f2890a4494
* fix(ext_server): Port llama.cpp sampling refactors to ext_server
This was a fairly large changeset. I closely followed the changes here:
df270ef745
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(server.cpp): Refactor server.cpp logging for llama.cpp overhaul
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Bump llama.cpp to the latest master with `granite` support
This does not yet have granite MoE support, but that can come in a
follow up PR
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(patches): Update all patches (except solar-pro) to work with bumped llama.cpp
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(solar): Update solar patch for llama.cpp bump
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat(llama.cpp): Bump llama.cpp for granitemoe support
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat(llama.cpp): Bump llama.cpp for granitemoe support
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(solar): Update the solar-pro patch for latest llama.cpp bump
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat(llama.cpp): Bump to the latest master of llama.cpp
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(patches): Update all patches for latest bump
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat(llama): Always run sync.sh from the right directory
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama/patches): Update llama patches
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat(llama)!: Rough sync with llama.cpp submodule
There are a number of changes that will need to be propagated to llama.go
before any of this works!
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama/patches): Add a patch and update for missing ggml-impl.h include
This include is where the ggml_cgraph struct is defined. It is included in
many of the .c files to define the forward declartion in ggml.h. It seems
that with the subset of code included here, the import was somehow lost (or
out-of-order) when building, so adding this include to llama.cpp fixes the
missing definition.
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama/sync): Add missing ggml-cpu-impl.h copy-over in sync.sh
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama): Add missing log.cpp
This was added as part of the logging overhaul done in llama.cpp
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama): Overhaul use of sampling module for llama.cpp changes
The changes here reflect the changes made in the big llama.cpp sampling PR
https://github.com/ggerganov/llama.cpp/pull/9294
The sampling functionality is now broken into the base interface
(llama_sampler) and the generation implementation (gpt_sampler). The
changes here reflect that. Since the sampling.h/sampling.cpp code uses c++
STL headers, the sampling_ext.[h|cpp] wrapper is maintained to allow go to
access a pure-C interface.
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama): Fix the impl of SampleTokenGreedy for new sampling
I don't think this method is currently used, so it could probably just be
removed so that all sampling goes through the GPT interface, but in the
interest of doing no harm, this should keep the method working as expected.
Branch: IBMGraniteArchitectureSupport
* fix(llama): Remove unused SampleTokenGreedy
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(sync): Remove bash-specific change to sync.sh
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* chore(gofumpt): Format on llama.go to pass linting
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llm): Fix missing <thread> include in ext_server
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama): Remove TODO about grammar_first
This feature was not used/needed previously so should be fine without
plumbing it through now.
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama): Better naming for sampling wrapper and args
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama): Fix patch 05 to use new wrapper api and re-sync
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* runner: Flush pending responses before returning
If there are any pending reponses (such as from potential stop
tokens) then we should send them back before ending the sequence.
Otherwise, we can be missing tokens at the end of a response.
Fixes #6707
* fix(llama/sampling): Use gpt_sampler with a forward declaration
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama): Remove unnecessary patch for gguf impl header
This was caused by an earlier mistake in the embeddings patch that was
dereferencing the pointer instead of using the wrapper API.
