ollama/llm/gguf.go
2024-07-16 09:39:31 -07:00

698 lines
14 KiB
Go

package llm
import (
"bytes"
"encoding/binary"
"encoding/json"
"fmt"
"io"
"strings"
)
type containerGGUF struct {
ByteOrder binary.ByteOrder
Version uint32
V1 struct {
NumTensor uint32
NumKV uint32
}
V2 struct {
NumTensor uint64
NumKV uint64
}
V3 struct {
NumTensor uint64
NumKV uint64
}
maxArraySize int
}
func (c *containerGGUF) canCollectArray(size int) bool {
return c.maxArraySize < 0 || size <= c.maxArraySize
}
func (c *containerGGUF) Name() string {
return "gguf"
}
func (c *containerGGUF) Decode(rs io.ReadSeeker) (model, error) {
if err := binary.Read(rs, c.ByteOrder, &c.Version); err != nil {
return nil, err
}
var err error
switch c.Version {
case 1:
err = binary.Read(rs, c.ByteOrder, &c.V1)
case 2:
err = binary.Read(rs, c.ByteOrder, &c.V2)
default:
err = binary.Read(rs, c.ByteOrder, &c.V3)
}
if err != nil {
return nil, err
}
model := newGGUF(c)
if err := model.Decode(rs); err != nil {
return nil, err
}
return model, nil
}
const (
ggufTypeUint8 uint32 = iota
ggufTypeInt8
ggufTypeUint16
ggufTypeInt16
ggufTypeUint32
ggufTypeInt32
ggufTypeFloat32
ggufTypeBool
ggufTypeString
ggufTypeArray
ggufTypeUint64
ggufTypeInt64
ggufTypeFloat64
)
type gguf struct {
*containerGGUF
kv KV
tensors []*Tensor
parameters uint64
scratch [16 << 10]byte
}
func newGGUF(container *containerGGUF) *gguf {
return &gguf{
containerGGUF: container,
kv: make(KV),
}
}
func NewGGUFV3(bo binary.ByteOrder) *gguf {
return newGGUF(&containerGGUF{ByteOrder: bo, Version: 3})
}
func (llm *gguf) KV() KV {
return llm.kv
}
func (llm *gguf) Tensors() Tensors {
return llm.tensors
}
func (llm *gguf) numTensor() uint64 {
switch llm.Version {
case 1:
return uint64(llm.V1.NumTensor)
case 2:
return llm.V2.NumTensor
default:
return llm.V3.NumTensor
}
}
func (llm *gguf) numKV() uint64 {
switch llm.Version {
case 1:
return uint64(llm.V1.NumKV)
case 2:
return llm.V2.NumKV
default:
return llm.V3.NumKV
}
}
func (llm *gguf) Decode(rs io.ReadSeeker) error {
// decode key-values
for i := 0; uint64(i) < llm.numKV(); i++ {
k, err := readGGUFString(llm, rs)
if err != nil {
return err
}
t, err := readGGUF[uint32](llm, rs)
if err != nil {
return err
}
var v any
switch t {
case ggufTypeUint8:
v, err = readGGUF[uint8](llm, rs)
case ggufTypeInt8:
v, err = readGGUF[int8](llm, rs)
case ggufTypeUint16:
v, err = readGGUF[uint16](llm, rs)
case ggufTypeInt16:
v, err = readGGUF[int16](llm, rs)
case ggufTypeUint32:
v, err = readGGUF[uint32](llm, rs)
case ggufTypeInt32:
v, err = readGGUF[int32](llm, rs)
case ggufTypeUint64:
v, err = readGGUF[uint64](llm, rs)
case ggufTypeInt64:
v, err = readGGUF[int64](llm, rs)
case ggufTypeFloat32:
v, err = readGGUF[float32](llm, rs)
case ggufTypeFloat64:
v, err = readGGUF[float64](llm, rs)
case ggufTypeBool:
v, err = readGGUF[bool](llm, rs)
case ggufTypeString:
v, err = readGGUFString(llm, rs)
case ggufTypeArray:
v, err = readGGUFArray(llm, rs)
default:
return fmt.Errorf("invalid type: %d", t)
}
if err != nil {
return err
}
llm.kv[k] = v
}
// decode tensors
for range llm.numTensor() {
name, err := readGGUFString(llm, rs)
if err != nil {
return fmt.Errorf("failed to read tensor name: %w", err)
}
// dims is the number of dimensions in the tensor
dims, err := readGGUF[uint32](llm, rs)
if err != nil {
return fmt.Errorf("failed to read tensor dimensions: %w", err)
}
