ollama/llama/runner/runner.go
Gabe Goodhart f2890a4494
IBM granite/granitemoe architecture support (#6760)
* fix(ext_server): Port llama.cpp sampling refactors to ext_server

This was a fairly large changeset. I closely followed the changes here:
df270ef745

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(server.cpp): Refactor server.cpp logging for llama.cpp overhaul

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Bump llama.cpp to the latest master with `granite` support

This does not yet have granite MoE support, but that can come in a
follow up PR

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(patches): Update all patches (except solar-pro) to work with bumped llama.cpp

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(solar): Update solar patch for llama.cpp bump

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat(llama.cpp): Bump llama.cpp for granitemoe support

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat(llama.cpp): Bump llama.cpp for granitemoe support

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(solar): Update the solar-pro patch for latest llama.cpp bump

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat(llama.cpp): Bump to the latest master of llama.cpp

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(patches): Update all patches for latest bump

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat(llama): Always run sync.sh from the right directory

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(llama/patches): Update llama patches

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat(llama)!: Rough sync with llama.cpp submodule

There are a number of changes that will need to be propagated to llama.go
before any of this works!

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(llama/patches): Add a patch and update for missing ggml-impl.h include

This include is where the ggml_cgraph struct is defined. It is included in
many of the .c files to define the forward declartion in ggml.h. It seems
that with the subset of code included here, the import was somehow lost (or
out-of-order) when building, so adding this include to llama.cpp fixes the
missing definition.

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(llama/sync): Add missing ggml-cpu-impl.h copy-over in sync.sh

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(llama): Add missing log.cpp

This was added as part of the logging overhaul done in llama.cpp

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(llama): Overhaul use of sampling module for llama.cpp changes

The changes here reflect the changes made in the big llama.cpp sampling PR
https://github.com/ggerganov/llama.cpp/pull/9294

The sampling functionality is now broken into the base interface
(llama_sampler) and the generation implementation (gpt_sampler). The
changes here reflect that. Since the sampling.h/sampling.cpp code uses c++
STL headers, the sampling_ext.[h|cpp] wrapper is maintained to allow go to
access a pure-C interface.

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(llama): Fix the impl of SampleTokenGreedy for new sampling

I don't think this method is currently used, so it could probably just be
removed so that all sampling goes through the GPT interface, but in the
interest of doing no harm, this should keep the method working as expected.

Branch: IBMGraniteArchitectureSupport

* fix(llama): Remove unused SampleTokenGreedy

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(sync): Remove bash-specific change to sync.sh

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* chore(gofumpt): Format on llama.go to pass linting

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(llm): Fix missing <thread> include in ext_server

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(llama): Remove TODO about grammar_first

This feature was not used/needed previously so should be fine without
plumbing it through now.

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(llama): Better naming for sampling wrapper and args

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(llama): Fix patch 05 to use new wrapper api and re-sync

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* runner: Flush pending responses before returning

If there are any pending reponses (such as from potential stop
tokens) then we should send them back before ending the sequence.
Otherwise, we can be missing tokens at the end of a response.

Fixes #6707

* fix(llama/sampling): Use gpt_sampler with a forward declaration

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(llama): Remove unnecessary patch for gguf impl header

This was caused by an earlier mistake in the embeddings patch that was
dereferencing the pointer instead of using the wrapper API.

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(llm): Remove use of deprecated --log-disable flag

