f2890a4494
* fix(ext_server): Port llama.cpp sampling refactors to ext_server
This was a fairly large changeset. I closely followed the changes here:
df270ef745
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(server.cpp): Refactor server.cpp logging for llama.cpp overhaul
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Bump llama.cpp to the latest master with `granite` support
This does not yet have granite MoE support, but that can come in a
follow up PR
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(patches): Update all patches (except solar-pro) to work with bumped llama.cpp
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(solar): Update solar patch for llama.cpp bump
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat(llama.cpp): Bump llama.cpp for granitemoe support
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat(llama.cpp): Bump llama.cpp for granitemoe support
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(solar): Update the solar-pro patch for latest llama.cpp bump
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat(llama.cpp): Bump to the latest master of llama.cpp
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(patches): Update all patches for latest bump
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat(llama): Always run sync.sh from the right directory
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama/patches): Update llama patches
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat(llama)!: Rough sync with llama.cpp submodule
There are a number of changes that will need to be propagated to llama.go
before any of this works!
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama/patches): Add a patch and update for missing ggml-impl.h include
This include is where the ggml_cgraph struct is defined. It is included in
many of the .c files to define the forward declartion in ggml.h. It seems
that with the subset of code included here, the import was somehow lost (or
out-of-order) when building, so adding this include to llama.cpp fixes the
missing definition.
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama/sync): Add missing ggml-cpu-impl.h copy-over in sync.sh
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama): Add missing log.cpp
This was added as part of the logging overhaul done in llama.cpp
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama): Overhaul use of sampling module for llama.cpp changes
The changes here reflect the changes made in the big llama.cpp sampling PR
https://github.com/ggerganov/llama.cpp/pull/9294
The sampling functionality is now broken into the base interface
(llama_sampler) and the generation implementation (gpt_sampler). The
changes here reflect that. Since the sampling.h/sampling.cpp code uses c++
STL headers, the sampling_ext.[h|cpp] wrapper is maintained to allow go to
access a pure-C interface.
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama): Fix the impl of SampleTokenGreedy for new sampling
I don't think this method is currently used, so it could probably just be
removed so that all sampling goes through the GPT interface, but in the
interest of doing no harm, this should keep the method working as expected.
Branch: IBMGraniteArchitectureSupport
* fix(llama): Remove unused SampleTokenGreedy
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(sync): Remove bash-specific change to sync.sh
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* chore(gofumpt): Format on llama.go to pass linting
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llm): Fix missing <thread> include in ext_server
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama): Remove TODO about grammar_first
This feature was not used/needed previously so should be fine without
plumbing it through now.
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama): Better naming for sampling wrapper and args
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama): Fix patch 05 to use new wrapper api and re-sync
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* runner: Flush pending responses before returning
If there are any pending reponses (such as from potential stop
tokens) then we should send them back before ending the sequence.
Otherwise, we can be missing tokens at the end of a response.
Fixes #6707
* fix(llama/sampling): Use gpt_sampler with a forward declaration
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama): Remove unnecessary patch for gguf impl header
This was caused by an earlier mistake in the embeddings patch that was
dereferencing the pointer instead of using the wrapper API.
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llm): Remove use of deprecated --log-disable flag
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
---------
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
523 lines
23 KiB
C++
Vendored
523 lines
23 KiB
C++
Vendored
/**
|
|
* llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
|
|
*
|
|
* MIT License
|
|
*
|
|
* Copyright (c) 2023-2024 The ggml authors
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#include "clip.h"
|
|
#include "llava.h"
|
|
|
|
#include "llama.h"
|
|
|
|
#include <algorithm>
|
|
#include <cerrno>
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
#include <cstring>
|
|
#include <limits>
|
|
#include <vector>
|
|
|
|
#define die(msg) do { fputs("error: " msg "\n", stderr); exit(1); } while (0)
|
|
#define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)
|
|
|
|
#define LOG_INF(...) do { fprintf(stdout, __VA_ARGS__); } while (0)
|
|
#define LOG_WRN(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
|
|
#define LOG_ERR(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
|
|
#define LOG_DBG(...) do { fprintf(stdout, __VA_ARGS__); } while (0)
|
|
|
|
// RGB uint8 image
|
|
struct clip_image_u8 {
|
|
int nx;
|
|
int ny;
|
|
|
|
std::vector<uint8_t> buf;
|
|
};
|
|
|
|
// RGB float32 image (NHWC)
|
|
// Memory layout: RGBRGBRGB...