shape := [4]uint64{1, 1, 1, 1}
for i := 0; uint32(i) < dims; i++ {
shape[i], err = readGGUF[uint64](llm, rs)
if err != nil {
return fmt.Errorf("failed to read tensor shape: %w", err)
}
}
kind, err := readGGUF[uint32](llm, rs)
if err != nil {
return fmt.Errorf("failed to read tensor kind: %w", err)
}
offset, err := readGGUF[uint64](llm, rs)
if err != nil {
return fmt.Errorf("failed to read tensor offset: %w", err)
}
tensor := Tensor{
Name: name,
Kind: kind,
Offset: offset,
Shape: shape[:],
}
llm.tensors = append(llm.tensors, &tensor)
llm.parameters += tensor.parameters()
}
// patch KV with parameter count
llm.kv["general.parameter_count"] = llm.parameters
alignment, ok := llm.kv["general.alignment"].(uint32)
if !ok {
alignment = 32
}
for _, tensor := range llm.tensors {
offset, err := rs.Seek(0, io.SeekCurrent)
if err != nil {
return fmt.Errorf("failed to get current offset: %w", err)
}
padding := llm.padding(offset, int64(alignment))
if _, err := rs.Seek(padding, io.SeekCurrent); err != nil {
return fmt.Errorf("failed to seek to init padding: %w", err)
}
if _, err := rs.Seek(int64(tensor.Size()), io.SeekCurrent); err != nil {
return fmt.Errorf("failed to seek to tensor: %w", err)
}
}
return nil
}
func readGGUF[T any](llm *gguf, r io.Reader) (T, error) {
var t T
err := binary.Read(r, llm.ByteOrder, &t)
return t, err
}
func writeGGUF[V any](llm *gguf, w io.Writer, t uint32, v V) error {
if err := binary.Write(w, llm.ByteOrder, t); err != nil {
return err
}
return binary.Write(w, llm.ByteOrder, v)
}
func readGGUFV1String(llm *gguf, r io.Reader) (string, error) {
var length uint64
if err := binary.Read(r, llm.ByteOrder, &length); err != nil {
return "", err
}
var b bytes.Buffer
if _, err := io.CopyN(&b, r, int64(length)); err != nil {
return "", err
}
// gguf v1 strings are null-terminated
b.Truncate(b.Len() - 1)
return b.String(), nil
}
func discardGGUFString(llm *gguf, r io.Reader) error {
buf := llm.scratch[:8]
_, err := io.ReadFull(r, buf)
if err != nil {
return err
}
size := int(llm.ByteOrder.Uint64(buf))
for size > 0 {
n, err := r.Read(llm.scratch[:min(size, cap(llm.scratch))])
if err != nil {
return err
}
size -= n
}
return nil
}
func readGGUFString(llm *gguf, r io.Reader) (string, error) {
if llm.Version == 1 {
return readGGUFV1String(llm, r)
}
buf := llm.scratch[:8]
_, err := io.ReadFull(r, buf)
if err != nil {
return "", err
}
length := int(llm.ByteOrder.Uint64(buf))
if length > len(llm.scratch) {
buf = make([]byte, length)
} else {
buf = llm.scratch[:length]
}
clear(buf)
_, err = io.ReadFull(r, buf)
if err != nil {
return "", err
}
return string(buf), nil
}
func writeGGUFString(llm *gguf, w io.Writer, s string) error {
if err := binary.Write(w, llm.ByteOrder, ggufTypeString); err != nil {
return err
}
if err := binary.Write(w, llm.ByteOrder, uint64(len(s))); err != nil {
return err
}
_, err := io.Copy(w, strings.NewReader(s))
return err
}
type array struct {
size int
values []any
}
func (a *array) MarshalJSON() ([]byte, error) {
return json.Marshal(a.values)
}
func readGGUFV1Array(llm *gguf, r io.Reader) (*array, error) {
t, err := readGGUF[uint32](llm, r)
if err != nil {
return nil, err
}
n, err := readGGUF[uint32](llm, r)
if err != nil {
return nil, err
}
a := &array{size: int(n)}
if llm.canCollectArray(int(n)) {
a.values = make([]any, 0, int(n))
}
for i := range n {
var e any
switch t {
