|
}
|
|
visibleDevicesEnv, visibleDevicesEnvVal := gpus.GetVisibleDevicesEnv()
|
|
pathEnvVal := strings.Join(libraryPaths, string(filepath.ListSeparator))
|
|
|
|
// Update or add the path and visible devices variable with our adjusted version
|
|
pathNeeded := true
|
|
devicesNeeded := visibleDevicesEnv != ""
|
|
for i := range s.cmd.Env {
|
|
cmp := strings.SplitN(s.cmd.Env[i], "=", 2)
|
|
if strings.EqualFold(cmp[0], pathEnv) {
|
|
s.cmd.Env[i] = pathEnv + "=" + pathEnvVal
|
|
pathNeeded = false
|
|
} else if devicesNeeded && strings.EqualFold(cmp[0], visibleDevicesEnv) {
|
|
s.cmd.Env[i] = visibleDevicesEnv + "=" + visibleDevicesEnvVal
|
|
devicesNeeded = false
|
|
} else if len(envWorkarounds) != 0 {
|
|
for _, kv := range envWorkarounds {
|
|
if strings.EqualFold(cmp[0], kv[0]) {
|
|
s.cmd.Env[i] = kv[0] + "=" + kv[1]
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if pathNeeded {
|
|
s.cmd.Env = append(s.cmd.Env, pathEnv+"="+pathEnvVal)
|
|
}
|
|
if devicesNeeded {
|
|
s.cmd.Env = append(s.cmd.Env, visibleDevicesEnv+"="+visibleDevicesEnvVal)
|
|
}
|
|
|
|
slog.Info("starting llama server", "cmd", s.cmd.String())
|
|
if envconfig.Debug {
|
|
filteredEnv := []string{}
|
|
for _, ev := range s.cmd.Env {
|
|
if strings.HasPrefix(ev, "CUDA_") ||
|
|
strings.HasPrefix(ev, "ROCM_") ||
|
|
strings.HasPrefix(ev, "HIP_") ||
|
|
strings.HasPrefix(ev, "HSA_") ||
|
|
strings.HasPrefix(ev, "GGML_") ||
|
|
strings.HasPrefix(ev, "PATH=") ||
|
|
strings.HasPrefix(ev, "LD_LIBRARY_PATH=") {
|
|
filteredEnv = append(filteredEnv, ev)
|
|
}
|
|
}
|
|
// Log at debug as the environment is inherited and might contain sensitive information
|
|
slog.Debug("subprocess", "environment", filteredEnv)
|
|
}
|
|
|
|
if err = s.cmd.Start(); err != nil {
|
|
// Detect permission denied and augment them essage about noexec
|
|
if errors.Is(err, os.ErrPermission) {
|
|
finalErr = fmt.Errorf("unable to start server %w. %s may have noexec set. Set OLLAMA_TMPDIR for server to a writable executable directory", err, dir)
|
|
continue
|
|
}
|
|
msg := ""
|
|
if s.status != nil && s.status.LastErrMsg != "" {
|
|
msg = s.status.LastErrMsg
|
|
}
|
|
err = fmt.Errorf("error starting the external llama server: %v %s", err, msg)
|
|
finalErr = err
|
|
continue
|
|
}
|
|
|
|
// reap subprocess when it exits
|
|
go func() {
|
|
s.done <- s.cmd.Wait()
|
|
}()
|
|
|
|
return s, nil
|
|
}
|
|
|
|
slog.Error("unable to load any llama server", "error", finalErr)
|
|
return nil, finalErr
|
|
}
|
|
|
|
func projectorMemoryRequirements(filename string) uint64 {
|
|
file, err := os.Open(filename)
|
|
if err != nil {
|
|
return 0
|
|
}
|
|
defer file.Close()
|
|
|
|
ggml, _, err := DecodeGGML(file, 0)
|
|
if err != nil {
|
|
return 0
|
|
}
|
|
|
|
var mem uint64
|
|
for _, layer := range ggml.Tensors().Layers() {
|
|
mem += layer.size()
|
|
}
|
|
|
|
return mem
|
|
}
|
|
|
|
type ServerStatus int
|
|
|
|
const ( // iota is reset to 0
|
|
ServerStatusReady ServerStatus = iota
|
|
ServerStatusNoSlotsAvailable
|
|
ServerStatusLoadingModel
|
|
ServerStatusNotResponding
|
|
ServerStatusError
|
|
)
|
|
|
|
func (s ServerStatus) ToString() string {
|
|
switch s {
|
|
case ServerStatusReady:
|
|
return "llm server ready"
|
|
case ServerStatusNoSlotsAvailable:
|
|
return "llm busy - no slots available"