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
2024-10-17 11:59:52 -07:00

891 lines
23 KiB
Go

package main
import (
"context"
"encoding/json"
"errors"
"flag"
"fmt"
"log"
"log/slog"
"net"
"net/http"
"os"
"path/filepath"
"regexp"
"runtime"
"strconv"
"strings"
"sync"
"time"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/llama"
)
// input is an element of the prompt to process, either
// a token or an image embedding (generated from a vision projector)
type input struct {
token int
// embed is an image embedding
embed []float32
}
type Sequence struct {
// number of inputs evaluated
numPast int
// batch index
iBatch int
// number of tokens predicted so far
numPredicted int
// prompt inputs left to evaluate
inputs []input
// tokens that have been generated but not returned yet (e.g. for stop sequences)
pendingResponses []string
// input cache being used by this sequence
cache *InputCacheSlot
// channel to send responses over
responses chan string
// channel to stop decoding (such as if the remote connection is closed)
quit chan bool
// number of tokens to predict
numPredict int
samplingCtx *llama.SamplingContext
// channel to send back the embedding if embedding only
embedding chan []float32
// stop sequences
stop []string
// number of inputs to keep at the beginning when shifting context window
numKeep int
// true if an embedding are to be returned instead of text generation
embeddingOnly bool
doneReason string
// Metrics
startProcessingTime time.Time
startGenerationTime time.Time
numDecoded int
numPromptInputs int
}
type NewSequenceParams struct {
numPredict int
stop []string
numKeep int
samplingParams *llama.SamplingParams
embedding bool
}
func (s *Server) NewSequence(prompt string, images []ImageData, params NewSequenceParams) (*Sequence, error) {
s.ready.Wait()
startTime := time.Now()
inputs, err := s.inputs(prompt, images)
if err != nil {
return nil, fmt.Errorf("failed to process inputs: %w", err)
} else if len(inputs) == 0 {
return nil, errors.New("no input provided")
}
if params.numKeep < 0 {
params.numKeep = len(inputs)
}
if !params.embedding {
// Subtracting 4 ensures that at least 1 input can be discarded during shift
params.numKeep = min(params.numKeep, s.cache.numCtx-4)
params.numKeep += s.bosToken
} else {
// Embeddings are 1 shot - just truncate to the context window, without ever shifting
params.numKeep = min(params.numKeep, s.cache.numCtx)
}
// truncate to fit in context window
if len(inputs) > s.cache.numCtx {
slog.Warn("truncating input prompt", "limit", s.cache.numCtx, "prompt", len(inputs), "numKeep", params.numKeep)
newInputs := inputs[:params.numKeep]
newInputs = append(newInputs, inputs[len(inputs)-s.cache.numCtx+params.numKeep:]...)
inputs = newInputs
}
var sc *llama.SamplingContext
if params.samplingParams != nil {
sc = llama.NewSamplingContext(s.model, *params.samplingParams)
for _, input := range inputs {
if input.embed == nil {
sc.Accept(input.token, false)
}
}
}
return &Sequence{
inputs: inputs,
numPromptInputs: len(inputs),
startProcessingTime: startTime,
numPredict: params.numPredict,
pendingResponses: make([]string, 0),
responses: make(chan string, 100),
quit: make(chan bool, 1),
embedding: make(chan []float32, 1),
samplingCtx: sc,
embeddingOnly: params.embedding,
stop: params.stop,
numKeep: params.numKeep,
}, nil
}
// inputs processes the prompt and images into a list of inputs
// by splitting the prompt on [img-<n>] tags, tokenizing text and
// generating image embeddings for each image
func (s *Server) inputs(prompt string, images []ImageData) ([]input, error) {
var inputs []input
re := regexp.MustCompile(`\[img-(\d+)\]`)
