ollama/gpu/gpu.go
Daniel Hiltgen 6c2eb73a70
Fix missing dep path on windows CPU runners (#6884)
GPUs handled the dependency path properly, but CPU runners didn't which
results in missing vc redist libraries on systems where the user didn't
already have it installed from some other app.
2024-09-21 16:28:29 -07:00

671 lines
20 KiB
Go

//go:build linux || windows
package gpu
/*
#cgo linux LDFLAGS: -lrt -lpthread -ldl -lstdc++ -lm
#cgo windows LDFLAGS: -lpthread
#include "gpu_info.h"
*/
import "C"
import (
"fmt"
"log/slog"
"os"
"path/filepath"
"runtime"
"strings"
"sync"
"unsafe"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
)
type cudaHandles struct {
deviceCount int
cudart *C.cudart_handle_t
nvcuda *C.nvcuda_handle_t
nvml *C.nvml_handle_t
}
type oneapiHandles struct {
oneapi *C.oneapi_handle_t
deviceCount int
}
const (
cudaMinimumMemory = 457 * format.MebiByte
rocmMinimumMemory = 457 * format.MebiByte
// TODO OneAPI minimum memory
)
var (
gpuMutex sync.Mutex
bootstrapped bool
cpuCapability CPUCapability
cpus []CPUInfo
cudaGPUs []CudaGPUInfo
nvcudaLibPath string
cudartLibPath string
oneapiLibPath string
nvmlLibPath string
rocmGPUs []RocmGPUInfo
oneapiGPUs []OneapiGPUInfo
)
// With our current CUDA compile flags, older than 5.0 will not work properly
var CudaComputeMin = [2]C.int{5, 0}
var RocmComputeMin = 9
// TODO find a better way to detect iGPU instead of minimum memory
const IGPUMemLimit = 1 * format.GibiByte // 512G is what they typically report, so anything less than 1G must be iGPU
// Note: gpuMutex must already be held
func initCudaHandles() *cudaHandles {
// TODO - if the ollama build is CPU only, don't do these checks as they're irrelevant and confusing
cHandles := &cudaHandles{}
// Short Circuit if we already know which library to use
if nvmlLibPath != "" {
cHandles.nvml, _ = LoadNVMLMgmt([]string{nvmlLibPath})
return cHandles
}
if nvcudaLibPath != "" {
cHandles.deviceCount, cHandles.nvcuda, _ = LoadNVCUDAMgmt([]string{nvcudaLibPath})
return cHandles
}
if cudartLibPath != "" {
cHandles.deviceCount, cHandles.cudart, _ = LoadCUDARTMgmt([]string{cudartLibPath})
return cHandles
}
slog.Debug("searching for GPU discovery libraries for NVIDIA")
var cudartMgmtPatterns []string
// Aligned with driver, we can't carry as payloads
nvcudaMgmtPatterns := NvcudaGlobs
if runtime.GOOS == "windows" {
localAppData := os.Getenv("LOCALAPPDATA")
cudartMgmtPatterns = []string{filepath.Join(localAppData, "Programs", "Ollama", CudartMgmtName)}
}
libDir := LibraryDir()
if libDir != "" {
cudartMgmtPatterns = []string{filepath.Join(libDir, CudartMgmtName)}
}
cudartMgmtPatterns = append(cudartMgmtPatterns, CudartGlobs...)