|
|
case ServerStatusLoadingModel:
|
|
return "llm server loading model"
|
|
case ServerStatusNotResponding:
|
|
return "llm server not responding"
|
|
default:
|
|
return "llm server error"
|
|
}
|
|
}
|
|
|
|
type ServerStatusResp struct {
|
|
Status string `json:"status"`
|
|
SlotsIdle int `json:"slots_idle"`
|
|
SlotsProcessing int `json:"slots_processing"`
|
|
Error string `json:"error"`
|
|
Progress float32 `json:"progress"`
|
|
}
|
|
|
|
func (s *llmServer) getServerStatus(ctx context.Context) (ServerStatus, error) {
|
|
// Fail fast if its exited
|
|
if s.cmd.ProcessState != nil {
|
|
msg := ""
|
|
if s.status != nil && s.status.LastErrMsg != "" {
|
|
msg = s.status.LastErrMsg
|
|
}
|
|
if s.cmd.ProcessState.ExitCode() == -1 {
|
|
// Most likely a signal killed it, log some more details to try to help troubleshoot
|
|
slog.Warn("llama runner process no longer running", "sys", s.cmd.ProcessState.Sys(), "string", s.cmd.ProcessState.String())
|
|
}
|
|
return ServerStatusError, fmt.Errorf("llama runner process no longer running: %d %s", s.cmd.ProcessState.ExitCode(), msg)
|
|
}
|
|
|
|
req, err := http.NewRequestWithContext(ctx, http.MethodGet, fmt.Sprintf("http://127.0.0.1:%d/health", s.port), nil)
|
|
if err != nil {
|
|
return ServerStatusError, fmt.Errorf("error creating GET request: %v", err)
|
|
}
|
|
req.Header.Set("Content-Type", "application/json")
|
|
|
|
resp, err := http.DefaultClient.Do(req)
|
|
if err != nil {
|
|
if errors.Is(err, context.DeadlineExceeded) {
|
|
return ServerStatusNotResponding, errors.New("server not responding")
|
|
}
|
|
return ServerStatusError, fmt.Errorf("health resp: %w", err)
|
|
}
|
|
defer resp.Body.Close()
|
|
|
|
body, err := io.ReadAll(resp.Body)
|
|
if err != nil {
|
|
return ServerStatusError, fmt.Errorf("read health request: %w", err)
|
|
}
|
|
|
|
var status ServerStatusResp
|
|
if err := json.Unmarshal(body, &status); err != nil {
|
|
return ServerStatusError, fmt.Errorf("health unmarshal encode response: %w", err)
|
|
}
|
|
|
|
switch status.Status {
|
|
case "ok":
|
|
return ServerStatusReady, nil
|
|
case "no slot available":
|
|
return ServerStatusNoSlotsAvailable, nil
|
|
case "loading model":
|
|
s.loadProgress = status.Progress
|
|
return ServerStatusLoadingModel, nil
|
|
default:
|
|
return ServerStatusError, fmt.Errorf("server error: %+v", status)
|
|
}
|
|
}
|
|
|
|
// getServerStatusRetry will retry if ServerStatusNoSlotsAvailable is received
|
|
func (s *llmServer) getServerStatusRetry(ctx context.Context) (ServerStatus, error) {
|
|
var retries int
|
|
for {
|
|
status, err := s.getServerStatus(ctx)
|
|
if err != nil {
|
|
return status, err
|
|
}
|
|
|
|
if status == ServerStatusNoSlotsAvailable {
|
|
if retries >= 10 {
|
|
return status, fmt.Errorf("no slots available after %d retries", retries)
|
|
}
|
|
|
|
time.Sleep(5 * time.Millisecond)
|
|
retries++
|
|
continue
|
|
}
|
|
|
|
return status, nil
|
|
}
|
|
}
|
|
|
|
func (s *llmServer) Ping(ctx context.Context) error {
|
|
_, err := s.getServerStatus(ctx)
|
|
if err != nil {
|
|
slog.Debug("server unhealthy", "error", err)
|
|
return err
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func (s *llmServer) WaitUntilRunning(ctx context.Context) error {
|
|
start := time.Now()
|
|