|
|
struct clip_image_f32 {
|
|
int nx;
|
|
int ny;
|
|
|
|
std::vector<float> buf;
|
|
};
|
|
|
|
struct clip_image_grid_shape {
|
|
int first;
|
|
int second;
|
|
};
|
|
|
|
/**
|
|
* Selects the best resolution from a list of possible resolutions based on the original size.
|
|
*
|
|
* @param original_size The original size of the image in the format (width, height).
|
|
* @param possible_resolutions A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
|
|
* @return The best fit resolution in the format (width, height).
|
|
*/
|
|
static std::pair<int, int> select_best_resolution(const std::pair<int, int>& original_size, const std::vector<std::pair<int, int>>& possible_resolutions) {
|
|
int original_width = original_size.first;
|
|
int original_height = original_size.second;
|
|
|
|
std::pair<int, int> best_fit;
|
|
int max_effective_resolution = 0;
|
|
int min_wasted_resolution = std::numeric_limits<int>::max();
|
|
|
|
for (const auto& resolution : possible_resolutions) {
|
|
int width = resolution.first;
|
|
int height = resolution.second;
|
|
float scale = std::min(static_cast<float>(width) / original_width, static_cast<float>(height) / original_height);
|
|
int downscaled_width = static_cast<int>(original_width * scale);
|
|
int downscaled_height = static_cast<int>(original_height * scale);
|
|
int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height);
|
|
int wasted_resolution = (width * height) - effective_resolution;
|
|
// LOG_DBG("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
|
|
if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) {
|
|
max_effective_resolution = effective_resolution;
|
|
min_wasted_resolution = wasted_resolution;
|
|
best_fit = resolution;
|
|
}
|
|
}
|
|
|
|
return best_fit;
|
|
}
|
|
|
|
/**
|
|
* @brief Get the anyres image grid shape object
|
|
*
|
|
* @param image_size
|
|
* @param grid_pinpoints
|
|
* @param image_patch_size
|
|
* @return <int, int>
|
|
*/
|
|
static struct clip_image_grid_shape get_anyres_image_grid_shape(const std::pair<int, int> & image_size, const std::vector<std::pair<int, int>> & grid_pinpoints, int image_patch_size) {
|
|
/**
|
|
Conversion from gguf flat array to vector:
|
|
std::vector<std::pair<int, int>> possible_resolutions;
|
|
for (int i = 0; i < 32 && params.image_grid_pinpoints[i] != 0; i+=2) {
|
|
possible_resolutions.push_back({params.image_grid_pinpoints[i], params.image_grid_pinpoints[i+1]});
|
|
}
|
|
*/
|
|
auto best_resolution = select_best_resolution(image_size, grid_pinpoints);
|
|
return {best_resolution.first / image_patch_size, best_resolution.second / image_patch_size};
|
|
}
|
|
|
|
// Take the image segments in a grid configuration and return the embeddings and the number of embeddings into preallocated memory (image_embd_out)
|
|
static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *> & image_embd_v, struct clip_image_grid_shape grid_shape, float * image_embd_out, int * n_img_pos_out) {
|
|
struct {
|
|
struct ggml_context * ctx;
|
|
} model;
|
|
|
|
const int32_t image_size = clip_image_size(ctx_clip);
|
|
const int32_t patch_size = clip_patch_size(ctx_clip);
|
|
|
|
int32_t num_patches_per_side = image_size / patch_size; // 336 / 14 = 24 - used for embedding-patching boxes (24*24 = 576 patches)