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llm): Remove use of deprecated --log-disable flag
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
---------
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
385 lines
17 KiB
Diff
385 lines
17 KiB
Diff
diff --git a/src/llama.cpp b/src/llama.cpp
|
|
index bdad28b3..1fe6189a 100644
|
|
--- a/src/llama.cpp
|
|
+++ b/src/llama.cpp
|
|
@@ -217,6 +217,7 @@ enum llm_arch {
|
|
LLM_ARCH_GRANITE,
|
|
LLM_ARCH_GRANITE_MOE,
|
|
LLM_ARCH_CHAMELEON,
|
|
+ LLM_ARCH_SOLAR,
|
|
LLM_ARCH_UNKNOWN,
|
|
};
|
|
|
|
@@ -270,6 +271,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
|
{ LLM_ARCH_GRANITE, "granite" },
|
|
{ LLM_ARCH_GRANITE_MOE, "granitemoe" },
|
|
{ LLM_ARCH_CHAMELEON, "chameleon" },
|
|
+ { LLM_ARCH_SOLAR, "solar" },
|
|
{ LLM_ARCH_UNKNOWN, "(unknown)" },
|
|
};
|
|
|
|
@@ -327,6 +329,7 @@ enum llm_kv {
|
|
LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT,
|
|
LLM_KV_ATTENTION_SLIDING_WINDOW,
|
|
LLM_KV_ATTENTION_SCALE,
|
|
+ LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION,
|
|
|
|
LLM_KV_ROPE_DIMENSION_COUNT,
|
|
LLM_KV_ROPE_FREQ_BASE,
|
|
@@ -421,20 +424,21 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
|
|
{ LLM_KV_RESIDUAL_SCALE, "%s.residual_scale" },
|
|
{ LLM_KV_EMBEDDING_SCALE, "%s.embedding_scale" },
|
|
|
|
- { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
|
|
- { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
|
|
- { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
|
|
- { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
|
|
- { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
|
|
- { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
|
|
- { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
|
|
- { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
|
|
- { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" },
|
|
- { LLM_KV_ATTENTION_Q_LORA_RANK, "%s.attention.q_lora_rank" },
|
|
- { LLM_KV_ATTENTION_KV_LORA_RANK, "%s.attention.kv_lora_rank" },
|
|
- { LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, "%s.attention.relative_buckets_count" },
|
|
- { LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" },
|
|
- { LLM_KV_ATTENTION_SCALE, "%s.attention.scale" },
|
|
+ { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
|
|
+ { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
|
|
+ { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
|
|
+ { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
|
|
+ { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
|
|
+ { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
|
|
+ { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
|
|
+ { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
|
|
+ { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" },
|
|
+ { LLM_KV_ATTENTION_Q_LORA_RANK, "%s.attention.q_lora_rank" },
|
|
+ { LLM_KV_ATTENTION_KV_LORA_RANK, "%s.attention.kv_lora_rank" },
|
|
+ { LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, "%s.attention.relative_buckets_count" },
|
|
+ { LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" },
|
|
+ { LLM_KV_ATTENTION_SCALE, "%s.attention.scale" },
|
|
+ { LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION, "%s.attention.block_skip_connection.%d" },
|
|
|
|
{ LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
|
|
{ LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
|
|
@@ -608,6 +612,7 @@ enum llm_tensor {
|
|
LLM_TENSOR_ENC_OUTPUT_NORM,
|
|
LLM_TENSOR_CLS,
|
|
LLM_TENSOR_CLS_OUT,
|
|
+ LLM_TENSOR_BSKCN_TV,
|
|
};
|
|
|
|
static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
|
|
@@ -1527,6 +1532,24 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
|
|
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
|
|
},
|
|
},
|
|
+ {
|
|
+ LLM_ARCH_SOLAR,
|
|
+ {
|
|
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
|
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
|
+ { LLM_TENSOR_OUTPUT, "output" },
|
|
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
|
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
|
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
|
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
|
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
|
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
|
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
|
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
|
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
|
+ { LLM_TENSOR_BSKCN_TV, "bskcn_tv" },
|
|
+ },
|
|
+ },
|
|
{
|
|
LLM_ARCH_UNKNOWN,
|
|
{
|
|
@@ -2360,6 +2383,7 @@ enum e_model {
|
|
MODEL_15B,
|
|
MODEL_16B,
|
|
MODEL_20B,
|
|
+ MODEL_22B,
|
|
MODEL_30B,
|
|