stallDuration := 5 * time.Minute // If no progress happens
|
|
finalLoadDuration := 5 * time.Minute // After we hit 100%, give the runner more time to come online
|
|
stallTimer := time.Now().Add(stallDuration) // give up if we stall
|
|
|
|
slog.Info("waiting for llama runner to start responding")
|
|
var lastStatus ServerStatus = -1
|
|
fullyLoaded := false
|
|
|
|
for {
|
|
select {
|
|
case <-ctx.Done():
|
|
slog.Warn("client connection closed before server finished loading, aborting load")
|
|
return fmt.Errorf("timed out waiting for llama runner to start: %w", ctx.Err())
|
|
case err := <-s.done:
|
|
msg := ""
|
|
if s.status != nil && s.status.LastErrMsg != "" {
|
|
msg = s.status.LastErrMsg
|
|
}
|
|
if strings.Contains(msg, "unknown model") {
|
|
return fmt.Errorf("this model is not supported by your version of Ollama. You may need to upgrade")
|
|
}
|
|
return fmt.Errorf("llama runner process has terminated: %v %s", err, msg)
|
|
default:
|
|
}
|
|
if time.Now().After(stallTimer) {
|
|
// timeout
|
|
msg := ""
|
|
if s.status != nil && s.status.LastErrMsg != "" {
|
|
msg = s.status.LastErrMsg
|
|
}
|
|
return fmt.Errorf("timed out waiting for llama runner to start - progress %0.2f - %s", s.loadProgress, msg)
|
|
}
|
|
if s.cmd.ProcessState != nil {
|
|
msg := ""
|
|
if s.status != nil && s.status.LastErrMsg != "" {
|
|
msg = s.status.LastErrMsg
|
|
}
|
|
return fmt.Errorf("llama runner process no longer running: %d %s", s.cmd.ProcessState.ExitCode(), msg)
|
|
}
|
|
ctx, cancel := context.WithTimeout(ctx, 200*time.Millisecond)
|
|
defer cancel()
|
|
priorProgress := s.loadProgress
|
|
status, _ := s.getServerStatus(ctx)
|
|
if lastStatus != status && status != ServerStatusReady {
|
|
// Only log on status changes
|
|
slog.Info("waiting for server to become available", "status", status.ToString())
|
|
}
|
|
switch status {
|
|
case ServerStatusReady:
|
|
s.loadDuration = time.Since(start)
|
|
slog.Info(fmt.Sprintf("llama runner started in %0.2f seconds", s.loadDuration.Seconds()))
|
|
return nil
|
|
default:
|
|
lastStatus = status
|
|
// Reset the timer as long as we're making forward progress on the load
|
|
if priorProgress != s.loadProgress {
|
|
slog.Debug(fmt.Sprintf("model load progress %0.2f", s.loadProgress))
|
|
stallTimer = time.Now().Add(stallDuration)
|
|
} else if !fullyLoaded && int(s.loadProgress*100.0) >= 100 {
|
|
slog.Debug("model load completed, waiting for server to become available", "status", status.ToString())
|
|
stallTimer = time.Now().Add(finalLoadDuration)
|
|
fullyLoaded = true
|
|
}
|
|
time.Sleep(time.Millisecond * 250)
|
|
continue
|
|
}
|
|
}
|
|
}
|
|
|
|
const jsonGrammar = `
|
|
root ::= object
|
|
value ::= object | array | string | number | ("true" | "false" | "null") ws
|
|
|
|
object ::=
|
|
"{" ws (
|
|
string ":" ws value
|
|
("," ws string ":" ws value)*
|
|
)? "}" ws
|
|
|
|
array ::=
|
|
"[" ws (
|
|
value
|
|
("," ws value)*
|
|
)? "]" ws
|
|
|
|
string ::=
|
|
"\"" (
|
|
[^"\\\x7F\x00-\x1F] |
|
|
"\\" (["\\/bfnrt] | "u" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F]) # escapes
|
|
)* "\"" ws
|
|
|
|
number ::= ("-"? ([0-9] | [1-9] [0-9]*)) ("." [0-9]+)? ([eE] [-+]? [0-9]+)? ws
|
|
|
|
# Optional space: by convention, applied in this grammar after literal chars when allowed
|
|
ws ::= ([ \t\n] ws)?