parts := re.Split(prompt, -1)
matches := re.FindAllStringSubmatch(prompt, -1)
for i, part := range parts {
// text - tokenize
if strings.TrimSpace(part) != "" {
tokens, err := s.lc.Model().Tokenize(part, i == 0, true)
if err != nil {
return nil, err
}
for _, t := range tokens {
inputs = append(inputs, input{token: t})
}
}
// image - generate image embedding
if i < len(matches) {
n, _ := strconv.Atoi(matches[i][1])
imageIndex := -1
for j := range images {
if images[j].ID == n {
imageIndex = j
break
}
}
if imageIndex < 0 {
return nil, fmt.Errorf("invalid image index: %d", n)
}
hash := s.cache.HashImage(images[imageIndex].Data)
// Vision models cannot be accessed concurrently
s.clip.mu.Lock()
embed, err := s.cache.FindImage(hash)
if err != nil {
embed = llama.NewLlavaImageEmbed(s.lc, s.clip.cc, images[imageIndex].Data)
s.cache.AddImage(hash, embed)
}
s.clip.mu.Unlock()
for _, e := range embed {
inputs = append(inputs, input{embed: e})
}
}
}
return inputs, nil
}
type clip struct {
cc *llama.ClipContext
mu sync.Mutex
}
type Server struct {
model *llama.Model
lc *llama.Context
// required for image embeddings
clip clip
batchSize int
// parallel is the number of parallel requests to handle
parallel int
// seqs is the list of parallel sequences being evaluated
// TODO (jmorganca): this can probably be moved into run()
seqs []*Sequence
// KV cache
cache *InputCache
// does this model require a beginning of sequence token?
bosToken int
// next sequence for prompt processing to avoid starvation
nextSeq int
// is the server ready to process requests?
ready sync.WaitGroup
mu sync.Mutex
cond *sync.Cond
progress float32
status ServerStatus
}
func (s *Server) allNil() bool {
for _, item := range s.seqs {
if item != nil {
return false
}
}
return true
}
func (s *Server) shiftContext(seq *Sequence) {
numLeft := seq.numPast - seq.numKeep
numDiscard := numLeft / 2
slog.Debug("context limit hit - shifting", "limit", s.cache.numCtx, "numPast", seq.numPast,
"numKeep", seq.numKeep, "numLeft", numLeft, "numDiscard", numDiscard)
s.cache.ShiftCacheSlot(seq.cache, seq.numKeep, numDiscard, seq.numPast)
seq.numPast -= numDiscard
}
func flushPending(seq *Sequence) bool {
for _, p := range seq.pendingResponses {
select {
case seq.responses <- p:
case <-seq.quit:
seq.pendingResponses = []string{}
return false
}
}
seq.pendingResponses = []string{}
return true
}
func (s *Server) removeSequence(seqIndex int, reason string) {
seq := s.seqs[seqIndex]
flushPending(seq)
seq.doneReason = reason
close(seq.responses)
close(seq.embedding)
seq.cache.InUse = false
s.seqs[seqIndex] = nil
}
func (s *Server) run(ctx context.Context) {
s.ready.Wait()
// logically these batches are used only within the context of processBatch
// but it is better for performance to allocate them once here
tokenBatch := llama.NewBatch(s.batchSize*len(s.seqs), 0, len(s.seqs))
defer tokenBatch.Free()
embedBatch := llama.NewBatch(s.batchSize*len(s.seqs), s.lc.Model().NEmbd(), len(s.seqs))
defer embedBatch.Free()
for {
select {
case <-ctx.Done():
return
default:
s.processBatch(tokenBatch, embedBatch)
tokenBatch.Clear()
embedBatch.Clear()
}
}
}
// TODO (jmorganca): processBatch should be simplified, removing:
// * sampling
// * stop token checking
// * metrics
// these should instead be handled by the handlers
// it should only be responsible for accepting tokens or embeddings and
// processing batches as fast as possible
func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch) {
s.mu.Lock()
for s.allNil() {
s.cond.Wait() // Wait until an item is added
}
defer s.mu.Unlock()
var batch *llama.Batch
