f2890a4494
* fix(ext_server): Port llama.cpp sampling refactors to ext_server
This was a fairly large changeset. I closely followed the changes here:
df270ef745
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(server.cpp): Refactor server.cpp logging for llama.cpp overhaul
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Bump llama.cpp to the latest master with `granite` support
This does not yet have granite MoE support, but that can come in a
follow up PR
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(patches): Update all patches (except solar-pro) to work with bumped llama.cpp
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(solar): Update solar patch for llama.cpp bump
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat(llama.cpp): Bump llama.cpp for granitemoe support
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat(llama.cpp): Bump llama.cpp for granitemoe support
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(solar): Update the solar-pro patch for latest llama.cpp bump
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat(llama.cpp): Bump to the latest master of llama.cpp
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(patches): Update all patches for latest bump
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat(llama): Always run sync.sh from the right directory
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama/patches): Update llama patches
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat(llama)!: Rough sync with llama.cpp submodule
There are a number of changes that will need to be propagated to llama.go
before any of this works!
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama/patches): Add a patch and update for missing ggml-impl.h include
This include is where the ggml_cgraph struct is defined. It is included in
many of the .c files to define the forward declartion in ggml.h. It seems
that with the subset of code included here, the import was somehow lost (or
out-of-order) when building, so adding this include to llama.cpp fixes the
missing definition.
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama/sync): Add missing ggml-cpu-impl.h copy-over in sync.sh
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama): Add missing log.cpp
This was added as part of the logging overhaul done in llama.cpp
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama): Overhaul use of sampling module for llama.cpp changes
The changes here reflect the changes made in the big llama.cpp sampling PR
https://github.com/ggerganov/llama.cpp/pull/9294
The sampling functionality is now broken into the base interface
(llama_sampler) and the generation implementation (gpt_sampler). The
changes here reflect that. Since the sampling.h/sampling.cpp code uses c++
STL headers, the sampling_ext.[h|cpp] wrapper is maintained to allow go to
access a pure-C interface.
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama): Fix the impl of SampleTokenGreedy for new sampling
I don't think this method is currently used, so it could probably just be
removed so that all sampling goes through the GPT interface, but in the
interest of doing no harm, this should keep the method working as expected.
Branch: IBMGraniteArchitectureSupport
* fix(llama): Remove unused SampleTokenGreedy
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(sync): Remove bash-specific change to sync.sh
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* chore(gofumpt): Format on llama.go to pass linting
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llm): Fix missing <thread> include in ext_server
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama): Remove TODO about grammar_first
This feature was not used/needed previously so should be fine without
plumbing it through now.
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama): Better naming for sampling wrapper and args
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama): Fix patch 05 to use new wrapper api and re-sync