|
|
`
|
|
|
|
const maxBufferSize = 512 * format.KiloByte
|
|
|
|
type ImageData struct {
|
|
Data []byte `json:"data"`
|
|
ID int `json:"id"`
|
|
}
|
|
|
|
type completion struct {
|
|
Content string `json:"content"`
|
|
Model string `json:"model"`
|
|
Prompt string `json:"prompt"`
|
|
Stop bool `json:"stop"`
|
|
StoppedLimit bool `json:"stopped_limit"`
|
|
|
|
Timings struct {
|
|
PredictedN int `json:"predicted_n"`
|
|
PredictedMS float64 `json:"predicted_ms"`
|
|
PromptN int `json:"prompt_n"`
|
|
PromptMS float64 `json:"prompt_ms"`
|
|
}
|
|
}
|
|
|
|
type CompletionRequest struct {
|
|
Prompt string
|
|
Format string
|
|
Images []ImageData
|
|
Options *api.Options
|
|
}
|
|
|
|
type CompletionResponse struct {
|
|
Content string
|
|
DoneReason string
|
|
Done bool
|
|
PromptEvalCount int
|
|
PromptEvalDuration time.Duration
|
|
EvalCount int
|
|
EvalDuration time.Duration
|
|
}
|
|
|
|
func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn func(CompletionResponse)) error {
|
|
if err := s.sem.Acquire(ctx, 1); err != nil {
|
|
slog.Error("Failed to acquire semaphore", "error", err)
|
|
return err
|
|
}
|
|
defer s.sem.Release(1)
|
|
|
|
// only allow maximum 10 "context shifts" to avoid infinite generation
|
|
if req.Options.NumPredict < 0 || req.Options.NumPredict > 10*s.options.NumCtx {
|
|
req.Options.NumPredict = 10 * s.options.NumCtx
|
|
slog.Debug("setting token limit to 10x num_ctx", "num_ctx", s.options.NumCtx, "num_predict", req.Options.NumPredict)
|
|
}
|
|
|
|
request := map[string]any{
|
|
"prompt": req.Prompt,
|
|
"stream": true,
|
|
"n_predict": req.Options.NumPredict,
|
|
"n_keep": req.Options.NumKeep,
|
|
"main_gpu": req.Options.MainGPU,
|
|
"temperature": req.Options.Temperature,
|
|
"top_k": req.Options.TopK,
|
|
"top_p": req.Options.TopP,
|
|
"tfs_z": req.Options.TFSZ,
|
|
"typical_p": req.Options.TypicalP,
|
|
"repeat_last_n": req.Options.RepeatLastN,
|
|
"repeat_penalty": req.Options.RepeatPenalty,
|
|
"presence_penalty": req.Options.PresencePenalty,
|
|
"frequency_penalty": req.Options.FrequencyPenalty,
|
|
"mirostat": req.Options.Mirostat,
|
|
"mirostat_tau": req.Options.MirostatTau,
|
|
"mirostat_eta": req.Options.MirostatEta,
|
|
"penalize_nl": req.Options.PenalizeNewline,
|
|
"seed": req.Options.Seed,
|
|
"stop": req.Options.Stop,
|
|
"image_data": req.Images,
|
|
"cache_prompt": true,
|
|
}
|
|
|
|
// Make sure the server is ready
|
|
status, err := s.getServerStatusRetry(ctx)
|
|
if err != nil {
|
|
return err
|
|
} else if status != ServerStatusReady {
|
|
return fmt.Errorf("unexpected server status: %s", status.ToString())
|
|
}
|
|
|
|
if req.Format == "json" {
|
|
request["grammar"] = jsonGrammar
|
|
if !strings.Contains(strings.ToLower(req.Prompt), "json") {
|
|
slog.Warn("Prompt does not specify that the LLM should response in JSON, but JSON format is expected. For best results specify that JSON is expected in the system prompt.")