if len(NvmlGlobs) > 0 {
nvmlLibPaths := FindGPULibs(NvmlMgmtName, NvmlGlobs)
if len(nvmlLibPaths) > 0 {
nvml, libPath := LoadNVMLMgmt(nvmlLibPaths)
if nvml != nil {
slog.Debug("nvidia-ml loaded", "library", libPath)
cHandles.nvml = nvml
nvmlLibPath = libPath
}
}
}
nvcudaLibPaths := FindGPULibs(NvcudaMgmtName, nvcudaMgmtPatterns)
if len(nvcudaLibPaths) > 0 {
deviceCount, nvcuda, libPath := LoadNVCUDAMgmt(nvcudaLibPaths)
if nvcuda != nil {
slog.Debug("detected GPUs", "count", deviceCount, "library", libPath)
cHandles.nvcuda = nvcuda
cHandles.deviceCount = deviceCount
nvcudaLibPath = libPath
return cHandles
}
}
cudartLibPaths := FindGPULibs(CudartMgmtName, cudartMgmtPatterns)
if len(cudartLibPaths) > 0 {
deviceCount, cudart, libPath := LoadCUDARTMgmt(cudartLibPaths)
if cudart != nil {
slog.Debug("detected GPUs", "library", libPath, "count", deviceCount)
cHandles.cudart = cudart
cHandles.deviceCount = deviceCount
cudartLibPath = libPath
return cHandles
}
}
return cHandles
}
// Note: gpuMutex must already be held
func initOneAPIHandles() *oneapiHandles {
oHandles := &oneapiHandles{}
// Short Circuit if we already know which library to use
if oneapiLibPath != "" {
oHandles.deviceCount, oHandles.oneapi, _ = LoadOneapiMgmt([]string{oneapiLibPath})
return oHandles
}
oneapiLibPaths := FindGPULibs(OneapiMgmtName, OneapiGlobs)
if len(oneapiLibPaths) > 0 {
oHandles.deviceCount, oHandles.oneapi, oneapiLibPath = LoadOneapiMgmt(oneapiLibPaths)
}
return oHandles
}
func GetCPUInfo() GpuInfoList {
gpuMutex.Lock()
if !bootstrapped {
gpuMutex.Unlock()
GetGPUInfo()
} else {
gpuMutex.Unlock()
}
return GpuInfoList{cpus[0].GpuInfo}
}
func GetGPUInfo() GpuInfoList {
// TODO - consider exploring lspci (and equivalent on windows) to check for
// GPUs so we can report warnings if we see Nvidia/AMD but fail to load the libraries
gpuMutex.Lock()
defer gpuMutex.Unlock()
needRefresh := true
var cHandles *cudaHandles
var oHandles *oneapiHandles
defer func() {
if cHandles != nil {
if cHandles.cudart != nil {
C.cudart_release(*cHandles.cudart)
}
if cHandles.nvcuda != nil {
C.nvcuda_release(*cHandles.nvcuda)
}
if cHandles.nvml != nil {
C.nvml_release(*cHandles.nvml)
}
}
if oHandles != nil {
if oHandles.oneapi != nil {
// TODO - is this needed?
C.oneapi_release(*oHandles.oneapi)
}
}
}()
if !bootstrapped {
slog.Info("looking for compatible GPUs")
needRefresh = false
cpuCapability = GetCPUCapability()
var memInfo C.mem_info_t
mem, err := GetCPUMem()
if err != nil {
slog.Warn("error looking up system memory", "error", err)
}
depPath := LibraryDir()
cpus = []CPUInfo{
{
GpuInfo: GpuInfo{
memInfo: mem,
Library: "cpu",
Variant: cpuCapability.String(),
ID: "0",
DependencyPath: depPath,
},
},
}
// Fallback to CPU mode if we're lacking required vector extensions on x86
if cpuCapability < GPURunnerCPUCapability && runtime.GOARCH == "amd64" {
slog.Warn("CPU does not have minimum vector extensions, GPU inference disabled", "required", GPURunnerCPUCapability, "detected", cpuCapability)
bootstrapped = true
// No need to do any GPU discovery, since we can't run on them
return GpuInfoList{cpus[0].GpuInfo}
}
// Load ALL libraries
cHandles = initCudaHandles()
// NVIDIA
for i := range cHandles.deviceCount {
if cHandles.cudart != nil || cHandles.nvcuda != nil {
gpuInfo := CudaGPUInfo{