seqIdx := s.nextSeq - 1
for range s.seqs {
seqIdx = (seqIdx + 1) % len(s.seqs)
seq := s.seqs[seqIdx]
if seq == nil {
continue
}
// if past the num predict limit
if seq.numPredict > 0 && seq.numPredicted > seq.numPredict {
s.removeSequence(seqIdx, "limit")
continue
}
if seq.numPast+len(seq.inputs) > s.cache.numCtx {
s.shiftContext(seq)
}
var numInputsProcessed int
for i, input := range seq.inputs {
embedding := input.embed != nil
// If we don't currently have a batch, use one of the correct type and
// fill it up as much as possible across all sequences. If we encounter an
// input of the opppsite type, stop for that sequence but then pick up from
// there for the next batch, ensuring that we alternate types
if batch == nil {
if !embedding {
batch = tokenBatch
} else {
batch = embedBatch
}
} else if embedding != batch.IsEmbedding() {
s.nextSeq = seqIdx
break
}
// todo: make this n_batch
if i >= s.batchSize {
break
}
batch.Add(input.token, input.embed, seq.numPast, []int{seq.cache.Id}, numInputsProcessed+1 == len(seq.inputs))
seq.numPast++
numInputsProcessed++
}
if numInputsProcessed > 0 {
seq.cache.Inputs = append(seq.cache.Inputs, seq.inputs[:numInputsProcessed]...)
seq.inputs = seq.inputs[numInputsProcessed:]
seq.iBatch = batch.NumTokens() - 1
}
}
if batch == nil || batch.NumTokens() == 0 {
return
}
err := s.lc.Decode(batch)
if err != nil {
slog.Error("failed to decode batch", "error", err)
return
}
for i, seq := range s.seqs {
if seq == nil {
continue
}
// don't sample prompt processing
if len(seq.inputs) != 0 {
continue
}
seq.numDecoded += 1
if seq.numDecoded == 1 {
seq.startGenerationTime = time.Now()
}
// if done processing the prompt, generate an embedding and return
if seq.embeddingOnly {
embed := s.lc.GetEmbeddingsSeq(i)
if embed == nil {
embed = s.lc.GetEmbeddingsIth(seq.iBatch)
}
seq.embedding <- embed
s.removeSequence(i, "")
continue
}
// sample a token
token := seq.samplingCtx.Sample(s.lc, seq.iBatch)
seq.samplingCtx.Accept(token, true)
piece := s.model.TokenToPiece(token)
seq.numPredicted++
// if it's an end of sequence token, break
if s.model.TokenIsEog(token) {
// TODO (jmorganca): we should send this back
// as it's important for the /api/generate context
// seq.responses <- piece
s.removeSequence(i, "stop")
continue
}
seq.inputs = []input{{token: token}}
seq.pendingResponses = append(seq.pendingResponses, piece)
sequence := strings.Join(seq.pendingResponses, "")
if ok, stop := findStop(sequence, seq.stop); ok {
slog.Debug("hit stop token", "pending", seq.pendingResponses, "stop", stop)
var tokenTruncated bool
origLen := len(seq.pendingResponses)
seq.pendingResponses, tokenTruncated = truncateStop(seq.pendingResponses, stop)
newLen := len(seq.pendingResponses)
// Update the cache based on the tokens that will be returned:
// - We have 1 token more than is currently in the cache because
// the last one generated wasn't submitted to Decode
// - Remove any stop sequences that we stripped out
// - If truncateStop removed a portion of a token, drop that
// - As defense-in-depth, if truncatedToken didn't find a stop token
// remove the extra one that we added to the cache len
tokenLen := len(seq.cache.Inputs) + 1
tokenLen -= origLen - newLen
if tokenTruncated || origLen == newLen {
tokenLen--
}
seq.cache.Inputs = seq.cache.Inputs[:tokenLen]
s.removeSequence(i, "stop")
continue
}
if containsStopSuffix(sequence, seq.stop) {
continue
}
if incompleteUnicode(sequence) {
continue
}
if !flushPending(seq) {
s.removeSequence(i, "connection")
}
}
}
// TODO (jmorganca): use structs from the api package to avoid duplication
// this way the api acts as a proxy instead of using a different api for the
