No description
Find a file
2023-08-27 13:26:30 -04:00
api default host to 127.0.0.1, fixes #424 2023-08-26 11:59:28 -07:00
app app: package ggml-metal.metal from correct directory 2023-08-17 23:55:45 -04:00
cmd delete all models (not just 1st) in ollama rm (#415) 2023-08-26 00:47:56 -07:00
docs update orca to orca-mini 2023-08-27 13:26:30 -04:00
examples Merge pull request #303 from jmorganca/matt/dockerit 2023-08-16 08:04:34 -07:00
format Generate private/public keypair for use w/ auth (#324) 2023-08-11 10:58:23 -07:00
llm Merge pull request #420 from jmorganca/mxyng/34b-mem-check 2023-08-26 14:15:52 -07:00
parser Merge pull request #290 from jmorganca/add-adapter-layers 2023-08-10 17:23:01 -07:00
progressbar vendor in progress bar and change to bytes instead of bibytes (#130) 2023-07-19 17:24:03 -07:00
scripts build release mode 2023-08-22 09:52:43 -07:00
server set default template 2023-08-26 12:20:48 -07:00
vector embed text document in modelfile 2023-08-08 11:27:17 -04:00
version add version 2023-08-22 09:40:58 -07:00
.dockerignore add .env to .dockerignore 2023-08-21 09:32:02 -07:00
.gitignore add ggml-metal.metal to .gitignore 2023-07-28 11:04:21 -04:00
.prettierrc.json move .prettierrc.json to root 2023-07-02 17:34:46 -04:00
Dockerfile fix compilation issue in Dockerfile, remove from README.md until ready 2023-07-11 19:51:08 -07:00
go.mod check memory requirements before loading 2023-08-10 09:23:11 -07:00
go.sum check memory requirements before loading 2023-08-10 09:23:11 -07:00
LICENSE proto -> ollama 2023-06-26 15:57:13 -04:00
main.go set non-zero error code on error 2023-08-14 14:09:58 -07:00
README.md update orca to orca-mini 2023-08-27 13:26:30 -04:00

logo

Ollama

Discord

Run, create, and share large language models (LLMs).

Note: Ollama is in early preview. Please report any issues you find.

Download

Quickstart

To run and chat with Llama 2, the new model by Meta:

ollama run llama2

Model library

Ollama supports a list of open-source models available on ollama.ai/library

Here are some example open-source models that can be downloaded:

Model Parameters Size Download
Llama2 7B 3.8GB ollama pull llama2
Llama2 13B 13B 7.3GB ollama pull llama2:13b
Llama2 70B 70B 39GB ollama pull llama2:70b
Llama2 Uncensored 7B 3.8GB ollama pull llama2-uncensored
Code Llama 7B 3.8GB ollama pull codellama
Orca Mini 3B 1.9GB ollama pull orca-mini
Vicuna 7B 3.8GB ollama pull vicuna
Nous-Hermes 7B 3.8GB ollama pull nous-hermes
Nous-Hermes 13B 13B 7.3GB ollama pull nous-hermes:13b
Wizard Vicuna Uncensored 13B 7.3GB ollama pull wizard-vicuna

Note: You should have at least 8 GB of RAM to run the 3B models, 16 GB to run the 7B models, and 32 GB to run the 13B models.

Examples

Run a model

ollama run llama2
>>> hi
Hello! How can I help you today?

For multiline input, you can wrap text with """:

>>> """Hello,
... world!
... """
I'm a basic program that prints the famous "Hello, world!" message to the console.

Create a custom model

Pull a base model:

ollama pull llama2

To update a model to the latest version, run ollama pull llama2 again. The model will be updated (if necessary).

Create a Modelfile:

FROM llama2

# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1

# set the system prompt
SYSTEM """
You are Mario from Super Mario Bros. Answer as Mario, the assistant, only.
"""

Next, create and run the model:

ollama create mario -f ./Modelfile
ollama run mario
>>> hi
Hello! It's your friend Mario.

For more examples, see the examples directory. For more information on creating a Modelfile, see the Modelfile documentation.

Pull a model from the registry

ollama pull orca-mini

Listing local models

ollama list

Model packages

Overview

Ollama bundles model weights, configuration, and data into a single package, defined by a Modelfile.

logo

Building

You will also need a C/C++ compiler such as GCC for MacOS and Linux or Mingw-w64 GCC for Windows.

go build .

To run it start the server:

./ollama serve &

Finally, run a model!

./ollama run llama2

REST API

See the API documentation for all endpoints.

Ollama has an API for running and managing models. For example to generate text from a model:

curl -X POST http://localhost:11434/api/generate -d '{
  "model": "llama2",
  "prompt":"Why is the sky blue?"
}'

Tools using Ollama