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* runner: Flush pending responses before returning
If there are any pending reponses (such as from potential stop
tokens) then we should send them back before ending the sequence.
Otherwise, we can be missing tokens at the end of a response.
Fixes #6707
* fix(llama/sampling): Use gpt_sampler with a forward declaration
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama): Remove unnecessary patch for gguf impl header
This was caused by an earlier mistake in the embeddings patch that was
dereferencing the pointer instead of using the wrapper API.
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llm): Remove use of deprecated --log-disable flag
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
---------
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
451 lines
20 KiB
Text
Vendored
451 lines
20 KiB
Text
Vendored
/**
|
|
* llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
|
|
*
|
|
* MIT License
|
|
*
|
|
* Copyright (c) 2023-2024 The ggml authors
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#include "mmvq.cuh"
|
|
#include "vecdotq.cuh"
|
|
|
|
typedef float (*vec_dot_q_cuda_t)(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs);
|
|
|
|
static constexpr __device__ vec_dot_q_cuda_t get_vec_dot_q_cuda(ggml_type type) {
|
|
return type == GGML_TYPE_Q4_0 ? vec_dot_q4_0_q8_1 :
|
|
type == GGML_TYPE_Q4_1 ? vec_dot_q4_1_q8_1 :
|
|
type == GGML_TYPE_Q5_0 ? vec_dot_q5_0_q8_1 :
|
|
type == GGML_TYPE_Q5_1 ? vec_dot_q5_1_q8_1 :
|
|
type == GGML_TYPE_Q8_0 ? vec_dot_q8_0_q8_1 :
|
|
type == GGML_TYPE_Q2_K ? vec_dot_q2_K_q8_1 :
|
|
type == GGML_TYPE_Q3_K ? vec_dot_q3_K_q8_1 :
|
|
type == GGML_TYPE_Q4_K ? vec_dot_q4_K_q8_1 :
|
|
type == GGML_TYPE_Q5_K ? vec_dot_q5_K_q8_1 :
|
|
type == GGML_TYPE_Q6_K ? vec_dot_q6_K_q8_1 :
|
|
type == GGML_TYPE_IQ2_XXS ? vec_dot_iq2_xxs_q8_1 :
|
|
type == GGML_TYPE_IQ2_XS ? vec_dot_iq2_xs_q8_1 :
|
|
type == GGML_TYPE_IQ2_S ? vec_dot_iq2_s_q8_1 :
|
|
type == GGML_TYPE_IQ3_XXS ? vec_dot_iq3_xxs_q8_1 :
|
|
type == GGML_TYPE_IQ1_S ? vec_dot_iq1_s_q8_1 :
|
|
type == GGML_TYPE_IQ1_M ? vec_dot_iq1_m_q8_1 :
|
|
type == GGML_TYPE_IQ4_NL ? vec_dot_iq4_nl_q8_1 :
|
|
type == GGML_TYPE_IQ4_XS ? vec_dot_iq4_xs_q8_1 :
|
|
type == GGML_TYPE_IQ3_S ? vec_dot_iq3_s_q8_1 :
|
|
nullptr;
|
|
}
|
|
|
|
static constexpr __device__ int get_vdr_mmvq(ggml_type type) {
|
|
return type == GGML_TYPE_Q4_0 ? VDR_Q4_0_Q8_1_MMVQ :
|
|
type == GGML_TYPE_Q4_1 ? VDR_Q4_1_Q8_1_MMVQ :
|
|
type == GGML_TYPE_Q5_0 ? VDR_Q5_0_Q8_1_MMVQ :
|
|
type == GGML_TYPE_Q5_1 ? VDR_Q5_1_Q8_1_MMVQ :
|
|
type == GGML_TYPE_Q8_0 ? VDR_Q8_0_Q8_1_MMVQ :
|
|
type == GGML_TYPE_Q2_K ? VDR_Q2_K_Q8_1_MMVQ :
|
|
type == GGML_TYPE_Q3_K ? VDR_Q3_K_Q8_1_MMVQ :
|
|
type == GGML_TYPE_Q4_K ? VDR_Q4_K_Q8_1_MMVQ :
|
|
type == GGML_TYPE_Q5_K ? VDR_Q5_K_Q8_1_MMVQ :
|
|
type == GGML_TYPE_Q6_K ? VDR_Q6_K_Q8_1_MMVQ :
|
|
type == GGML_TYPE_IQ2_XXS ? VDR_IQ2_XXS_Q8_1_MMVQ :
|
|
type == GGML_TYPE_IQ2_XS ? VDR_IQ2_XS_Q8_1_MMVQ :
|
|
type == GGML_TYPE_IQ2_S ? VDR_IQ2_S_Q8_1_MMVQ :
|
|
type == GGML_TYPE_IQ3_XXS ? VDR_IQ3_XXS_Q8_1_MMVQ :
|
|
type == GGML_TYPE_IQ3_S ? VDR_IQ3_S_Q8_1_MMVQ :
|
|
type == GGML_TYPE_IQ4_NL ? VDR_IQ4_NL_Q8_1_MMVQ :
|
|
type == GGML_TYPE_IQ4_XS ? VDR_IQ4_XS_Q8_1_MMVQ :
|
|
1;
|
|
}
|
|
|
|
template <ggml_type type, int ncols_y>
|
|
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
|
// tell the compiler to use as many registers as it wants, see nwarps definition below
|
|
__launch_bounds__((ncols_y <= 4 ? 4 : 2)*WARP_SIZE, 1)
|
|
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
|
static __global__ void mul_mat_vec_q(
|
|
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
|
|
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
|
|
|
|
constexpr int qk = ggml_cuda_type_traits<type>::qk;
|
|
constexpr int qi = ggml_cuda_type_traits<type>::qi;
|
|
constexpr int vdr = get_vdr_mmvq(type);
|
|
|
|
constexpr vec_dot_q_cuda_t vec_dot_q_cuda = get_vec_dot_q_cuda(type);
|
|
|
|