// runner
type Options struct {
api.Runner
NumKeep int `json:"n_keep"`
Seed int `json:"seed"`
NumPredict int `json:"n_predict"`
TopK int `json:"top_k"`
TopP float32 `json:"top_p"`
MinP float32 `json:"min_p"`
TFSZ float32 `json:"tfs_z"`
TypicalP float32 `json:"typical_p"`
RepeatLastN int `json:"repeat_last_n"`
Temperature float32 `json:"temperature"`
RepeatPenalty float32 `json:"repeat_penalty"`
PresencePenalty float32 `json:"presence_penalty"`
FrequencyPenalty float32 `json:"frequency_penalty"`
Mirostat int `json:"mirostat"`
MirostatTau float32 `json:"mirostat_tau"`
MirostatEta float32 `json:"mirostat_eta"`
PenalizeNewline bool `json:"penalize_nl"`
Stop []string `json:"stop"`
}
type ImageData struct {
Data []byte `json:"data"`
ID int `json:"id"`
}
type CompletionRequest struct {
Prompt string `json:"prompt"`
Images []ImageData `json:"image_data"`
Grammar string `json:"grammar"`
CachePrompt bool `json:"cache_prompt"`
Options
}
type Timings struct {
PredictedN int `json:"predicted_n"`
PredictedMS float64 `json:"predicted_ms"`
PromptN int `json:"prompt_n"`
PromptMS float64 `json:"prompt_ms"`
}
type CompletionResponse struct {
Content string `json:"content"`
Stop bool `json:"stop"`
Model string `json:"model,omitempty"`
Prompt string `json:"prompt,omitempty"`
StoppedLimit bool `json:"stopped_limit,omitempty"`
PredictedN int `json:"predicted_n,omitempty"`
PredictedMS float64 `json:"predicted_ms,omitempty"`
PromptN int `json:"prompt_n,omitempty"`
PromptMS float64 `json:"prompt_ms,omitempty"`
Timings Timings `json:"timings"`
}
func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
var req CompletionRequest
req.Options = Options(api.DefaultOptions())
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
http.Error(w, "Bad request", http.StatusBadRequest)
return
}
// Set the headers to indicate streaming
w.Header().Set("Content-Type", "application/json")
w.Header().Set("Transfer-Encoding", "chunked")
flusher, ok := w.(http.Flusher)
if !ok {
http.Error(w, "Streaming not supported", http.StatusInternalServerError)
return
}
var samplingParams llama.SamplingParams
samplingParams.TopK = req.TopK
samplingParams.TopP = req.TopP
samplingParams.MinP = req.MinP
samplingParams.TfsZ = req.TFSZ
samplingParams.TypicalP = req.TypicalP
samplingParams.Temp = req.Temperature
samplingParams.RepeatLastN = req.RepeatLastN
samplingParams.PenaltyRepeat = req.RepeatPenalty
samplingParams.PenaltyFreq = req.FrequencyPenalty
samplingParams.PenaltyPresent = req.PresencePenalty
samplingParams.Mirostat = req.Mirostat
samplingParams.MirostatTau = req.MirostatTau
samplingParams.MirostatEta = req.MirostatEta
samplingParams.PenalizeNl = req.PenalizeNewline
samplingParams.Seed = uint32(req.Seed)
samplingParams.Grammar = req.Grammar
seq, err := s.NewSequence(req.Prompt, req.Images, NewSequenceParams{
numPredict: req.NumPredict,
stop: req.Stop,
numKeep: req.NumKeep,
samplingParams: &samplingParams,
embedding: false,
})
if err != nil {
http.Error(w, fmt.Sprintf("Failed to create new sequence: %v", err), http.StatusInternalServerError)
return
}
// TODO (jmorganca): add to sequence queue instead of
// failing if a slot isn't available
s.mu.Lock()
for i, sq := range s.seqs {
if sq == nil {
seq.cache, seq.inputs, seq.numPast, err = s.cache.LoadCacheSlot(seq.inputs, req.CachePrompt)
if err != nil {
s.mu.Unlock()
http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
return
}
s.seqs[i] = seq
s.cond.Signal()
break
}
}
s.mu.Unlock()
for {
select {
case <-r.Context().Done():
close(seq.quit)
return
case content, ok := <-seq.responses:
if ok {