|
|
}
|
|
}
|
|
|
|
// Handling JSON marshaling with special characters unescaped.
|
|
buffer := &bytes.Buffer{}
|
|
enc := json.NewEncoder(buffer)
|
|
enc.SetEscapeHTML(false)
|
|
|
|
if err := enc.Encode(request); err != nil {
|
|
return fmt.Errorf("failed to marshal data: %v", err)
|
|
}
|
|
|
|
endpoint := fmt.Sprintf("http://127.0.0.1:%d/completion", s.port)
|
|
serverReq, err := http.NewRequestWithContext(ctx, http.MethodPost, endpoint, buffer)
|
|
if err != nil {
|
|
return fmt.Errorf("error creating POST request: %v", err)
|
|
}
|
|
serverReq.Header.Set("Content-Type", "application/json")
|
|
|
|
res, err := http.DefaultClient.Do(serverReq)
|
|
if err != nil {
|
|
return fmt.Errorf("POST predict: %v", err)
|
|
}
|
|
defer res.Body.Close()
|
|
|
|
if res.StatusCode >= 400 {
|
|
bodyBytes, err := io.ReadAll(res.Body)
|
|
if err != nil {
|
|
return fmt.Errorf("failed reading llm error response: %w", err)
|
|
}
|
|
log.Printf("llm predict error: %s", bodyBytes)
|
|
return fmt.Errorf("%s", bodyBytes)
|
|
}
|
|
|
|
scanner := bufio.NewScanner(res.Body)
|
|
buf := make([]byte, 0, maxBufferSize)
|
|
scanner.Buffer(buf, maxBufferSize)
|
|
|
|
// keep track of the last token generated, this is used to abort if the model starts looping
|
|
var lastToken string
|
|
var tokenRepeat int
|
|
|
|
for scanner.Scan() {
|
|
select {
|
|
case <-ctx.Done():
|
|
// This handles the request cancellation
|
|
return ctx.Err()
|
|
default:
|
|
line := scanner.Bytes()
|
|
if len(line) == 0 {
|
|
continue
|
|
}
|
|
|
|
evt, ok := bytes.CutPrefix(line, []byte("data: "))
|
|
if !ok {
|
|
return fmt.Errorf("error parsing llm response stream: %s", line)
|
|
}
|
|
|
|
var c completion
|
|
if err := json.Unmarshal(evt, &c); err != nil {
|
|
return fmt.Errorf("error unmarshalling llm prediction response: %v", err)
|
|
}
|
|
|
|
switch {
|
|
case strings.TrimSpace(c.Content) == lastToken:
|
|
tokenRepeat++
|
|
default:
|
|
lastToken = strings.TrimSpace(c.Content)
|
|
tokenRepeat = 0
|
|
}
|
|
|
|
// 30 picked as an arbitrary max token repeat limit, modify as needed
|
|
if tokenRepeat > 30 {
|
|
slog.Debug("prediction aborted, token repeat limit reached")
|
|
return ctx.Err()
|
|
}
|
|
|
|
if c.Content != "" {
|
|
fn(CompletionResponse{
|
|
Content: c.Content,
|
|
})
|
|
}
|
|
|
|
if c.Stop {
|
|
doneReason := "stop"
|
|
if c.StoppedLimit {
|
|
doneReason = "length"
|
|
}
|
|
|
|
fn(CompletionResponse{
|
|
Done: true,
|
|
DoneReason: doneReason,
|
|
PromptEvalCount: c.Timings.PromptN,
|
|
PromptEvalDuration: parseDurationMs(c.Timings.PromptMS),
|
|
EvalCount: c.Timings.PredictedN,
|
|
EvalDuration: parseDurationMs(c.Timings.PredictedMS),
|
|
})
|
|
return nil
|
|
}
|
|
}
|
|
}
|
|
|
|
if err := scanner.Err(); err != nil {
|
|
if strings.Contains(err.Error(), "unexpected EOF") {
|
|
s.Close()
|
|
msg := ""
|
|
if s.status != nil && s.status.LastErrMsg != "" {
|
|
msg = s.status.LastErrMsg
|
|
}
|
|
return fmt.Errorf("an unknown error was encountered while running the model %s", msg)
|
|
}
|
|
|
|
return fmt.Errorf("error reading llm response: %v", err)