|
|
|
|
int num_patches_width = grid_shape.first; // grid 1-4
|
|
int num_patches_height = grid_shape.second; // grid 1-4
|
|
|
|
const size_t num_images = num_patches_width * num_patches_height + 1;
|
|
|
|
// TODO: size calculation is not calculated - it's only tens of MB
|
|
size_t ctx_size = 0;
|
|
|
|
{
|
|
ctx_size += clip_embd_nbytes(ctx_clip) * num_images * 8; // image_features
|
|
ctx_size += 1024*1024 * ggml_type_size(GGML_TYPE_F32);
|
|
}
|
|
|
|
struct ggml_init_params params {
|
|
/*.mem_size =*/ ctx_size,
|
|
/*.mem_buffer =*/ NULL,
|
|
/*.no_alloc =*/ false, // NOTE: this should be false when using the legacy API
|
|
};
|
|
|
|
// Python reference code for full unpad:
|
|
/*
|
|
base_image_feature = image_feature[0]
|
|
image_feature = image_feature[1:]
|
|
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
|
|
image_feature = image_feature.flatten(1, 2).flatten(2, 3)
|
|
image_feature = unpad_image(image_feature, image_sizes[image_idx])
|
|
image_feature = torch.cat((
|
|
image_feature,
|
|
self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1)
|
|
), dim=-1)
|
|
image_feature = image_feature.flatten(1, 2).transpose(0, 1)
|
|
image_feature = torch.cat((base_image_feature, image_feature), dim=0)
|
|
*/
|
|
// We now have two options: unpad or no unpad. Unpad removes tokens for faster llm eval.
|
|
// In terms of result quality it appears to make no difference, so we'll start with the easier approach given 5D tensors are not supported in ggml yet.
|
|
// Without unpad we have to split the sub-image embeddings into patches of 24 features each and permute them.
|
|
// Once all images are processed to prepended the base_image_features without any changes.
|
|
|
|
// Pytorch reference simplified, modified for ggml compatibility - confirmed identical output in python (for a 2x2 grid image (676x676 scaling))
|
|
/*
|
|
image_feature = image_feature.view(2, 2, 24, 24, 4096)
|
|
image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous()
|
|
image_feature = image_feature.view(2, 24, 2, 24, 4096)
|
|
image_feature = image_feature.flatten(0, 3)
|
|
|
|
// Reshape to 4D tensor by merging the last two dimensions
|
|
image_feature = image_feature.view(2, 2, 24, 24*4096)
|
|
image_feature = image_feature.permute(0, 2, 1, 3).contiguous()
|
|
image_feature = image_feature.view(-1, 4096)
|
|
*/
|
|
|
|
model.ctx = ggml_init(params);
|
|
|
|
struct ggml_tensor * image_features = ggml_new_tensor_3d(model.ctx, GGML_TYPE_F32, clip_n_mmproj_embd(ctx_clip), clip_n_patches(ctx_clip), num_images - 1); // example: 4096 x 576 x 4
|
|
// ggml_tensor_printf(image_features,"image_features",__LINE__,false,false);
|
|
// fill it with the image embeddings, ignoring the base
|
|
for (size_t i = 1; i < num_images; i++) {
|
|
size_t offset = (i-1) * clip_embd_nbytes(ctx_clip);
|
|
memcpy((uint8_t *)(image_features->data) + offset, image_embd_v[i], clip_embd_nbytes(ctx_clip));
|
|
}
|
|
|
|
struct ggml_cgraph * gf = ggml_new_graph(model.ctx);
|
|
size_t size_ele = ggml_type_size(GGML_TYPE_F32);
|
|
|
|
struct ggml_tensor *image_features_patchview = ggml_view_4d(model.ctx, image_features,
|
|
num_patches_per_side * clip_n_mmproj_embd(ctx_clip),
|
|
num_patches_per_side,