if err := json.NewEncoder(w).Encode(&CompletionResponse{
Content: content,
}); err != nil {
http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
close(seq.quit)
return
}
flusher.Flush()
} else {
// Send the final response
if err := json.NewEncoder(w).Encode(&CompletionResponse{
Stop: true,
StoppedLimit: seq.doneReason == "limit",
Timings: Timings{
PromptN: seq.numPromptInputs,
PromptMS: float64(seq.startGenerationTime.Sub(seq.startProcessingTime).Milliseconds()),
PredictedN: seq.numDecoded,
PredictedMS: float64(time.Since(seq.startGenerationTime).Milliseconds()),
},
}); err != nil {
http.Error(w, fmt.Sprintf("failed to encode final response: %v", err), http.StatusInternalServerError)
}
return
}
}
}
}
type EmbeddingRequest struct {
Content string `json:"content"`
CachePrompt bool `json:"cache_prompt"`
}
type EmbeddingResponse struct {
Embedding []float32 `json:"embedding"`
}
func (s *Server) embeddings(w http.ResponseWriter, r *http.Request) {
var req EmbeddingRequest
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
http.Error(w, fmt.Sprintf("bad request: %s", err), http.StatusBadRequest)
return
}
w.Header().Set("Content-Type", "application/json")
slog.Debug("embedding request", "content", req.Content)
seq, err := s.NewSequence(req.Content, nil, NewSequenceParams{embedding: true})
if err != nil {
http.Error(w, fmt.Sprintf("Failed to create new sequence: %v", err), http.StatusInternalServerError)
return
}
// TODO (jessegross): Wait for a free slot instead of failing and blocking forever
s.mu.Lock()
for i, sq := range s.seqs {
if sq == nil {
seq.cache, seq.inputs, seq.numPast, err = s.cache.LoadCacheSlot(seq.inputs, req.CachePrompt)
if err != nil {
s.mu.Unlock()
http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
return
}
s.seqs[i] = seq
s.cond.Signal()
break
}
}
s.mu.Unlock()
embedding := <-seq.embedding
if err := json.NewEncoder(w).Encode(&EmbeddingResponse{
Embedding: embedding,
}); err != nil {
http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
}
}
type HealthResponse struct {
Status string `json:"status"`
Progress float32 `json:"progress"`
}
type ServerStatus int
const (
ServerStatusReady ServerStatus = iota
ServerStatusLoadingModel
ServerStatusError
)
func (s ServerStatus) ToString() string {
switch s {
case ServerStatusReady:
return "ok"
case ServerStatusLoadingModel:
return "loading model"
default:
return "server error"
}
}
func (s *Server) health(w http.ResponseWriter, r *http.Request) {
w.Header().Set("Content-Type", "application/json")
if err := json.NewEncoder(w).Encode(&HealthResponse{
Status: s.status.ToString(),
Progress: s.progress,
}); err != nil {
http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
}
}
func (s *Server) loadModel(
params llama.ModelParams,
mpath string,
lpath string,
ppath string,
kvSize int,
flashAttention bool,
threads int,
multiUserCache bool,
) {
llama.BackendInit()
s.model = llama.LoadModelFromFile(mpath, params)
ctxParams := llama.NewContextParams(kvSize, s.batchSize*s.parallel, s.parallel, threads, flashAttention)
s.lc = llama.NewContextWithModel(s.model, ctxParams)
if lpath != "" {
err := s.model.ApplyLoraFromFile(s.lc, lpath, 1.0, threads)
if err != nil {
panic(err)
}
}
if s.model.AddBOSToken() {
s.bosToken = 1
}
if ppath != "" {
s.clip.cc = llama.NewClipContext(ppath)
}
s.cache = NewInputCache(s.lc, kvSize, s.parallel, multiUserCache)
s.status = ServerStatusReady
s.ready.Done()
}
func main() {
mpath := flag.String("model", "", "Path to model binary file")
ppath := flag.String("mmproj", "", "Path to projector binary file")
parallel := flag.Int("parallel", 1, "Number of sequences to handle simultaneously")
