929 lines
26 KiB
Go
929 lines
26 KiB
Go
package llm
|
|
|
|
import (
|
|
"bufio"
|
|
"bytes"
|
|
"context"
|
|
"encoding/json"
|
|
"errors"
|
|
"fmt"
|
|
"io"
|
|
"log"
|
|
"log/slog"
|
|
"math/rand"
|
|
"net"
|
|
"net/http"
|
|
"os"
|
|
"os/exec"
|
|
"path/filepath"
|
|
"runtime"
|
|
"strconv"
|
|
"strings"
|
|
"time"
|
|
|
|
"golang.org/x/sync/semaphore"
|
|
|
|
"github.com/ollama/ollama/api"
|
|
"github.com/ollama/ollama/envconfig"
|
|
"github.com/ollama/ollama/format"
|
|
"github.com/ollama/ollama/gpu"
|
|
)
|
|
|
|
type LlamaServer interface {
|
|
Ping(ctx context.Context) error
|
|
WaitUntilRunning(ctx context.Context) error
|
|
Completion(ctx context.Context, req CompletionRequest, fn func(CompletionResponse)) error
|
|
Embedding(ctx context.Context, prompt string) ([]float64, error)
|
|
Tokenize(ctx context.Context, content string) ([]int, error)
|
|
Detokenize(ctx context.Context, tokens []int) (string, error)
|
|
Close() error
|
|
EstimatedVRAM() uint64
|
|
EstimatedTotal() uint64
|
|
}
|
|
|
|
// llmServer is an instance of the llama.cpp server
|
|
type llmServer struct {
|
|
port int
|
|
cmd *exec.Cmd
|
|
done chan error // Channel to signal when the process exits
|
|
status *StatusWriter
|
|
options api.Options
|
|
|
|
// TODO - this should be broken down by GPU
|
|
estimatedVRAM uint64 // Estimated usage of VRAM by the loaded model
|
|
estimatedTotal uint64 // Total size of model
|
|
totalLayers uint64
|
|
gpuCount int
|
|
loadDuration time.Duration // Record how long it took the model to load
|
|
loadProgress float32
|
|
|
|
*llamaModel
|
|
|
|
sem *semaphore.Weighted
|
|
}
|
|
|
|
func LoadModel(model string) (*GGML, error) {
|
|
if _, err := os.Stat(model); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
f, err := os.Open(model)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
defer f.Close()
|
|
|
|
ggml, _, err := DecodeGGML(f)
|
|
return ggml, err
|
|
}
|
|
|
|
// NewLlamaServer will run a server for the given GPUs
|
|
// The gpu list must be a single family.
|
|
func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, projectors []string, opts api.Options) (LlamaServer, error) {
|
|
var err error
|
|
var cpuRunner string
|
|
var estimatedVRAM uint64
|
|
var estimatedTotal uint64
|
|
var systemMemory uint64
|
|
gpuCount := len(gpus)
|
|
if (len(gpus) == 1 && gpus[0].Library == "cpu") || opts.NumGPU == 0 {
|
|
|
|
// TODO evaluate system memory to see if we should block the load, or force an unload of another CPU runner
|
|
|
|
cpuRunner = serverForCpu()
|
|
gpuCount = 0
|
|
_, _, estimatedTotal = EstimateGPULayers(gpus, ggml, projectors, opts)
|
|
} else {
|
|
if gpus[0].Library == "metal" {
|
|
memInfo, err := gpu.GetCPUMem()
|
|
if err != nil {
|
|
slog.Error("failed to lookup system memory", "error", err)
|
|
} else {
|
|
systemMemory = memInfo.TotalMemory
|
|
slog.Debug("system memory", "total", format.HumanBytes2(systemMemory))
|
|
}
|
|
}
|
|
var layers int
|
|
layers, estimatedVRAM, estimatedTotal = EstimateGPULayers(gpus, ggml, projectors, opts)
|
|
|
|
if gpus[0].Library == "metal" && estimatedVRAM > systemMemory {
|
|