|
|
num_patches_width,
|
|
num_patches_height,
|
|
size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip),
|
|
size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip) * num_patches_per_side,
|
|
size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip) * num_patches_per_side * num_patches_width, 0);
|
|
// ggml_tensor_printf(image_features_patchview,"image_features_patchview",__LINE__,false,false);
|
|
struct ggml_tensor *permuted_cont = ggml_cont(model.ctx, ggml_permute(model.ctx, image_features_patchview, 0, 2, 1, 3));
|
|
/**
|
|
At the end of each row we have to add the row_end embeddings, which are the same as the newline embeddings
|
|
image_feature = torch.cat((
|
|
image_feature,
|
|
self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device)
|
|
), dim=-1)
|
|
*
|
|
*/
|
|
|
|
// ggml_tensor_printf(permuted_cont,"permuted_cont",__LINE__,false,false);
|
|
struct ggml_tensor *flatten = ggml_view_2d(model.ctx, permuted_cont, clip_n_mmproj_embd(ctx_clip), num_patches_height * num_patches_width * num_patches_per_side * num_patches_per_side, size_ele * clip_n_mmproj_embd(ctx_clip), 0);
|
|
// ggml_tensor_printf(flatten,"flatten",__LINE__,false,false);
|
|
ggml_build_forward_expand(gf, flatten);
|
|
ggml_graph_compute_with_ctx(model.ctx, gf, 1);
|
|
struct ggml_tensor* result = ggml_graph_node(gf, -1);
|
|
|
|
memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as global context
|
|
// append without newline tokens (default behavior in llava_arch when not using unpad ):
|
|
memcpy(image_embd_out + clip_n_patches(ctx_clip) * clip_n_mmproj_embd(ctx_clip), (float*)result->data, clip_embd_nbytes(ctx_clip) * (num_images-1)); // grid patches
|
|
*n_img_pos_out = static_cast<int>(result->ne[1]+clip_n_patches(ctx_clip));
|
|
|
|
// Debug: Test single segments
|
|
// Current findings: sending base image, sending a segment embedding all works similar to python
|
|
// However, permuted embeddings do not work yet (stride issue?)
|
|
// memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as context
|
|
// memcpy(image_embd_out, (float*)prepared_cont->data, clip_embd_nbytes(ctx_clip)); // main image as context
|
|
// *n_img_pos_out=576;
|
|
|
|
ggml_free(model.ctx);
|
|
return true;
|
|
}
|
|
|
|
static clip_image_f32 * only_v2_5_reshape_by_patch(clip_image_f32 * image, int patch_size) {
|
|
int width = image->nx;
|
|
int height = image->ny;
|
|
int num_patches = (height / patch_size) * (width / patch_size);
|
|
clip_image_f32 * patch = clip_image_f32_init();
|
|
patch->nx = patch_size * num_patches;
|
|
patch->ny = patch_size;
|
|
patch->buf.resize(3 * patch->nx * patch->ny);
|
|
|
|
int patch_index = 0;
|
|
|
|
for (int i = 0; i < height; i += patch_size) {
|
|
for (int j = 0; j < width; j += patch_size) {
|
|
for (int pi = 0; pi < patch_size; ++pi) {
|
|
for (int pj = 0; pj < patch_size; ++pj) {
|
|
int input_index = ((i + pi) * width + (j + pj)) * 3;
|
|
int output_index = (pi * patch_size * num_patches + patch_index * patch_size + pj) * 3;
|
|
patch->buf[output_index] = image->buf[input_index];
|
|
patch->buf[output_index+1] = image->buf[input_index+1];
|
|
patch->buf[output_index+2] = image->buf[input_index+2];
|
|
}
|
|
}
|
|
patch_index++;
|
|
}
|
|
}
|
|