batchSize := flag.Int("batch-size", 512, "Batch size")
nGpuLayers := flag.Int("n-gpu-layers", 0, "Number of layers to offload to GPU")
mainGpu := flag.Int("main-gpu", 0, "Main GPU")
flashAttention := flag.Bool("flash-attn", false, "Enable flash attention")
kvSize := flag.Int("ctx-size", 2048, "Context (or KV cache) size")
lpath := flag.String("lora", "", "Path to lora layer file")
port := flag.Int("port", 8080, "Port to expose the server on")
threads := flag.Int("threads", runtime.NumCPU(), "Number of threads to use during generation")
verbose := flag.Bool("verbose", false, "verbose output (default: disabled)")
noMmap := flag.Bool("no-mmap", false, "do not memory-map model (slower load but may reduce pageouts if not using mlock)")
mlock := flag.Bool("mlock", false, "force system to keep model in RAM rather than swapping or compressing")
tensorSplit := flag.String("tensor-split", "", "fraction of the model to offload to each GPU, comma-separated list of proportions")
multiUserCache := flag.Bool("multiuser-cache", false, "optimize input cache algorithm for multiple users")
// Expose requirements as a JSON output to stdout
requirements := flag.Bool("requirements", false, "print json requirement information")
// These are either ignored by llama.cpp or have no significance to us
_ = flag.Bool("embedding", false, "enable embedding vector output (default: disabled)")
_ = flag.Bool("log-disable", false, "disables logging to a file")
_ = flag.Bool("memory-f32", false, "use f32 instead of f16 for memory key+value (default: disabled) not recommended: doubles context memory required and no measurable increase in quality")
flag.Parse()
if *requirements {
printRequirements(os.Stdout)
return
}
level := slog.LevelInfo
if *verbose {
level = slog.LevelDebug
}
handler := slog.NewTextHandler(os.Stderr, &slog.HandlerOptions{
Level: level,
AddSource: true,
ReplaceAttr: func(_ []string, attr slog.Attr) slog.Attr {
if attr.Key == slog.SourceKey {
source := attr.Value.Any().(*slog.Source)
source.File = filepath.Base(source.File)
}
return attr
},
})
slog.SetDefault(slog.New(handler))
slog.Info("starting go runner")
slog.Debug("system info", "cpu", llama.PrintSystemInfo(), "threads", *threads)
server := &Server{
batchSize: *batchSize,
parallel: *parallel,
seqs: make([]*Sequence, *parallel),
status: ServerStatusLoadingModel,
}
var tensorSplitFloats []float32
if *tensorSplit != "" {
stringFloats := regexp.MustCompile(",").Split(*tensorSplit, -1)
tensorSplitFloats = make([]float32, 0, len(stringFloats))
for _, s := range stringFloats {
f, _ := strconv.ParseFloat(s, 32)
tensorSplitFloats = append(tensorSplitFloats, float32(f))
}
}
params := llama.ModelParams{
NumGpuLayers: *nGpuLayers,
MainGpu: *mainGpu,
UseMmap: !*noMmap && *lpath == "",
UseMlock: *mlock,
TensorSplit: tensorSplitFloats,
Progress: func(progress float32) {
server.progress = progress
},
}
server.ready.Add(1)
go server.loadModel(params, *mpath, *lpath, *ppath, *kvSize, *flashAttention, *threads, *multiUserCache)
server.cond = sync.NewCond(&server.mu)
ctx, cancel := context.WithCancel(context.Background())
go server.run(ctx)
addr := "127.0.0.1:" + strconv.Itoa(*port)
listener, err := net.Listen("tcp", addr)
if err != nil {
fmt.Println("Listen error:", err)
return
}
defer listener.Close()
mux := http.NewServeMux()
mux.HandleFunc("/embedding", server.embeddings)
mux.HandleFunc("/completion", server.completion)
mux.HandleFunc("/health", server.health)
httpServer := http.Server{
Handler: mux,
}
log.Println("Server listening on", addr)
if err := httpServer.Serve(listener); err != nil {
log.Fatal("server error:", err)
}
cancel()
}