// disable partial offloading when model is greater than total system memory as this
|
|
// can lead to locking up the system
|
|
opts.NumGPU = 0
|
|
} else if gpus[0].Library != "metal" && layers == 0 {
|
|
// Don't bother loading into the GPU if no layers can fit
|
|
cpuRunner = serverForCpu()
|
|
gpuCount = 0
|
|
} else if opts.NumGPU < 0 && layers > 0 && gpus[0].Library != "cpu" {
|
|
opts.NumGPU = layers
|
|
}
|
|
}
|
|
|
|
// Loop through potential servers
|
|
finalErr := fmt.Errorf("no suitable llama servers found")
|
|
|
|
if len(adapters) > 1 {
|
|
return nil, errors.New("ollama supports only one lora adapter, but multiple were provided")
|
|
}
|
|
|
|
availableServers := availableServers()
|
|
var servers []string
|
|
if cpuRunner != "" {
|
|
servers = []string{cpuRunner}
|
|
} else {
|
|
servers = serversForGpu(gpus[0]) // All GPUs in the list are matching Library and Variant
|
|
}
|
|
demandLib := envconfig.LLMLibrary
|
|
if demandLib != "" {
|
|
serverPath := availableServers[demandLib]
|
|
if serverPath == "" {
|
|
slog.Info(fmt.Sprintf("Invalid OLLAMA_LLM_LIBRARY %s - not found", demandLib))
|
|
} else {
|
|
slog.Info("user override", "OLLAMA_LLM_LIBRARY", demandLib, "path", serverPath)
|
|
servers = []string{demandLib}
|
|
if strings.HasPrefix(demandLib, "cpu") {
|
|
// Omit the GPU flag to silence the warning
|
|
opts.NumGPU = -1
|
|
}
|
|
}
|
|
}
|
|
|
|
if len(servers) == 0 {
|
|
return nil, fmt.Errorf("no servers found for %v", gpus)
|
|
}
|
|
|
|
params := []string{
|
|
"--model", model,
|
|
"--ctx-size", fmt.Sprintf("%d", opts.NumCtx),
|
|
"--batch-size", fmt.Sprintf("%d", opts.NumBatch),
|
|
"--embedding",
|
|
}
|
|
|
|
params = append(params, "--log-disable")
|
|
|
|
if opts.NumGPU >= 0 {
|
|
params = append(params, "--n-gpu-layers", fmt.Sprintf("%d", opts.NumGPU))
|
|
}
|
|
|
|
if envconfig.Debug {
|
|
params = append(params, "--verbose")
|
|
}
|
|
|
|
if opts.MainGPU > 0 {
|
|
params = append(params, "--main-gpu", fmt.Sprintf("%d", opts.MainGPU))
|
|
}
|
|
|
|
if len(adapters) > 0 {
|
|
// TODO: applying multiple adapters is not supported by the llama.cpp server yet
|
|
params = append(params, "--lora", adapters[0])
|
|
}
|
|
|
|
if len(projectors) > 0 {
|
|
// TODO: applying multiple projectors is not supported by the llama.cpp server yet
|
|
params = append(params, "--mmproj", projectors[0])
|
|
}
|
|
|
|
if opts.NumThread > 0 {
|
|
params = append(params, "--threads", fmt.Sprintf("%d", opts.NumThread))
|
|
}
|
|
|
|
if !opts.F16KV {
|
|
params = append(params, "--memory-f32")
|
|
}
|
|
|
|
if opts.UseMLock {
|
|
params = append(params, "--mlock")
|
|
}
|
|
|
|
if !opts.UseMMap {
|
|
params = append(params, "--no-mmap")
|
|
}
|
|
|
|
if opts.UseNUMA {
|
|
params = append(params, "--numa")
|
|
}
|
|
|
|
flashAttnEnabled := envconfig.FlashAttention
|
|
|
|
// partial offloading does not support flash attention
|
|
if uint64(opts.NumGPU) < ggml.KV().BlockCount()+1 {
|
|
flashAttnEnabled = false
|
|
}
|
|
|
|
// only cuda (compute capability 7+) and metal support flash attention
|
|
for _, g := range gpus {
|
|
if g.Library != "metal" && (g.Library != "cuda" || g.DriverMajor < 7) {
