ollama/server/model.go
2024-07-16 11:39:34 -07:00

384 lines
8.5 KiB
Go

package server
import (
"archive/zip"
"bytes"
"context"
"encoding/json"
"errors"
"fmt"
"io"
"log/slog"
"net/http"
"os"
"path/filepath"
"slices"
"strings"
"text/template/parse"
"github.com/google/uuid"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/convert"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/template"
"github.com/ollama/ollama/types/model"
)
var intermediateBlobs map[string]string = make(map[string]string)
type layerGGML struct {
*Layer
*llm.GGML
}
func parseFromModel(ctx context.Context, name model.Name, fn func(api.ProgressResponse)) (layers []*layerGGML, err error) {
m, err := ParseNamedManifest(name)
switch {
case errors.Is(err, os.ErrNotExist):
if err := PullModel(ctx, name.String(), &registryOptions{}, fn); err != nil {
return nil, err
}
m, err = ParseNamedManifest(name)
if err != nil {
return nil, err
}
case err != nil:
return nil, err
}
for _, layer := range m.Layers {
layer, err := NewLayerFromLayer(layer.Digest, layer.MediaType, name.DisplayShortest())
if err != nil {
return nil, err
}
switch layer.MediaType {
case "application/vnd.ollama.image.model",
"application/vnd.ollama.image.projector",
"application/vnd.ollama.image.adapter":
blobpath, err := GetBlobsPath(layer.Digest)
if err != nil {
return nil, err
}
blob, err := os.Open(blobpath)
if err != nil {
return nil, err
}
defer blob.Close()
ggml, _, err := llm.DecodeGGML(blob, 0)
if err != nil {
return nil, err
}
layers = append(layers, &layerGGML{layer, ggml})
default:
layers = append(layers, &layerGGML{layer, nil})
}
}
return layers, nil
}
func extractFromZipFile(p string, file *os.File, fn func(api.ProgressResponse)) error {
stat, err := file.Stat()
if err != nil {
return err
}
r, err := zip.NewReader(file, stat.Size())
if err != nil {
return err
}
fn(api.ProgressResponse{Status: "unpacking model metadata"})
for _, f := range r.File {
if !filepath.IsLocal(f.Name) {
return fmt.Errorf("%w: %s", zip.ErrInsecurePath, f.Name)
}
n := filepath.Join(p, f.Name)
if err := os.MkdirAll(filepath.Dir(n), 0o750); err != nil {
return err
}
// TODO(mxyng): this should not write out all files to disk
outfile, err := os.Create(n)
if err != nil {
return err
}
defer outfile.Close()
infile, err := f.Open()
if err != nil {
return err
}
defer infile.Close()
if _, err = io.Copy(outfile, infile); err != nil {
return err
}
if err := outfile.Close(); err != nil {
return err
}
if err := infile.Close(); err != nil {
return err
}
}
return nil
}
func parseFromZipFile(_ context.Context, file *os.File, digest string, fn func(api.ProgressResponse)) (layers []*layerGGML, err error) {
tempDir, err := os.MkdirTemp(filepath.Dir(file.Name()), "")
if err != nil {
return nil, err
}
defer os.RemoveAll(tempDir)
if err := extractFromZipFile(tempDir, file, fn); err != nil {
return nil, err
}
mf, err := convert.GetModelFormat(tempDir)
if err != nil {
return nil, err
}
params, err := mf.GetParams(tempDir)
if err != nil {
return nil, err
}
mArch, err := mf.GetModelArch("", tempDir, params)
if err != nil {
return nil, err
}
fn(api.ProgressResponse{Status: "processing tensors"})
if err := mArch.GetTensors(); err != nil {
return nil, err
}
if err := mArch.LoadVocab(); err != nil {
return nil, err
}
fn(api.ProgressResponse{Status: "converting model"})
// TODO(mxyng): this should write directly into a layer
// e.g. NewLayer(arch.Reader(), "application/vnd.ollama.image.model")
temp, err := os.CreateTemp(tempDir, "fp16")
if err != nil {
return nil, err
}
defer temp.Close()
defer os.Remove(temp.Name())
if err = mArch.WriteGGUF(temp); err != nil {
return nil, err
}
if _, err := temp.Seek(0, io.SeekStart); err != nil {
return nil, err
}
layer, err := NewLayer(temp, "application/vnd.ollama.image.model")
if err != nil {
return nil, err
}
bin, err := layer.Open()
if err != nil {
return nil, err
}
defer bin.Close()
ggml, _, err := llm.DecodeGGML(bin, 0)
if err != nil {
return nil, err
}
layers = append(layers, &layerGGML{layer, ggml})
intermediateBlobs[digest] = layer.Digest