GpuInfo: GpuInfo{
Library: "cuda",
},
index: i,
}
var driverMajor int
var driverMinor int
if cHandles.cudart != nil {
C.cudart_bootstrap(*cHandles.cudart, C.int(i), &memInfo)
} else {
C.nvcuda_bootstrap(*cHandles.nvcuda, C.int(i), &memInfo)
driverMajor = int(cHandles.nvcuda.driver_major)
driverMinor = int(cHandles.nvcuda.driver_minor)
}
if memInfo.err != nil {
slog.Info("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err))
C.free(unsafe.Pointer(memInfo.err))
continue
}
if memInfo.major < CudaComputeMin[0] || (memInfo.major == CudaComputeMin[0] && memInfo.minor < CudaComputeMin[1]) {
slog.Info(fmt.Sprintf("[%d] CUDA GPU is too old. Compute Capability detected: %d.%d", i, memInfo.major, memInfo.minor))
continue
}
gpuInfo.TotalMemory = uint64(memInfo.total)
gpuInfo.FreeMemory = uint64(memInfo.free)
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
gpuInfo.Compute = fmt.Sprintf("%d.%d", memInfo.major, memInfo.minor)
gpuInfo.computeMajor = int(memInfo.major)
gpuInfo.computeMinor = int(memInfo.minor)
gpuInfo.MinimumMemory = cudaMinimumMemory
gpuInfo.DriverMajor = driverMajor
gpuInfo.DriverMinor = driverMinor
variant := cudaVariant(gpuInfo)
if depPath != "" {
gpuInfo.DependencyPath = depPath
// Check for variant specific directory
if variant != "" {
if _, err := os.Stat(filepath.Join(depPath, "cuda_"+variant)); err == nil {
gpuInfo.DependencyPath = filepath.Join(depPath, "cuda_"+variant)
}
}
}
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
gpuInfo.Variant = variant
// query the management library as well so we can record any skew between the two
// which represents overhead on the GPU we must set aside on subsequent updates
if cHandles.nvml != nil {
C.nvml_get_free(*cHandles.nvml, C.int(gpuInfo.index), &memInfo.free, &memInfo.total, &memInfo.used)
if memInfo.err != nil {
slog.Warn("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err))
C.free(unsafe.Pointer(memInfo.err))
} else {
if memInfo.free != 0 && uint64(memInfo.free) > gpuInfo.FreeMemory {
gpuInfo.OSOverhead = uint64(memInfo.free) - gpuInfo.FreeMemory
slog.Info("detected OS VRAM overhead",
"id", gpuInfo.ID,
"library", gpuInfo.Library,
"compute", gpuInfo.Compute,
"driver", fmt.Sprintf("%d.%d", gpuInfo.DriverMajor, gpuInfo.DriverMinor),
"name", gpuInfo.Name,
"overhead", format.HumanBytes2(gpuInfo.OSOverhead),
)
}
}
}
// TODO potentially sort on our own algorithm instead of what the underlying GPU library does...
cudaGPUs = append(cudaGPUs, gpuInfo)
}
}
// Intel
if envconfig.IntelGPU() {
oHandles = initOneAPIHandles()
if oHandles != nil && oHandles.oneapi != nil {
for d := range oHandles.oneapi.num_drivers {
if oHandles.oneapi == nil {
// shouldn't happen
slog.Warn("nil oneapi handle with driver count", "count", int(oHandles.oneapi.num_drivers))
continue
}
devCount := C.oneapi_get_device_count(*oHandles.oneapi, C.int(d))
for i := range devCount {
gpuInfo := OneapiGPUInfo{
GpuInfo: GpuInfo{
Library: "oneapi",
},
driverIndex: int(d),
gpuIndex: int(i),
}
// TODO - split bootstrapping from updating free memory
C.oneapi_check_vram(*oHandles.oneapi, C.int(d), i, &memInfo)
// TODO - convert this to MinimumMemory based on testing...
var totalFreeMem float64 = float64(memInfo.free) * 0.95 // work-around: leave some reserve vram for mkl lib used in ggml-sycl backend.