return patch;
|
|
}
|
|
|
|
static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float * image_embd, int * n_img_pos) {
|
|
// std::vector<clip_image_f32*> img_res_v; // format VectN x H x W x RGB (N x 336 x 336 x 3), so interleaved RGB - different to the python implementation which is N x 3 x 336 x 336
|
|
clip_image_f32_batch img_res_v;
|
|
img_res_v.size = 0;
|
|
img_res_v.data = nullptr;
|
|
if (!clip_image_preprocess(ctx_clip, img, &img_res_v)) {
|
|
LOG_ERR("%s: unable to preprocess image\n", __func__);
|
|
delete[] img_res_v.data;
|
|
return false;
|
|
}
|
|
|
|
const int64_t t_img_enc_start_us = ggml_time_us();
|
|
|
|
const char * mm_patch_merge_type = clip_patch_merge_type(ctx_clip);
|
|
|
|
if (clip_is_minicpmv(ctx_clip)) {
|
|
std::vector<float *> image_embd_v;
|
|
image_embd_v.resize(img_res_v.size);
|
|
struct clip_image_size * load_image_size = clip_image_size_init();
|
|
for (size_t i = 0; i < img_res_v.size; i++) {
|
|
const int64_t t_img_enc_step_start_us = ggml_time_us();
|
|
image_embd_v[i] = (float *)malloc(clip_embd_nbytes(ctx_clip));
|
|
int patch_size=14;
|
|
load_image_size->width = img_res_v.data[i].nx;
|
|
load_image_size->height = img_res_v.data[i].ny;
|
|
clip_add_load_image_size(ctx_clip, load_image_size);
|
|
bool encoded = false;
|
|
int has_minicpmv_projector = clip_is_minicpmv(ctx_clip);
|
|
if (has_minicpmv_projector == 2) {
|
|
encoded = clip_image_encode(ctx_clip, n_threads, only_v2_5_reshape_by_patch(&img_res_v.data[i], patch_size), image_embd_v[i]);
|
|
}
|
|
else if (has_minicpmv_projector == 3) {
|
|
encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]);
|
|
}
|
|
if (!encoded) {
|
|
LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size);
|
|
return false;
|
|
}
|
|
const int64_t t_img_enc_steop_batch_us = ggml_time_us();
|
|
LOG_INF("%s: step %d of %d encoded in %8.2f ms\n", __func__, (int)i+1, (int)img_res_v.size, (t_img_enc_steop_batch_us - t_img_enc_step_start_us) / 1000.0);
|
|
}
|
|
const int64_t t_img_enc_batch_us = ggml_time_us();
|
|
LOG_INF("%s: all %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
|
|
|
|
int n_img_pos_out = 0;
|
|
for (size_t i = 0; i < image_embd_v.size(); i++) {
|
|
std::memcpy(image_embd + n_img_pos_out * clip_n_mmproj_embd(ctx_clip), image_embd_v[i], clip_embd_nbytes(ctx_clip));
|
|
n_img_pos_out += clip_n_patches(ctx_clip);
|
|
}
|
|
*n_img_pos = n_img_pos_out;
|
|
for (size_t i = 0; i < image_embd_v.size(); i++) {
|
|
free(image_embd_v[i]);
|
|
}
|
|
image_embd_v.clear();
|
|
load_image_size->width = img->nx;
|
|
load_image_size->height = img->ny;
|
|
clip_add_load_image_size(ctx_clip, load_image_size);
|
|
LOG_INF("%s: load_image_size %d %d\n", __func__, load_image_size->width, load_image_size->height);
|
|
}
|
|
else if (strcmp(mm_patch_merge_type, "spatial_unpad") != 0) {
|
|
// flat / default llava-1.5 type embedding
|
|
*n_img_pos = clip_n_patches(ctx_clip);
|
|
bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[0], image_embd); // image_embd shape is 576 x 4096
|
|
delete[] img_res_v.data;
|
|
if (!encoded) {
|
|
LOG_ERR("Unable to encode image\n");
|
|
|
|
return false;
|
|
}
|
|
}
|
|
else {
|
|
// spatial_unpad llava-1.6 type embedding
|
|