return detectChatTemplate(layers)
}
func parseFromFile(ctx context.Context, file *os.File, digest string, fn func(api.ProgressResponse)) (layers []*layerGGML, err error) {
sr := io.NewSectionReader(file, 0, 512)
contentType, err := detectContentType(sr)
if err != nil {
return nil, err
}
switch contentType {
case "gguf", "ggla":
// noop
case "application/zip":
return parseFromZipFile(ctx, file, digest, fn)
default:
return nil, fmt.Errorf("unsupported content type: %s", contentType)
}
stat, err := file.Stat()
if err != nil {
return nil, err
}
var offset int64
for offset < stat.Size() {
ggml, n, err := llm.DecodeGGML(file, 0)
if errors.Is(err, io.EOF) {
break
} else if err != nil {
return nil, err
}
mediatype := "application/vnd.ollama.image.model"
if ggml.Name() == "ggla" {
mediatype = "application/vnd.ollama.image.adapter"
} else if ggml.KV().Architecture() == "clip" {
mediatype = "application/vnd.ollama.image.projector"
}
layer, err := NewLayer(io.NewSectionReader(file, offset, n), mediatype)
if err != nil {
return nil, err
}
layers = append(layers, &layerGGML{layer, ggml})
offset = n
}
return detectChatTemplate(layers)
}
func detectChatTemplate(layers []*layerGGML) ([]*layerGGML, error) {
for _, layer := range layers {
if s := layer.GGML.KV().ChatTemplate(); s != "" {
if t, err := template.Named(s); err != nil {
slog.Debug("template detection", "error", err)
} else {
tmpl, err := NewLayer(t.Reader(), "application/vnd.ollama.image.template")
if err != nil {
return nil, err
}
tmpl.status = fmt.Sprintf("using autodetected template %s", t.Name)
layers = append(layers, &layerGGML{tmpl, nil})
}
}
}
return layers, nil
}
func detectContentType(r io.Reader) (string, error) {
var b bytes.Buffer
if _, err := io.Copy(&b, r); err != nil {
return "", err
}
if contentType := llm.DetectGGMLType(b.Bytes()); contentType != "" {
return contentType, nil
}
if contentType := http.DetectContentType(b.Bytes()); contentType != "application/octet-stream" {
return contentType, nil
}
return "unknown", nil
}
// parseToolCalls attempts to parse a JSON string into a slice of ToolCalls.
// mxyng: this only really works if the input contains tool calls in some JSON format
func (m *Model) parseToolCalls(s string) ([]api.ToolCall, bool) {
// create a subtree from the node that ranges over .ToolCalls
tmpl := m.Template.Subtree(func(n parse.Node) bool {
if t, ok := n.(*parse.RangeNode); ok {
return slices.Contains(template.Identifiers(t.Pipe), "ToolCalls")
}
return false
})
if tmpl == nil {
return nil, false
}
var b bytes.Buffer
if err := tmpl.Execute(&b, map[string][]map[string]any{
"ToolCalls": {
{
"Function": map[string]any{
"Name": "@@name@@",
"Arguments": "@@arguments@@",
},
},
},
}); err != nil {
return nil, false
}
var kv map[string]string
// execute the subtree with placeholders to identify the keys
// trim any commands that might exist in the template
if err := json.Unmarshal(bytes.TrimSuffix(b.Bytes(), []byte(",")), &kv); err != nil {
return nil, false
}
// find the keys that correspond to the name and arguments fields
var name, arguments string
for k, v := range kv {
switch v {
case "@@name@@":
name = k
case "@@arguments@@":
arguments = k
}
}
var objs []map[string]any
for offset := 0; offset < len(s); {
if err := json.NewDecoder(strings.NewReader(s[offset:])).Decode(&objs); errors.Is(err, io.EOF) {
break
} else if syntax := &(json.SyntaxError{}); errors.As(err, &syntax) {
// skip over any syntax errors
offset += int(syntax.Offset)
} else if unmarshalType := &(json.UnmarshalTypeError{}); errors.As(err, &unmarshalType) {
// skip over any unmarshalable types
offset += int(unmarshalType.Offset)
} else if err != nil {
return nil, false
} else {
// break when an object is decoded
break
}
}
var toolCalls []api.ToolCall
for _, kv := range objs {
call := api.ToolCall{
ID: uuid.New().String(),
Type: "function",
}
for k, v := range kv {
switch k {
case name:
call.Function.Name = v.(string)
case arguments:
call.Function.Arguments = v.(map[string]any)
}
}
toolCalls = append(toolCalls, call)
}
return toolCalls, len(toolCalls) > 0
}