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) && (defined(RDNA2) || defined(RDNA3))
|
|
constexpr int nwarps = 1;
|
|
constexpr int rows_per_cuda_block = 1;
|
|
#else
|
|
constexpr int nwarps = ncols_y <= 4 ? 4 : 2;
|
|
constexpr int rows_per_cuda_block = ncols_y == 1 ? 1 : 2;
|
|
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) && !defined(RDNA2) && !defined(RDNA3)
|
|
|
|
const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
|
|
const int row0 = rows_per_cuda_block*blockIdx.x;
|
|
const int blocks_per_row_x = ncols_x / qk;
|
|
const int blocks_per_col_y = nrows_y / QK8_1;
|
|
constexpr int blocks_per_iter = vdr * nwarps*WARP_SIZE / qi;
|
|
|
|
// partial sum for each thread
|
|
float tmp[ncols_y][rows_per_cuda_block] = {0.0f};
|
|
|
|
const block_q8_1 * y = (const block_q8_1 *) vy;
|
|
|
|
for (int kbx = tid / (qi/vdr); kbx < blocks_per_row_x; kbx += blocks_per_iter) {
|
|
const int kby = kbx * (qk/QK8_1); // y block index that aligns with kbx
|
|
|
|
// x block quant index when casting the quants to int
|
|
const int kqs = vdr * (tid % (qi/vdr));
|
|
|
|
#pragma unroll
|
|
for (int j = 0; j < ncols_y; ++j) {
|
|
#pragma unroll
|
|
for (int i = 0; i < rows_per_cuda_block; ++i) {
|
|
tmp[j][i] += vec_dot_q_cuda(vx, &y[j*blocks_per_col_y + kby], (row0 + i)*blocks_per_row_x + kbx, kqs);
|
|
}
|
|
}
|
|
}
|
|
|
|
__shared__ float tmp_shared[nwarps-1 > 0 ? nwarps-1 : 1][ncols_y][rows_per_cuda_block][WARP_SIZE];
|
|
if (threadIdx.y > 0) {
|
|
#pragma unroll
|
|
for (int j = 0; j < ncols_y; ++j) {
|
|
#pragma unroll
|
|
for (int i = 0; i < rows_per_cuda_block; ++i) {
|
|
tmp_shared[threadIdx.y-1][j][i][threadIdx.x] = tmp[j][i];
|
|
}
|
|
}
|
|
}
|
|
__syncthreads();
|
|
if (threadIdx.y > 0) {
|
|
return;
|
|
}
|
|
|
|
// sum up partial sums and write back result
|
|
#pragma unroll
|
|
for (int j = 0; j < ncols_y; ++j) {
|
|
#pragma unroll
|
|
for (int i = 0; i < rows_per_cuda_block; ++i) {
|
|
#pragma unroll
|
|
for (int l = 0; l < nwarps-1; ++l) {
|
|
tmp[j][i] += tmp_shared[l][j][i][threadIdx.x];
|
|
}
|
|
tmp[j][i] = warp_reduce_sum(tmp[j][i]);
|
|
}
|
|
|
|
if (threadIdx.x < rows_per_cuda_block && (rows_per_cuda_block == 1 || row0 + threadIdx.x < nrows_dst)) {
|
|
dst[j*nrows_dst + row0 + threadIdx.x] = tmp[j][threadIdx.x];
|
|
}
|
|
}
|
|
}
|
|
|
|
template <ggml_type type>
|
|
static void mul_mat_vec_q_cuda(
|
|
const void * vx, const void * vy, float * dst,
|
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
|
GGML_ASSERT(ncols_x % ggml_blck_size(type) == 0);
|
|
GGML_ASSERT(ncols_y <= MMVQ_MAX_BATCH_SIZE);
|
|
|
|
int id = ggml_cuda_get_device();
|
|
|
|
int64_t nwarps = 1;
|
|
int64_t rows_per_cuda_block = 1;
|
|
|
|
if (ggml_cuda_info().devices[id].cc < CC_RDNA2) { // NVIDIA and AMD older than RDNA2
|
|
switch(ncols_y) {
|
|
case 1:
|
|
nwarps = 4;
|
|
rows_per_cuda_block = 1;
|
|
break;
|
|
case 2:
|
|
case 3:
|
|
case 4:
|
|
nwarps = 4;
|
|
rows_per_cuda_block = 2;
|
|
break;
|
|
case 5:
|
|
case 6:
|
|
case 7:
|
|
case 8:
|
|
nwarps = 2;
|
|
rows_per_cuda_block = 2;
|
|
break;
|
|
default:
|
|
GGML_ABORT("fatal error");
|
|
break;
|
|
}
|
|
}
|
|
const int64_t nblocks = (nrows_x + rows_per_cuda_block - 1) / rows_per_cuda_block;
|
|
const dim3 block_nums(nblocks, 1, 1);
|
|
const dim3 block_dims(WARP_SIZE, nwarps, 1);
|
|
|
|
switch (ncols_y) {
|
|
case 1:
|
|
mul_mat_vec_q<type, 1><<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
|
break;
|
|
case 2:
|
|
mul_mat_vec_q<type, 2><<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
|
break;
|
|
case 3:
|
|
mul_mat_vec_q<type, 3><<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
|
break;
|
|
case 4:
|
|
mul_mat_vec_q<type, 4><<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
|
break;
|
|
case 5:
|
|
mul_mat_vec_q<type, 5><<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
|
break;
|
|
case 6:
|
|
mul_mat_vec_q<type, 6><<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
|
break;
|
|
case 7:
|
|