// TODO: CLIP needs batching support - in HF the llm projection is separate after encoding, which might be a solution to quickly get batching working
|
|
std::vector<float *> image_embd_v;
|
|
image_embd_v.resize(img_res_v.size);
|
|
for (size_t i = 0; i < img_res_v.size; i++) {
|
|
image_embd_v[i] = (float *)malloc(clip_embd_nbytes(ctx_clip)); // 576 patches * 4096 embeddings * 4 bytes = 9437184
|
|
const bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]); // image data is in 3x336x336 format and will be converted to 336x336x3 inside
|
|
if (!encoded) {
|
|
LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size);
|
|
return false;
|
|
}
|
|
}
|
|
const int64_t t_img_enc_batch_us = ggml_time_us();
|
|
LOG_INF("%s: %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
|
|
|
|
const int32_t * image_grid = clip_image_grid(ctx_clip);
|
|
|
|
std::vector<std::pair<int, int>> grid_pinpoints;
|
|
for (int i = 0; i < 32 && image_grid[i] != 0; i += 2) {
|
|
grid_pinpoints.push_back({image_grid[i], image_grid[i+1]});
|
|
}
|
|
|
|
// free all img_res_v - not needed anymore
|
|
delete[] img_res_v.data;
|
|
img_res_v.size = 0;
|
|
img_res_v.data = nullptr;
|
|
|
|
const int32_t image_size = clip_image_size(ctx_clip);
|
|
|
|
struct clip_image_grid_shape grid_shape = get_anyres_image_grid_shape({img->nx,img->ny}, grid_pinpoints, image_size);
|
|
|
|
int n_img_pos_out;
|
|
clip_llava_handle_patches(ctx_clip, image_embd_v, grid_shape, image_embd, &n_img_pos_out);
|
|
*n_img_pos = n_img_pos_out;
|
|
|
|
for (size_t i = 0; i < image_embd_v.size(); i++) {
|
|
free(image_embd_v[i]);
|
|
}
|
|
image_embd_v.clear();
|
|
|
|
// debug image/segment/normalization content:
|
|
// clip_image_u8 * tmp = clip_image_u8_init();
|
|
// clip_image_convert_f32_to_u8(*image_feature, *tmp);
|
|
// clip_image_save_to_bmp(*tmp, "image_feature.bmp");
|
|
}
|
|
|
|
LOG_INF("%s: image embedding created: %d tokens\n", __func__, *n_img_pos);
|
|
|
|
const int64_t t_img_enc_end_us = ggml_time_us();
|
|
float t_img_enc_ms = (t_img_enc_end_us - t_img_enc_start_us) / 1000.0;
|
|
|
|
LOG_INF("\n%s: image encoded in %8.2f ms by CLIP (%8.2f ms per image patch)\n", __func__, t_img_enc_ms, t_img_enc_ms / *n_img_pos);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx * ctx_clip) {
|
|
// make sure that the correct mmproj was used, i.e., compare apples to apples
|
|
int n_llama_embd = llama_n_embd(llama_get_model(ctx_llama));
|
|
auto n_image_embd = clip_n_mmproj_embd(ctx_clip);
|
|
if (n_image_embd != n_llama_embd) {
|
|
LOG_ERR("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_image_embd, n_llama_embd);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) {
|
|
int num_max_patches = 6;
|
|
if (clip_is_minicpmv(ctx_clip)) {
|
|
num_max_patches = 10;
|
|
}
|
|
float * image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*num_max_patches); // TODO: base on gridsize/llava model
|
|
if (!image_embd) {
|
|
LOG_ERR("Unable to allocate memory for image embeddings\n");
|
|
return false;
|
|
}
|
|
|
|
int n_img_pos;
|
|
if (!encode_image_with_clip(ctx_clip, n_threads, img, image_embd, &n_img_pos)) {
|
|
LOG_ERR("%s: cannot encode image, aborting\n", __func__);
|
|
free(image_embd);
|
|
return false;
|
|
}
|
|
*image_embd_out = image_embd;
|
|