MODEL_34B,
|
|
MODEL_35B,
|
|
@@ -2409,6 +2433,8 @@ struct llama_hparams {
|
|
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_kv_arr;
|
|
std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
|
|
|
|
+ std::array<std::array<uint32_t, LLAMA_MAX_LAYERS>, 4> n_bskcn_arr;
|
|
+
|
|
uint32_t n_layer_dense_lead = 0;
|
|
uint32_t n_lora_q = 0;
|
|
uint32_t n_lora_kv = 0;
|
|
@@ -2479,6 +2505,7 @@ struct llama_hparams {
|
|
if (this->n_head_arr != other.n_head_arr) return true;
|
|
if (this->n_head_kv_arr != other.n_head_kv_arr) return true;
|
|
if (this->n_ff_arr != other.n_ff_arr) return true;
|
|
+ if (this->n_bskcn_arr != other.n_bskcn_arr) return true;
|
|
|
|
if (this->n_rel_attn_bkts != other.n_rel_attn_bkts) return true;
|
|
if (this->n_layer_dense_lead != other.n_layer_dense_lead) return true;
|
|
@@ -2588,6 +2615,14 @@ struct llama_hparams {
|
|
return ssm_d_state * ssm_d_inner;
|
|
}
|
|
}
|
|
+
|
|
+ bool n_bskcn(uint32_t n, uint32_t il = 0) const {
|
|
+ if (il < n_layer) {
|
|
+ return n_bskcn_arr[n][il] > 0;
|
|
+ }
|
|
+
|
|
+ GGML_ABORT("fatal error");
|
|
+ }
|
|
};
|
|
|
|
static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");
|
|
@@ -2769,6 +2804,8 @@ struct llama_layer {
|
|
struct ggml_tensor * ffn_gate_scale;
|
|
struct ggml_tensor * ffn_up_scale;
|
|
struct ggml_tensor * ffn_down_scale;
|
|
+
|
|
+ struct ggml_tensor * bskcn_tv;
|
|
};
|
|
|
|
// very similar to llama_batch,
|
|
@@ -6134,6 +6171,21 @@ static void llm_load_hparams(
|
|
default: model.type = e_model::MODEL_UNKNOWN;
|
|
}
|
|
} break;
|
|
+ case LLM_ARCH_SOLAR:
|
|
+ {
|
|
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
|
+
|
|
+ for (int i = 0; i < hparams.n_bskcn_arr.max_size(); ++i) {
|
|
+ auto & bskcn = hparams.n_bskcn_arr.at(i);
|
|
+ bskcn.fill(0);
|
|
+ ml.get_key_or_arr(::format(LLM_KV_NAMES.at(LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION), LLM_ARCH_NAMES.at(ml.llm_kv.arch), i), bskcn, hparams.n_layer, false);
|
|
+ }
|
|
+
|
|
+ switch (hparams.n_layer) {
|
|
+ case 64: model.type = e_model::MODEL_22B; break;
|
|
+ default: model.type = e_model::MODEL_UNKNOWN;
|
|
+ }
|
|
+ }
|
|
default: (void)0;
|
|
}
|
|
|
|
@@ -8831,6 +8883,38 @@ static bool llm_load_tensors(
|
|
|
|
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
|
|
|
+ layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
|
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
|
|
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
|
+ }
|
|
+ } break;
|
|
+ case LLM_ARCH_SOLAR:
|
|
+ {
|
|
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
|
+
|
|
+ // output
|
|
+ {
|
|
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
|
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
|
+ }
|
|
+
|
|
+ for (int i = 0; i < n_layer; ++i) {
|
|
+ ggml_context * ctx_layer = ctx_for_layer(i);
|
|
+ ggml_context * ctx_split = ctx_for_layer_split(i);
|
|
+
|
|
+ auto & layer = model.layers[i];
|
|
+
|
|
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
|
+
|
|
+ layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head});
|
|
+ layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
|
|
+ layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
|
|
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd});
|
|
+
|
|
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
|
+
|
|
+ layer.bskcn_tv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_BSKCN_TV, "weight"), {2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
|
|
+
|
|
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
|
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
|
|
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
|
@@ -16179,6 +16263,158 @@ struct llm_build_context {
|
|
|
|
return gf;
|
|
}
|
|
+
|
|
+ ggml_cgraph * build_solar() {
|
|
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
|
+
|
|
+ // mutable variable, needed during the last layer of the computation to skip unused tokens
|
|
+ int32_t n_tokens = this->n_tokens;
|
|
+
|
|
+ const int64_t n_embd_head = hparams.n_embd_head_v;
|
|
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
|
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
|
|
+
|
|
+ struct ggml_tensor * cur;
|
|
+ struct ggml_tensor * inpL;
|
|
+
|
|
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
|
+
|
|
+ // inp_pos - contains the positions
|
|
+ struct ggml_tensor * inp_pos = build_inp_pos();
|
|
+
|
|
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
|
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
|
+
|
|
+ struct ggml_tensor * bskcn_1;
|
|
+ struct ggml_tensor * bskcn_2;
|
|
+
|
|
+ for (int il = 0; il < n_layer; ++il) {
|
|
