ollama/convert/convert_phi3.go
2024-08-23 11:29:56 -07:00

123 lines
3.7 KiB
Go

package convert
import (
"cmp"
"encoding/binary"
"io"
"math"
"strings"
"sync"
"github.com/ollama/ollama/llm"
)
type phi3Model struct {
ModelParameters
NumHiddenLayers uint32 `json:"num_hidden_layers"`
NLayers uint32 `json:"n_layers"`
HiddenSize uint32 `json:"hidden_size"`
NEmbd uint32 `json:"n_embd"`
IntermediateSize uint32 `json:"intermediate_size"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NHead uint32 `json:"n_head"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
NHeadKV uint32 `json:"n_head_kv"`
RopeTheta float32 `json:"rope_theta"`
RopeScaling struct {
Type string `json:"type"`
LongFactor ropeFactor `json:"long_factor"`
ShortFactor ropeFactor `json:"short_factor"`
} `json:"rope_scaling"`
RMSNormEPS float32 `json:"rms_norm_eps"`
NPositions uint32 `json:"n_positions"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
OriginalMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
SlidingWindow uint32 `json:"sliding_window"`
}
var _ ModelConverter = (*phi3Model)(nil)
func (p *phi3Model) KV(t *Tokenizer) llm.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "phi3"
kv["phi3.context_length"] = p.MaxPositionEmbeddings
kv["phi3.embedding_length"] = cmp.Or(p.HiddenSize, p.NEmbd)
kv["phi3.feed_forward_length"] = p.IntermediateSize
kv["phi3.block_count"] = cmp.Or(p.NumHiddenLayers, p.NLayers)
kv["phi3.attention.head_count"] = cmp.Or(p.NumAttentionHeads, p.NHead)
kv["phi3.attention.head_count_kv"] = cmp.Or(p.NumKeyValueHeads, p.NHeadKV)
kv["phi3.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
kv["phi3.rope.dimension_count"] = p.HiddenSize / cmp.Or(p.NumAttentionHeads, p.NHead)
kv["phi3.rope.freq_base"] = p.RopeTheta
kv["phi3.rope.scaling.original_context_length"] = p.OriginalMaxPositionEmbeddings
kv["phi3.attention.sliding_window"] = p.SlidingWindow
scale := float64(p.MaxPositionEmbeddings) / float64(p.OriginalMaxPositionEmbeddings)
switch p.RopeScaling.Type {
case "":
// no scaling
case "su", "longrope":
kv["phi3.rope.scaling.attn_factor"] = float32(max(math.Sqrt(1+math.Log(scale)/math.Log(float64(p.OriginalMaxPositionEmbeddings))), 1.0))
case "yarn":
kv["phi3.rope.scaling.attn_factor"] = float32(max(0.1*math.Log(scale)+1.0, 1.0))
default:
panic("unknown rope scaling type")
}
return kv
}
func (p *phi3Model) Tensors(ts []Tensor) []llm.Tensor {
var addRopeFactors sync.Once
out := make([]llm.Tensor, 0, len(ts)+2)
for _, t := range ts {
if strings.HasPrefix(t.Name(), "blk.0.") {
addRopeFactors.Do(func() {
out = append(out, llm.Tensor{
Name: "rope_factors_long.weight",
Kind: 0,
Shape: []uint64{uint64(len(p.RopeScaling.LongFactor))},
WriterTo: p.RopeScaling.LongFactor,
}, llm.Tensor{
Name: "rope_factors_short.weight",
Kind: 0,
Shape: []uint64{uint64(len(p.RopeScaling.ShortFactor))},
WriterTo: p.RopeScaling.ShortFactor,
})
})
}
out = append(out, llm.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (p *phi3Model) Replacements() []string {
return []string{
"lm_head", "output",
"model.embed_tokens", "token_embd",
"model.norm", "output_norm",
"model.layers", "blk",
"input_layernorm", "attn_norm",
"self_attn.qkv_proj", "attn_qkv",
"self_attn.o_proj", "attn_output",
"mlp.down_proj", "ffn_down",
"mlp.gate_up_proj", "ffn_up",
"post_attention_layernorm", "ffn_norm",
}
}
type ropeFactor []float32
func (r ropeFactor) WriteTo(w io.Writer) (int64, error) {
err := binary.Write(w, binary.LittleEndian, r)
return 0, err
}