case ggufTypeUint8:
e, err = readGGUF[uint8](llm, r)
case ggufTypeInt8:
e, err = readGGUF[int8](llm, r)
case ggufTypeUint16:
e, err = readGGUF[uint16](llm, r)
case ggufTypeInt16:
e, err = readGGUF[int16](llm, r)
case ggufTypeUint32:
e, err = readGGUF[uint32](llm, r)
case ggufTypeInt32:
e, err = readGGUF[int32](llm, r)
case ggufTypeUint64:
e, err = readGGUF[uint64](llm, r)
case ggufTypeInt64:
e, err = readGGUF[int64](llm, r)
case ggufTypeFloat32:
e, err = readGGUF[float32](llm, r)
case ggufTypeFloat64:
e, err = readGGUF[float64](llm, r)
case ggufTypeBool:
e, err = readGGUF[bool](llm, r)
case ggufTypeString:
e, err = readGGUFV1String(llm, r)
default:
return nil, fmt.Errorf("invalid array type: %d", t)
}
if err != nil {
return nil, err
}
if a.values != nil {
a.values[i] = e
}
}
return a, nil
}
func readGGUFArray(llm *gguf, r io.Reader) (*array, error) {
if llm.Version == 1 {
return readGGUFV1Array(llm, r)
}
t, err := readGGUF[uint32](llm, r)
if err != nil {
return nil, err
}
n, err := readGGUF[uint64](llm, r)
if err != nil {
return nil, err
}
a := &array{size: int(n)}
if llm.canCollectArray(int(n)) {
a.values = make([]any, int(n))
}
for i := range n {
var e any
switch t {
case ggufTypeUint8:
e, err = readGGUF[uint8](llm, r)
case ggufTypeInt8:
e, err = readGGUF[int8](llm, r)
case ggufTypeUint16:
e, err = readGGUF[uint16](llm, r)
case ggufTypeInt16:
e, err = readGGUF[int16](llm, r)
case ggufTypeUint32:
e, err = readGGUF[uint32](llm, r)
case ggufTypeInt32:
e, err = readGGUF[int32](llm, r)
case ggufTypeUint64:
e, err = readGGUF[uint64](llm, r)
case ggufTypeInt64:
e, err = readGGUF[int64](llm, r)
case ggufTypeFloat32:
e, err = readGGUF[float32](llm, r)
case ggufTypeFloat64:
e, err = readGGUF[float64](llm, r)
case ggufTypeBool:
e, err = readGGUF[bool](llm, r)
case ggufTypeString:
if a.values != nil {
e, err = readGGUFString(llm, r)
} else {
err = discardGGUFString(llm, r)
}
default:
return nil, fmt.Errorf("invalid array type: %d", t)
}
if err != nil {
return nil, err
}
if a.values != nil {
a.values[i] = e
}
}
return a, nil
}
func writeGGUFArray[S ~[]E, E any](llm *gguf, w io.Writer, t uint32, s S) error {
if err := binary.Write(w, llm.ByteOrder, ggufTypeArray); err != nil {
return err
}
if err := binary.Write(w, llm.ByteOrder, t); err != nil {
return err
}
if err := binary.Write(w, llm.ByteOrder, uint64(len(s))); err != nil {
return err
}
for _, e := range s {
if err := binary.Write(w, llm.ByteOrder, e); err != nil {
return err
}
}
return nil
}
var ggufKVOrder = map[string][]string{
"llama": {
"general.architecture",
"general.name",
"llama.vocab_size",
"llama.context_length",
"llama.embedding_length",
"llama.block_count",
"llama.feed_forward_length",
"llama.attention.head_count",
"llama.attention.head_count_kv",
"llama.attention.layer_norm_rms_epsilon",
"llama.rope.freq_base",
"llama.rope.dimension_count",
"llama.expert_count",
"llama.expert_used_count",
"gemma.context_length",
"gemma.embedding_length",
"gemma.block_count",
"gemma.feed_forward_length",
"gemma.attention.head_count",
"gemma.attention.head_count_kv",
"gemma.attention.layer_norm_rms_epsilon",
"gemma.attention.key_length",
"gemma.attention.value_length",
"general.file_type",
"tokenizer.ggml.pre",
"tokenizer.ggml.model",
"tokenizer.ggml.tokens",
"tokenizer.ggml.scores",
"tokenizer.ggml.merges",
"tokenizer.ggml.token_type",