memInfo.free = C.uint64_t(totalFreeMem)
gpuInfo.TotalMemory = uint64(memInfo.total)
gpuInfo.FreeMemory = uint64(memInfo.free)
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
gpuInfo.DependencyPath = depPath
oneapiGPUs = append(oneapiGPUs, gpuInfo)
}
}
}
}
rocmGPUs = AMDGetGPUInfo()
bootstrapped = true
if len(cudaGPUs) == 0 && len(rocmGPUs) == 0 && len(oneapiGPUs) == 0 {
slog.Info("no compatible GPUs were discovered")
}
}
// For detected GPUs, load library if not loaded
// Refresh free memory usage
if needRefresh {
mem, err := GetCPUMem()
if err != nil {
slog.Warn("error looking up system memory", "error", err)
} else {
slog.Debug("updating system memory data",
slog.Group(
"before",
"total", format.HumanBytes2(cpus[0].TotalMemory),
"free", format.HumanBytes2(cpus[0].FreeMemory),
"free_swap", format.HumanBytes2(cpus[0].FreeSwap),
),
slog.Group(
"now",
"total", format.HumanBytes2(mem.TotalMemory),
"free", format.HumanBytes2(mem.FreeMemory),
"free_swap", format.HumanBytes2(mem.FreeSwap),
),
)
cpus[0].FreeMemory = mem.FreeMemory
cpus[0].FreeSwap = mem.FreeSwap
}
var memInfo C.mem_info_t
if cHandles == nil && len(cudaGPUs) > 0 {
cHandles = initCudaHandles()
}
for i, gpu := range cudaGPUs {
if cHandles.nvml != nil {
C.nvml_get_free(*cHandles.nvml, C.int(gpu.index), &memInfo.free, &memInfo.total, &memInfo.used)
} else if cHandles.cudart != nil {
C.cudart_bootstrap(*cHandles.cudart, C.int(gpu.index), &memInfo)
} else if cHandles.nvcuda != nil {
C.nvcuda_get_free(*cHandles.nvcuda, C.int(gpu.index), &memInfo.free, &memInfo.total)
memInfo.used = memInfo.total - memInfo.free
} else {
// shouldn't happen
slog.Warn("no valid cuda library loaded to refresh vram usage")
break
}
if memInfo.err != nil {
slog.Warn("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err))
C.free(unsafe.Pointer(memInfo.err))
continue
}
if memInfo.free == 0 {
slog.Warn("error looking up nvidia GPU memory")
continue
}
if cHandles.nvml != nil && gpu.OSOverhead > 0 {
// When using the management library update based on recorded overhead
memInfo.free -= C.uint64_t(gpu.OSOverhead)
}
slog.Debug("updating cuda memory data",
"gpu", gpu.ID,
"name", gpu.Name,
"overhead", format.HumanBytes2(gpu.OSOverhead),
slog.Group(
"before",
"total", format.HumanBytes2(gpu.TotalMemory),
"free", format.HumanBytes2(gpu.FreeMemory),
),
slog.Group(
"now",
"total", format.HumanBytes2(uint64(memInfo.total)),
"free", format.HumanBytes2(uint64(memInfo.free)),
"used", format.HumanBytes2(uint64(memInfo.used)),
),
)
cudaGPUs[i].FreeMemory = uint64(memInfo.free)
}
if oHandles == nil && len(oneapiGPUs) > 0 {
oHandles = initOneAPIHandles()
}
for i, gpu := range oneapiGPUs {
if oHandles.oneapi == nil {
// shouldn't happen
slog.Warn("nil oneapi handle with device count", "count", oHandles.deviceCount)
continue
}
C.oneapi_check_vram(*oHandles.oneapi, C.int(gpu.driverIndex), C.int(gpu.gpuIndex), &memInfo)
// TODO - convert this to MinimumMemory based on testing...
var totalFreeMem float64 = float64(memInfo.free) * 0.95 // work-around: leave some reserve vram for mkl lib used in ggml-sycl backend.