mul_mat_vec_q<type, 7><<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
|
break;
|
|
case 8:
|
|
mul_mat_vec_q<type, 8><<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
|
break;
|
|
default:
|
|
GGML_ABORT("fatal error");
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void mul_mat_vec_q4_0_q8_1_cuda(
|
|
const void * vx, const void * vy, float * dst,
|
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
|
mul_mat_vec_q_cuda<GGML_TYPE_Q4_0>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
}
|
|
|
|
static void mul_mat_vec_q4_1_q8_1_cuda(
|
|
const void * vx, const void * vy, float * dst,
|
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
|
mul_mat_vec_q_cuda<GGML_TYPE_Q4_1>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
}
|
|
|
|
static void mul_mat_vec_q5_0_q8_1_cuda(
|
|
const void * vx, const void * vy, float * dst,
|
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
|
mul_mat_vec_q_cuda<GGML_TYPE_Q5_0>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
}
|
|
|
|
static void mul_mat_vec_q5_1_q8_1_cuda(
|
|
const void * vx, const void * vy, float * dst,
|
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
|
mul_mat_vec_q_cuda<GGML_TYPE_Q5_1>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
}
|
|
|
|
static void mul_mat_vec_q8_0_q8_1_cuda(
|
|
const void * vx, const void * vy, float * dst,
|
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
|
mul_mat_vec_q_cuda<GGML_TYPE_Q8_0>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
}
|
|
|
|
static void mul_mat_vec_q2_K_q8_1_cuda(
|
|
const void * vx, const void * vy, float * dst,
|
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
|
mul_mat_vec_q_cuda<GGML_TYPE_Q2_K>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
}
|
|
|
|
static void mul_mat_vec_q3_K_q8_1_cuda(
|
|
const void * vx, const void * vy, float * dst,
|
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
|
mul_mat_vec_q_cuda<GGML_TYPE_Q3_K>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
}
|
|
|
|
static void mul_mat_vec_q4_K_q8_1_cuda(
|
|
const void * vx, const void * vy, float * dst,
|
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
|
mul_mat_vec_q_cuda<GGML_TYPE_Q4_K>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
}
|
|
|
|
static void mul_mat_vec_q5_K_q8_1_cuda(
|
|
const void * vx, const void * vy, float * dst,
|
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
|
mul_mat_vec_q_cuda<GGML_TYPE_Q5_K>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
}
|
|
|
|
static void mul_mat_vec_q6_K_q8_1_cuda(
|
|
const void * vx, const void * vy, float * dst,
|
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
|
mul_mat_vec_q_cuda<GGML_TYPE_Q6_K>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
}
|
|
|
|
static void mul_mat_vec_iq2_xxs_q8_1_cuda(
|
|
const void * vx, const void * vy, float * dst,
|
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
|
mul_mat_vec_q_cuda<GGML_TYPE_IQ2_XXS>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
}
|
|
|
|
static void mul_mat_vec_iq2_xs_q8_1_cuda(
|
|
const void * vx, const void * vy, float * dst,
|
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
|
mul_mat_vec_q_cuda<GGML_TYPE_IQ2_XS>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
}
|
|
|
|
static void mul_mat_vec_iq2_s_q8_1_cuda(
|
|
const void * vx, const void * vy, float * dst,
|
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
|
mul_mat_vec_q_cuda<GGML_TYPE_IQ2_S>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
}
|
|
|
|
static void mul_mat_vec_iq3_xxs_q8_1_cuda(
|
|
const void * vx, const void * vy, float * dst,
|
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
|
mul_mat_vec_q_cuda<GGML_TYPE_IQ3_XXS>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
}
|
|
|
|
static void mul_mat_vec_iq1_s_q8_1_cuda(
|
|
const void * vx, const void * vy, float * dst,
|
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
|
mul_mat_vec_q_cuda<GGML_TYPE_IQ1_S>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
}
|
|
|
|
static void mul_mat_vec_iq1_m_q8_1_cuda(