*n_img_pos_out = n_img_pos;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_embed * image_embed, int n_batch, int * n_past) {
|
|
int n_embd = llama_n_embd(llama_get_model(ctx_llama));
|
|
|
|
for (int i = 0; i < image_embed->n_image_pos; i += n_batch) {
|
|
int n_eval = image_embed->n_image_pos - i;
|
|
if (n_eval > n_batch) {
|
|
n_eval = n_batch;
|
|
}
|
|
llama_batch batch = {int32_t(n_eval), nullptr, (image_embed->embed+i*n_embd), nullptr, nullptr, nullptr, nullptr, *n_past, 1, 0, };
|
|
if (llama_decode(ctx_llama, batch)) {
|
|
LOG_ERR("%s : failed to eval\n", __func__);
|
|
return false;
|
|
}
|
|
*n_past += n_eval;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * ctx_clip, int n_threads, const unsigned char * image_bytes, int image_bytes_length) {
|
|
clip_image_u8 * img = clip_image_u8_init();
|
|
if (!clip_image_load_from_bytes(image_bytes, image_bytes_length, img)) {
|
|
clip_image_u8_free(img);
|
|
LOG_ERR("%s: can't load image from bytes, is it a valid image?", __func__);
|
|
return NULL;
|
|
}
|
|
|
|
float* image_embed = NULL;
|
|
int n_image_pos = 0;
|
|
bool image_embed_result = llava_image_embed_make_with_clip_img(ctx_clip, n_threads, img, &image_embed, &n_image_pos);
|
|
if (!image_embed_result) {
|
|
clip_image_u8_free(img);
|
|
LOG_ERR("%s: coulnd't embed the image\n", __func__);
|
|
return NULL;
|
|
}
|
|
|
|
clip_image_u8_free(img);
|
|
auto result = (llava_image_embed*)malloc(sizeof(llava_image_embed));
|
|
result->embed = image_embed;
|
|
result->n_image_pos = n_image_pos;
|
|
return result;
|
|
}
|
|
|
|
static bool load_file_to_bytes(const char* path, unsigned char** bytesOut, long *sizeOut) {
|
|
auto file = fopen(path, "rb");
|
|
if (file == NULL) {
|
|
LOG_ERR("%s: can't read file %s\n", __func__, path);
|
|
return false;
|
|
}
|
|
|
|
fseek(file, 0, SEEK_END);
|
|
auto fileSize = ftell(file);
|
|
fseek(file, 0, SEEK_SET);
|
|
|
|
auto buffer = (unsigned char *)malloc(fileSize); // Allocate memory to hold the file data
|
|
if (buffer == NULL) {
|
|
LOG_ERR("%s: failed to alloc %ld bytes for file %s\n", __func__, fileSize, path);
|
|
perror("Memory allocation error");
|
|
fclose(file);
|
|
return false;
|
|
}
|
|
errno = 0;
|
|
size_t ret = fread(buffer, 1, fileSize, file); // Read the file into the buffer
|
|
if (ferror(file)) {
|
|
die_fmt("read error: %s", strerror(errno));
|
|
}
|
|
if (ret != (size_t) fileSize) {
|
|
die("unexpectedly reached end of file");
|
|
}
|
|
fclose(file); // Close the file
|
|
|
|
*bytesOut = buffer;
|
|
*sizeOut = fileSize;
|
|
return true;
|
|
}
|
|
|
|
struct llava_image_embed * llava_image_embed_make_with_filename(struct clip_ctx * ctx_clip, int n_threads, const char * image_path) {
|
|
unsigned char* image_bytes;
|
|
long image_bytes_length;
|
|
auto loaded = load_file_to_bytes(image_path, &image_bytes, &image_bytes_length);
|
|
if (!loaded) {
|
|
LOG_ERR("%s: failed to load %s\n", __func__, image_path);
|
|
return NULL;
|
|
}
|
|
|
|
llava_image_embed *embed = llava_image_embed_make_with_bytes(ctx_clip, n_threads, image_bytes, image_bytes_length);
|
|
free(image_bytes);
|
|
|
|
return embed;
|
|
}
|
|
|
|
void llava_image_embed_free(struct llava_image_embed * embed) {
|
|
free(embed->embed);
|
|
free(embed);
|
|
}
|