|
|
flashAttnEnabled = false
|
|
}
|
|
}
|
|
if flashAttnEnabled {
|
|
params = append(params, "--flash-attn")
|
|
}
|
|
|
|
numParallel := envconfig.NumParallel
|
|
|
|
// TODO (jmorganca): multimodal models don't support parallel yet
|
|
// see https://github.com/ollama/ollama/issues/4165
|
|
if len(projectors) > 0 {
|
|
numParallel = 1
|
|
slog.Warn("multimodal models don't support parallel requests yet")
|
|
}
|
|
|
|
params = append(params, "--parallel", fmt.Sprintf("%d", numParallel))
|
|
|
|
for i := 0; i < len(servers); i++ {
|
|
dir := availableServers[servers[i]]
|
|
if dir == "" {
|
|
// Shouldn't happen
|
|
finalErr = fmt.Errorf("[%d] server %s not listed in available servers %v", i, servers[i], availableServers)
|
|
slog.Error("server list inconsistent", "error", finalErr)
|
|
continue
|
|
}
|
|
|
|
if strings.HasPrefix(servers[i], "cpu") {
|
|
// TODO if we tried a gpu runner first, and it failed, record the error and bubble that back up
|
|
gpuCount = 0
|
|
}
|
|
|
|
// Find an availableServers port, retry on each iteration in case the failure was a port conflict race
|
|
port := 0
|
|
if a, err := net.ResolveTCPAddr("tcp", "localhost:0"); err == nil {
|
|
var l *net.TCPListener
|
|
if l, err = net.ListenTCP("tcp", a); err == nil {
|
|
port = l.Addr().(*net.TCPAddr).Port
|
|
l.Close()
|
|
}
|
|
}
|
|
if port == 0 {
|
|
slog.Debug("ResolveTCPAddr failed ", "error", err)
|
|
port = rand.Intn(65535-49152) + 49152 // get a random port in the ephemeral range
|
|
}
|
|
finalParams := append(params, "--port", strconv.Itoa(port))
|
|
|
|
pathEnv := "LD_LIBRARY_PATH"
|
|
if runtime.GOOS == "windows" {
|
|
pathEnv = "PATH"
|
|
}
|
|
// prepend the server directory to LD_LIBRARY_PATH/PATH
|
|
libraryPaths := []string{dir}
|
|
|
|
if libraryPath, ok := os.LookupEnv(pathEnv); ok {
|
|
// Append our runner directory to the path
|
|
// This will favor system libraries over our bundled library dependencies
|
|
libraryPaths = append(libraryPaths, filepath.SplitList(libraryPath)...)
|
|
}
|
|
|
|
// Note: we always put the dependency path first
|
|
// since this was the exact version we verified for AMD GPUs
|
|
// and we favor what the user had in their path
|
|
if gpus[0].DependencyPath != "" {
|
|
// TODO refine for multi-gpu support
|
|
libraryPaths = append([]string{gpus[0].DependencyPath}, libraryPaths...)
|
|
}
|
|
|
|
server := filepath.Join(dir, "ollama_llama_server")
|
|
if runtime.GOOS == "windows" {
|
|
server = server + ".exe"
|
|
}
|
|
|
|
// Detect tmp cleaners wiping out the file
|
|
_, err := os.Stat(server)
|
|
if errors.Is(err, os.ErrNotExist) {
|
|
slog.Warn("llama server disappeared, reinitializing payloads", "path", server, "error", err)
|
|
err = Init()
|
|
if err != nil {
|
|
slog.Warn("failed to reinitialize payloads", "error", err)
|
|
return nil, err
|
|
}
|
|
}
|
|
|
|
s := &llmServer{
|
|
port: port,
|
|
cmd: exec.Command(server, finalParams...),
|
|
status: NewStatusWriter(os.Stderr),
|
|
options: opts,
|
|
estimatedVRAM: estimatedVRAM,
|
|
estimatedTotal: estimatedTotal,
|
|
sem: semaphore.NewWeighted(int64(numParallel)),