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
type EmbeddingRequest struct {
|
|
Content string `json:"content"`
|
|
}
|
|
|
|
type EmbeddingResponse struct {
|
|
Embedding []float64 `json:"embedding"`
|
|
}
|
|
|
|
func (s *llmServer) Embedding(ctx context.Context, prompt string) ([]float64, error) {
|
|
if err := s.sem.Acquire(ctx, 1); err != nil {
|
|
slog.Error("Failed to acquire semaphore", "error", err)
|
|
return nil, err
|
|
}
|
|
defer s.sem.Release(1)
|
|
|
|
// Make sure the server is ready
|
|
status, err := s.getServerStatusRetry(ctx)
|
|
if err != nil {
|
|
return nil, err
|
|
} else if status != ServerStatusReady {
|
|
return nil, fmt.Errorf("unexpected server status: %s", status.ToString())
|
|
}
|
|
|
|
data, err := json.Marshal(TokenizeRequest{Content: prompt})
|
|
if err != nil {
|
|
return nil, fmt.Errorf("error marshaling embed data: %w", err)
|
|
}
|
|
|
|
req, err := http.NewRequestWithContext(ctx, http.MethodPost, fmt.Sprintf("http://127.0.0.1:%d/embedding", s.port), bytes.NewBuffer(data))
|
|
if err != nil {
|
|
return nil, fmt.Errorf("error creating embed request: %w", err)
|
|
}
|
|
req.Header.Set("Content-Type", "application/json")
|
|
|
|
resp, err := http.DefaultClient.Do(req)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("do embedding request: %w", err)
|
|
}
|
|
defer resp.Body.Close()
|
|
|
|
body, err := io.ReadAll(resp.Body)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("error reading embed response: %w", err)
|
|
}
|
|
|
|
if resp.StatusCode >= 400 {
|
|
log.Printf("llm encode error: %s", body)
|
|
return nil, fmt.Errorf("%s", body)
|
|
}
|
|
|
|
var embedding EmbeddingResponse
|
|
if err := json.Unmarshal(body, &embedding); err != nil {
|
|
return nil, fmt.Errorf("unmarshal tokenize response: %w", err)
|
|
}
|
|
|
|
return embedding.Embedding, nil
|
|
}
|
|
|
|
type TokenizeRequest struct {
|
|
Content string `json:"content"`
|
|
}
|
|
|
|
type TokenizeResponse struct {
|
|
Tokens []int `json:"tokens"`
|
|
}
|
|
|
|
func (s *llmServer) Tokenize(ctx context.Context, content string) ([]int, error) {
|
|
// Make sure the server is ready
|
|
status, err := s.getServerStatus(ctx)
|
|
if err != nil {
|
|
return nil, err
|
|
} else if status != ServerStatusReady && status != ServerStatusNoSlotsAvailable {
|
|
return nil, fmt.Errorf("unexpected server status: %s", status.ToString())
|
|
}
|
|
|
|
data, err := json.Marshal(TokenizeRequest{Content: content})
|
|
if err != nil {
|
|
return nil, fmt.Errorf("marshaling encode data: %w", err)
|
|
}
|
|
|
|
req, err := http.NewRequestWithContext(ctx, http.MethodPost, fmt.Sprintf("http://127.0.0.1:%d/tokenize", s.port), bytes.NewBuffer(data))
|
|
if err != nil {
|
|
return nil, fmt.Errorf("encode request: %w", err)
|
|
}
|
|
req.Header.Set("Content-Type", "application/json")
|
|
|
|
resp, err := http.DefaultClient.Do(req)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("do encode request: %w", err)
|
|
}
|
|
defer resp.Body.Close()
|
|
|
|