"tokenizer.ggml.bos_token_id",
"tokenizer.ggml.eos_token_id",
"tokenizer.ggml.unknown_token_id",
"tokenizer.ggml.padding_token_id",
"tokenizer.ggml.add_bos_token",
"tokenizer.ggml.add_eos_token",
"tokenizer.chat_template",
"bert.pooling_type",
},
}
func (llm *gguf) Encode(ws io.WriteSeeker, kv KV, tensors []Tensor) error {
switch llm.Version {
case 3:
llm.V3.NumTensor = uint64(len(tensors))
llm.V3.NumKV = uint64(len(kv))
default:
return fmt.Errorf("not implemented: ggufv%d", llm.Version)
}
if err := binary.Write(ws, llm.ByteOrder, []byte("GGUF")); err != nil {
return err
}
if err := binary.Write(ws, llm.ByteOrder, llm.Version); err != nil {
return err
}
if err := binary.Write(ws, llm.ByteOrder, llm.numTensor()); err != nil {
return err
}
if err := binary.Write(ws, llm.ByteOrder, llm.numKV()); err != nil {
return err
}
kvCheck := make(map[string]bool)
for k := range kv {
kvCheck[k] = false
}
for _, k := range ggufKVOrder["llama"] {
v, ok := kv[k]
if !ok {
continue
}
kvCheck[k] = true
if err := binary.Write(ws, llm.ByteOrder, uint64(len(k))); err != nil {
return err
}
if err := binary.Write(ws, llm.ByteOrder, []byte(k)); err != nil {
return err
}
var err error
switch v := v.(type) {
case uint32:
err = writeGGUF(llm, ws, ggufTypeUint32, v)
case float32:
err = writeGGUF(llm, ws, ggufTypeFloat32, v)
case bool:
err = writeGGUF(llm, ws, ggufTypeBool, v)
case string:
err = writeGGUFString(llm, ws, v)
case []int32:
err = writeGGUFArray(llm, ws, ggufTypeInt32, v)
case []uint32:
err = writeGGUFArray(llm, ws, ggufTypeUint32, v)
case []float32:
err = writeGGUFArray(llm, ws, ggufTypeFloat32, v)
case []string:
if err := binary.Write(ws, llm.ByteOrder, ggufTypeArray); err != nil {
return err
}
if err := binary.Write(ws, llm.ByteOrder, ggufTypeString); err != nil {
return err
}
if err := binary.Write(ws, llm.ByteOrder, uint64(len(v))); err != nil {
return err
}
for _, e := range v {
if err := binary.Write(ws, llm.ByteOrder, uint64(len(e))); err != nil {
return err
}
if err := binary.Write(ws, llm.ByteOrder, []byte(e)); err != nil {
return err
}
}
default:
return fmt.Errorf("improper type for '%s'", k)
}
if err != nil {
return err
}
}
for k, v := range kvCheck {
if !v {
return fmt.Errorf("Didn't know how to write kv %s", k)
}
}
for _, tensor := range tensors {
if err := binary.Write(ws, llm.ByteOrder, uint64(len(tensor.Name))); err != nil {
return err
}
if err := binary.Write(ws, llm.ByteOrder, []byte(tensor.Name)); err != nil {
return err
}
var dims int
for cnt := range len(tensor.Shape) {
if tensor.Shape[cnt] > 0 {
dims++
}
}
if err := binary.Write(ws, llm.ByteOrder, uint32(dims)); err != nil {
return err
}
for i := range dims {
if err := binary.Write(ws, llm.ByteOrder, tensor.Shape[dims-1-i]); err != nil {
return err
}
}
if err := binary.Write(ws, llm.ByteOrder, tensor.Kind); err != nil {
return err
}
if err := binary.Write(ws, llm.ByteOrder, tensor.Offset); err != nil {
return err
}
}
var alignment int64 = 32
for _, tensor := range tensors {
offset, err := ws.Seek(0, io.SeekCurrent)
if err != nil {
return err
}
padding := llm.padding(offset, alignment)
if err := binary.Write(ws, llm.ByteOrder, bytes.Repeat([]byte{0}, int(padding))); err != nil {
return err
}
if _, err := tensor.WriteTo(ws); err != nil {
return err
}
}
return nil
}
func (gguf) padding(offset, align int64) int64 {
return (align - offset%align) % align
}