+ struct ggml_tensor * inpSA = inpL;
|
|
+
|
|
+ if (hparams.n_bskcn(0, il)) {
|
|
+ bskcn_1 = inpSA;
|
|
+ }
|
|
+
|
|
+ if (hparams.n_bskcn(1, il)) {
|
|
+ bskcn_2 = inpSA;
|
|
+ }
|
|
+
|
|
+ if (hparams.n_bskcn(2, il)) {
|
|
+ inpSA = ggml_add(
|
|
+ ctx0,
|
|
+ ggml_mul(ctx0, bskcn_1, ggml_view_1d(ctx0, model.layers[il].bskcn_tv, 1, 0)),
|
|
+ ggml_mul(ctx0, inpSA, ggml_view_1d(ctx0, model.layers[il].bskcn_tv, 1, ggml_element_size(model.layers[il].bskcn_tv))));
|
|
+ }
|
|
+
|
|
+ if (hparams.n_bskcn(3, il)) {
|
|
+ inpSA = ggml_add(
|
|
+ ctx0,
|
|
+ ggml_mul(ctx0, bskcn_2, ggml_view_1d(ctx0, model.layers[il].bskcn_tv, 1, 0)),
|
|
+ ggml_mul(ctx0, inpSA, ggml_view_1d(ctx0, model.layers[il].bskcn_tv, 1, ggml_element_size(model.layers[il].bskcn_tv))));
|
|
+ }
|
|
+
|
|
+ // norm
|
|
+ cur = llm_build_norm(ctx0, inpL, hparams,
|
|
+ model.layers[il].attn_norm, NULL,
|
|
+ LLM_NORM_RMS, cb, il);
|
|
+ cb(cur, "attn_norm", il);
|
|
+
|
|
+ // self-attention
|
|
+ {
|
|
+ // rope freq factors for llama3; may return nullptr for llama2 and other models
|
|
+ struct ggml_tensor * rope_factors = build_rope_factors(il);
|
|
+
|
|
+ // compute Q and K and RoPE them
|
|
+ struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
|
|
+ cb(Qcur, "Qcur", il);
|
|
+ if (model.layers[il].bq) {
|
|
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
|
+ cb(Qcur, "Qcur", il);
|
|
+ }
|
|
+
|
|
+ struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
|
|
+ cb(Kcur, "Kcur", il);
|
|
+ if (model.layers[il].bk) {
|
|
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
|
+ cb(Kcur, "Kcur", il);
|
|
+ }
|
|
+
|
|
+ struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
|
|
+ cb(Vcur, "Vcur", il);
|
|
+ if (model.layers[il].bv) {
|
|
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
|
+ cb(Vcur, "Vcur", il);
|
|
+ }
|
|
+
|
|
+ Qcur = ggml_rope_ext(
|
|
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, rope_factors,
|
|
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
+ ext_factor, attn_factor, beta_fast, beta_slow
|
|
+ );
|
|
+ cb(Qcur, "Qcur", il);
|
|
+
|
|
+ Kcur = ggml_rope_ext(
|
|
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, rope_factors,
|
|
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
+ ext_factor, attn_factor, beta_fast, beta_slow
|
|
+ );
|
|
+ cb(Kcur, "Kcur", il);
|
|
+
|
|
+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
|
+ model.layers[il].wo, model.layers[il].bo,
|
|
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
|
+ }
|
|
+
|
|
+ if (il == n_layer - 1) {
|
|
+ // skip computing output for unused tokens
|
|
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
|
+ n_tokens = n_outputs;
|
|
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
|
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
|
+ }
|
|
+
|
|
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
|
+ cb(ffn_inp, "ffn_inp", il);
|
|
+
|
|
+ // feed-forward network
|
|
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
|
+ model.layers[il].ffn_norm, NULL,
|
|
+ LLM_NORM_RMS, cb, il);
|
|
+ cb(cur, "ffn_norm", il);
|
|
+
|
|
+ cur = llm_build_ffn(ctx0, lctx, cur,
|
|
+ model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
|
|
+ model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
|
|
+ model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
|
|
+ NULL,
|
|
+ LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
|
+ cb(cur, "ffn_out", il);
|
|
+
|
|
+ cur = ggml_add(ctx0, cur, ffn_inp);
|
|
+ cb(cur, "ffn_out", il);
|
|
+
|
|
+ cur = lctx.cvec.apply_to(ctx0, cur, il);
|
|
+ cb(cur, "l_out", il);
|
|
+
|
|
+ // input for next layer
|
|
+ inpL = cur;
|
|
+ }
|
|
+
|
|
+ cur = inpL;
|
|
+
|
|
+ cur = llm_build_norm(ctx0, cur, hparams,
|
|
+ model.output_norm, NULL,
|
|
+ LLM_NORM_RMS, cb, -1);
|
|
+ cb(cur, "result_norm", -1);
|
|
+
|
|
+ // lm_head
|
|
+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
|
+ cb(cur, "result_output", -1);
|
|
+
|
|
+ ggml_build_forward_expand(gf, cur);
|
|
+
|
|
+ return gf;
|
|
+ }
|
|
};
|
|
|
|
static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
|
|
@@ -16443,6 +16679,10 @@ static struct ggml_cgraph * llama_build_graph(
|
|
{
|
|
result = llm.build_chameleon();
|
|
} break;
|
|
+ case LLM_ARCH_SOLAR:
|
|
+ {
|
|
+ result = llm.build_solar();
|
|
+ } break;
|
|
default:
|
|
GGML_ABORT("fatal error");
|
|
}
|
|
@@ -19589,6 +19829,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
|
|
case LLM_ARCH_GRANITE:
|
|
case LLM_ARCH_GRANITE_MOE:
|
|
case LLM_ARCH_CHAMELEON:
|
|
+ case LLM_ARCH_SOLAR:
|
|
return LLAMA_ROPE_TYPE_NORM;
|
|
|
|
// the pairs of head values are offset by n_rot/2
|