|
|
const void * vx, const void * vy, float * dst,
|
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
|
mul_mat_vec_q_cuda<GGML_TYPE_IQ1_M>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
}
|
|
|
|
static void mul_mat_vec_iq4_nl_q8_1_cuda(
|
|
const void * vx, const void * vy, float * dst,
|
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
|
mul_mat_vec_q_cuda<GGML_TYPE_IQ4_NL>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
}
|
|
|
|
static void mul_mat_vec_iq4_xs_q8_1_cuda(
|
|
const void * vx, const void * vy, float * dst,
|
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
|
mul_mat_vec_q_cuda<GGML_TYPE_IQ4_XS>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
}
|
|
|
|
static void mul_mat_vec_iq3_s_q8_1_cuda(
|
|
const void * vx, const void * vy, float * dst,
|
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
|
mul_mat_vec_q_cuda<GGML_TYPE_IQ3_S>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
}
|
|
|
|
void ggml_cuda_op_mul_mat_vec_q(
|
|
ggml_backend_cuda_context & ctx,
|
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
|
|
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
|
|
const int64_t src1_padded_row_size, cudaStream_t stream) {
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t row_diff = row_high - row_low;
|
|
|
|
const int64_t ne10 = src1->ne[0];
|
|
GGML_ASSERT(ne10 % QK8_1 == 0);
|
|
|
|
const int64_t ne0 = dst->ne[0];
|
|
|
|
int id = ggml_cuda_get_device();
|
|
|
|
// the main device has a larger memory buffer to hold the results from all GPUs
|
|
// nrows_dst == nrows of the matrix that the kernel writes into
|
|
const int64_t nrows_dst = id == ctx.device ? ne0 : row_diff;
|
|
|
|
switch (src0->type) {
|
|
case GGML_TYPE_Q4_0:
|
|
mul_mat_vec_q4_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
|
break;
|
|
case GGML_TYPE_Q4_1:
|
|
mul_mat_vec_q4_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
|
break;
|
|
case GGML_TYPE_Q5_0:
|
|
mul_mat_vec_q5_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
|
break;
|
|
case GGML_TYPE_Q5_1:
|
|
mul_mat_vec_q5_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
|
break;
|
|
case GGML_TYPE_Q8_0:
|
|
mul_mat_vec_q8_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
|
break;
|
|
case GGML_TYPE_Q2_K:
|
|
mul_mat_vec_q2_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
|
break;
|
|
case GGML_TYPE_Q3_K:
|
|
mul_mat_vec_q3_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
|
break;
|
|
case GGML_TYPE_Q4_K:
|
|
mul_mat_vec_q4_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
|
break;
|
|
case GGML_TYPE_Q5_K:
|
|
mul_mat_vec_q5_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
|
break;
|
|
case GGML_TYPE_Q6_K:
|
|
mul_mat_vec_q6_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
|
break;
|
|
case GGML_TYPE_IQ2_XXS:
|
|
mul_mat_vec_iq2_xxs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
|
break;
|
|
case GGML_TYPE_IQ2_XS:
|
|
mul_mat_vec_iq2_xs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
|
break;
|
|
case GGML_TYPE_IQ2_S:
|
|
mul_mat_vec_iq2_s_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
|
break;
|
|
case GGML_TYPE_IQ3_XXS:
|
|
mul_mat_vec_iq3_xxs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
|
break;
|
|
case GGML_TYPE_IQ1_S:
|
|
mul_mat_vec_iq1_s_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
|
break;
|
|
case GGML_TYPE_IQ1_M:
|
|
mul_mat_vec_iq1_m_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
|
break;
|
|
case GGML_TYPE_IQ4_NL:
|
|
mul_mat_vec_iq4_nl_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
|
break;
|
|
case GGML_TYPE_IQ4_XS:
|
|
mul_mat_vec_iq4_xs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
|
break;
|
|
case GGML_TYPE_IQ3_S:
|
|
mul_mat_vec_iq3_s_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
|
break;
|
|
default:
|
|
GGML_ABORT("fatal error");
|
|
break;
|
|
}
|
|
|
|
GGML_UNUSED(src1);
|
|
GGML_UNUSED(dst);
|
|
GGML_UNUSED(src1_ddf_i);
|
|
GGML_UNUSED(src1_ncols);
|
|
GGML_UNUSED(src1_padded_row_size);
|
|
}
|