body, err := io.ReadAll(resp.Body)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("read encode request: %w", err)
|
|
}
|
|
|
|
if resp.StatusCode >= 400 {
|
|
log.Printf("llm encode error: %s", body)
|
|
return nil, fmt.Errorf("%s", body)
|
|
}
|
|
|
|
var encoded TokenizeResponse
|
|
if err := json.Unmarshal(body, &encoded); err != nil {
|
|
return nil, fmt.Errorf("unmarshal encode response: %w", err)
|
|
}
|
|
|
|
return encoded.Tokens, nil
|
|
}
|
|
|
|
type DetokenizeRequest struct {
|
|
Tokens []int `json:"tokens"`
|
|
}
|
|
|
|
type DetokenizeResponse struct {
|
|
Content string `json:"content"`
|
|
}
|
|
|
|
func (s *llmServer) Detokenize(ctx context.Context, tokens []int) (string, error) {
|
|
// Make sure the server is ready
|
|
status, err := s.getServerStatus(ctx)
|
|
if err != nil {
|
|
return "", err
|
|
} else if status != ServerStatusReady && status != ServerStatusNoSlotsAvailable {
|
|
return "", fmt.Errorf("unexpected server status: %s", status.ToString())
|
|
}
|
|
|
|
data, err := json.Marshal(DetokenizeRequest{Tokens: tokens})
|
|
if err != nil {
|
|
return "", fmt.Errorf("marshaling decode data: %w", err)
|
|
}
|
|
|
|
req, err := http.NewRequestWithContext(ctx, http.MethodPost, fmt.Sprintf("http://127.0.0.1:%d/detokenize", s.port), bytes.NewBuffer(data))
|
|
if err != nil {
|
|
return "", fmt.Errorf("decode request: %w", err)
|
|
}
|
|
req.Header.Set("Content-Type", "application/json")
|
|
|
|
resp, err := http.DefaultClient.Do(req)
|
|
if err != nil {
|
|
return "", fmt.Errorf("do decode request: %w", err)
|
|
}
|
|
defer resp.Body.Close()
|
|
|
|
body, err := io.ReadAll(resp.Body)
|
|
if err != nil {
|
|
return "", fmt.Errorf("read decode request: %w", err)
|
|
}
|
|
|
|
if resp.StatusCode >= 400 {
|
|
log.Printf("llm decode error: %s", body)
|
|
return "", fmt.Errorf("%s", body)
|
|
}
|
|
|
|
var decoded DetokenizeResponse
|
|
if err := json.Unmarshal(body, &decoded); err != nil {
|
|
return "", fmt.Errorf("unmarshal encode response: %w", err)
|
|
}
|
|
|
|
return decoded.Content, nil
|
|
}
|
|
|
|
func (s *llmServer) Close() error {
|
|
if s.cmd != nil {
|
|
slog.Debug("stopping llama server")
|
|
if err := s.cmd.Process.Kill(); err != nil {
|
|
return err
|
|
}
|
|
// if ProcessState is already populated, Wait already completed, no need to wait again
|
|
if s.cmd.ProcessState == nil {
|
|
slog.Debug("waiting for llama server to exit")
|
|
<-s.done
|
|
}
|
|
|
|
slog.Debug("llama server stopped")
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
func (s *llmServer) EstimatedVRAM() uint64 {
|
|
return s.estimate.VRAMSize
|
|
}
|
|
|
|
func (s *llmServer) EstimatedTotal() uint64 {
|
|
return s.estimate.TotalSize
|
|
}
|
|
|
|
func (s *llmServer) EstimatedVRAMByGPU(gpuID string) uint64 {
|
|
for i, gpu := range s.gpus {
|
|
if gpu.ID == gpuID {
|
|
return s.estimate.GPUSizes[i]
|
|
}
|
|
}
|
|
return 0
|
|
}
|
|
|
|
func parseDurationMs(ms float64) time.Duration {
|
|
dur, err := time.ParseDuration(fmt.Sprintf("%fms", ms))
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
|
|
return dur
|
|
}
|