memInfo.free = C.uint64_t(totalFreeMem)
oneapiGPUs[i].FreeMemory = uint64(memInfo.free)
}
err = RocmGPUInfoList(rocmGPUs).RefreshFreeMemory()
if err != nil {
slog.Debug("problem refreshing ROCm free memory", "error", err)
}
}
resp := []GpuInfo{}
for _, gpu := range cudaGPUs {
resp = append(resp, gpu.GpuInfo)
}
for _, gpu := range rocmGPUs {
resp = append(resp, gpu.GpuInfo)
}
for _, gpu := range oneapiGPUs {
resp = append(resp, gpu.GpuInfo)
}
if len(resp) == 0 {
resp = append(resp, cpus[0].GpuInfo)
}
return resp
}
func FindGPULibs(baseLibName string, defaultPatterns []string) []string {
// Multiple GPU libraries may exist, and some may not work, so keep trying until we exhaust them
var ldPaths []string
gpuLibPaths := []string{}
slog.Debug("Searching for GPU library", "name", baseLibName)
// Start with our bundled libraries
patterns := []string{filepath.Join(LibraryDir(), baseLibName)}
switch runtime.GOOS {
case "windows":
ldPaths = strings.Split(os.Getenv("PATH"), ";")
case "linux":
ldPaths = strings.Split(os.Getenv("LD_LIBRARY_PATH"), ":")
default:
return gpuLibPaths
}
// Then with whatever we find in the PATH/LD_LIBRARY_PATH
for _, ldPath := range ldPaths {
d, err := filepath.Abs(ldPath)
if err != nil {
continue
}
patterns = append(patterns, filepath.Join(d, baseLibName))
}
patterns = append(patterns, defaultPatterns...)
slog.Debug("gpu library search", "globs", patterns)
for _, pattern := range patterns {
// Nvidia PhysX known to return bogus results
if strings.Contains(pattern, "PhysX") {
slog.Debug("skipping PhysX cuda library path", "path", pattern)
continue
}
// Ignore glob discovery errors
matches, _ := filepath.Glob(pattern)
for _, match := range matches {
// Resolve any links so we don't try the same lib multiple times
// and weed out any dups across globs
libPath := match
tmp := match
var err error
for ; err == nil; tmp, err = os.Readlink(libPath) {
if !filepath.IsAbs(tmp) {
tmp = filepath.Join(filepath.Dir(libPath), tmp)
}
libPath = tmp
}
new := true
for _, cmp := range gpuLibPaths {
if cmp == libPath {
new = false
break
}
}
if new {
gpuLibPaths = append(gpuLibPaths, libPath)
}
}
}
slog.Debug("discovered GPU libraries", "paths", gpuLibPaths)
return gpuLibPaths
}
func LoadCUDARTMgmt(cudartLibPaths []string) (int, *C.cudart_handle_t, string) {
var resp C.cudart_init_resp_t
resp.ch.verbose = getVerboseState()
for _, libPath := range cudartLibPaths {
lib := C.CString(libPath)
defer C.free(unsafe.Pointer(lib))
C.cudart_init(lib, &resp)
if resp.err != nil {
slog.Debug("Unable to load cudart", "library", libPath, "error", C.GoString(resp.err))
C.free(unsafe.Pointer(resp.err))
} else {
return int(resp.num_devices), &resp.ch, libPath
}
}
return 0, nil, ""
}
func LoadNVCUDAMgmt(nvcudaLibPaths []string) (int, *C.nvcuda_handle_t, string) {
var resp C.nvcuda_init_resp_t
resp.ch.verbose = getVerboseState()
for _, libPath := range nvcudaLibPaths {
lib := C.CString(libPath)
defer C.free(unsafe.Pointer(lib))
C.nvcuda_init(lib, &resp)
if resp.err != nil {
// Decide what log level based on the type of error message to help users understand why
msg := C.GoString(resp.err)
switch resp.cudaErr {
case C.CUDA_ERROR_INSUFFICIENT_DRIVER, C.CUDA_ERROR_SYSTEM_DRIVER_MISMATCH:
slog.Warn("version mismatch between driver and cuda driver library - reboot or upgrade may be required", "library", libPath, "error", msg)
case C.CUDA_ERROR_NO_DEVICE:
slog.Info("no nvidia devices detected", "library", libPath)
case C.CUDA_ERROR_UNKNOWN:
slog.Warn("unknown error initializing cuda driver library", "library", libPath, "error", msg)
slog.Warn("see https://github.com/ollama/ollama/blob/main/docs/troubleshooting.md for more information")
default:
if strings.Contains(msg, "wrong ELF class") {
slog.Debug("skipping 32bit library", "library", libPath)
} else {
slog.Info("unable to load cuda driver library", "library", libPath, "error", msg)
}
}
C.free(unsafe.Pointer(resp.err))
} else {
return int(resp.num_devices), &resp.ch, libPath
}
}
return 0, nil, ""
}
func LoadNVMLMgmt(nvmlLibPaths []string) (*C.nvml_handle_t, string) {
var resp C.nvml_init_resp_t
resp.ch.verbose = getVerboseState()
for _, libPath := range nvmlLibPaths {
lib := C.CString(libPath)
defer C.free(unsafe.Pointer(lib))
C.nvml_init(lib, &resp)
if resp.err != nil {
slog.Info(fmt.Sprintf("Unable to load NVML management library %s: %s", libPath, C.GoString(resp.err)))
C.free(unsafe.Pointer(resp.err))
} else {
return &resp.ch, libPath
}
}
return nil, ""
}
func LoadOneapiMgmt(oneapiLibPaths []string) (int, *C.oneapi_handle_t, string) {
var resp C.oneapi_init_resp_t
num_devices := 0
resp.oh.verbose = getVerboseState()
for _, libPath := range oneapiLibPaths {
lib := C.CString(libPath)
defer C.free(unsafe.Pointer(lib))
C.oneapi_init(lib, &resp)
if resp.err != nil {
slog.Debug("Unable to load oneAPI management library", "library", libPath, "error", C.GoString(resp.err))
C.free(unsafe.Pointer(resp.err))
} else {
for i := range resp.oh.num_drivers {
num_devices += int(C.oneapi_get_device_count(resp.oh, C.int(i)))
}
return num_devices, &resp.oh, libPath
}
}
return 0, nil, ""
}
func getVerboseState() C.uint16_t {
if envconfig.Debug() {
return C.uint16_t(1)
}
return C.uint16_t(0)
}
// Given the list of GPUs this instantiation is targeted for,
// figure out the visible devices environment variable
//
// If different libraries are detected, the first one is what we use
func (l GpuInfoList) GetVisibleDevicesEnv() (string, string) {
if len(l) == 0 {
return "", ""
}
switch l[0].Library {
case "cuda":
return cudaGetVisibleDevicesEnv(l)
case "rocm":
return rocmGetVisibleDevicesEnv(l)
case "oneapi":
return oneapiGetVisibleDevicesEnv(l)
default:
slog.Debug("no filter required for library " + l[0].Library)
return "", ""
}
}
func LibraryDir() string {
// On Windows/linux we bundle the dependencies at the same level as the executable
appExe, err := os.Executable()
if err != nil {
slog.Warn("failed to lookup executable path", "error", err)
}
cwd, err := os.Getwd()
if err != nil {
slog.Warn("failed to lookup working directory", "error", err)
}
// Scan for any of our dependeices, and pick first match
for _, root := range []string{filepath.Dir(appExe), filepath.Join(filepath.Dir(appExe), envconfig.LibRelativeToExe()), cwd} {
libDep := filepath.Join("lib", "ollama")
if _, err := os.Stat(filepath.Join(root, libDep)); err == nil {
return filepath.Join(root, libDep)
}
// Developer mode, local build
if _, err := os.Stat(filepath.Join(root, runtime.GOOS+"-"+runtime.GOARCH, libDep)); err == nil {
return filepath.Join(root, runtime.GOOS+"-"+runtime.GOARCH, libDep)
}
if _, err := os.Stat(filepath.Join(root, "dist", runtime.GOOS+"-"+runtime.GOARCH, libDep)); err == nil {
return filepath.Join(root, "dist", runtime.GOOS+"-"+runtime.GOARCH, libDep)
}
}
slog.Warn("unable to locate gpu dependency libraries")
return ""
}