|
|
totalLayers: ggml.KV().BlockCount() + 1,
|
|
gpuCount: gpuCount,
|
|
done: make(chan error, 1),
|
|
llamaModel: newLlamaModel(model),
|
|
}
|
|
|
|
s.cmd.Env = os.Environ()
|
|
s.cmd.Stdout = os.Stdout
|
|
s.cmd.Stderr = s.status
|
|
|
|
visibleDevicesEnv, visibleDevicesEnvVal := gpu.GpuInfoList(gpus).GetVisibleDevicesEnv()
|
|
pathEnvVal := strings.Join(libraryPaths, string(filepath.ListSeparator))
|
|
|
|
// Update or add the path and visible devices variable with our adjusted version
|
|
pathNeeded := true
|
|
devicesNeeded := visibleDevicesEnv != ""
|
|
for i := range s.cmd.Env {
|
|
cmp := strings.SplitN(s.cmd.Env[i], "=", 2)
|
|
if strings.EqualFold(cmp[0], pathEnv) {
|
|
s.cmd.Env[i] = pathEnv + "=" + pathEnvVal
|
|
pathNeeded = false
|
|
} else if devicesNeeded && strings.EqualFold(cmp[0], visibleDevicesEnv) {
|
|
s.cmd.Env[i] = visibleDevicesEnv + "=" + visibleDevicesEnvVal
|
|
devicesNeeded = false
|
|
}
|
|
}
|
|
if pathNeeded {
|
|
s.cmd.Env = append(s.cmd.Env, pathEnv+"="+pathEnvVal)
|
|
}
|
|
if devicesNeeded {
|
|
s.cmd.Env = append(s.cmd.Env, visibleDevicesEnv+"="+visibleDevicesEnvVal)
|
|
}
|
|
|
|
slog.Info("starting llama server", "cmd", s.cmd.String())
|
|
if envconfig.Debug {
|
|
filteredEnv := []string{}
|
|
for _, ev := range s.cmd.Env {
|
|
if strings.HasPrefix(ev, "CUDA_") ||
|
|
strings.HasPrefix(ev, "ROCM_") ||
|
|
strings.HasPrefix(ev, "HIP_") ||
|
|
strings.HasPrefix(ev, "HSA_") ||
|
|
strings.HasPrefix(ev, "GGML_") ||
|
|
strings.HasPrefix(ev, "PATH=") ||
|
|
strings.HasPrefix(ev, "LD_LIBRARY_PATH=") {
|
|
filteredEnv = append(filteredEnv, ev)
|
|
}
|
|
}
|
|
// Log at debug as the environment is inherited and might contain sensitive information
|
|
slog.Debug("subprocess", "environment", filteredEnv)
|
|
}
|
|
|
|
if err = s.cmd.Start(); err != nil {
|
|
// Detect permission denied and augment them essage about noexec
|
|
if errors.Is(err, os.ErrPermission) {
|
|
finalErr = fmt.Errorf("unable to start server %w. %s may have noexec set. Set OLLAMA_TMPDIR for server to a writable executable directory", err, dir)
|
|
continue
|
|
}
|
|
msg := ""
|
|
if s.status != nil && s.status.LastErrMsg != "" {
|
|
msg = s.status.LastErrMsg
|
|
}
|
|
err = fmt.Errorf("error starting the external llama server: %v %s", err, msg)
|
|
finalErr = err
|
|
continue
|
|
}
|
|
|
|
// reap subprocess when it exits
|
|
go func() {
|
|
s.done <- s.cmd.Wait()
|
|
}()
|
|
|
|
return s, nil
|
|
}
|
|
|
|
slog.Error("unable to load any llama server", "error", finalErr)
|
|
return nil, finalErr
|
|
}
|
|
|
|
func projectorMemoryRequirements(filename string) uint64 {
|
|
file, err := os.Open(filename)
|
|
if err != nil {
|
|
return 0
|
|
}
|
|
defer file.Close()
|
|
|
|
ggml, _, err := DecodeGGML(file)
|
|
if err != nil {
|
|
return 0
|
|
}
|
|
|
|
var mem uint64
|
|
for _, layer := range ggml.Tensors().Layers() {
|
|
mem += layer.size()
|
|
}
|
|
|
|
return mem
|
|
}
|
|
|
|
type ServerStatus int
|
|
|
|
const ( // iota is reset to 0
|
|
ServerStatusReady ServerStatus = iota
|
|
ServerStatusNoSlotsAvailable
|
|
ServerStatusLoadingModel
|
|
ServerStatusNotResponding
|
|
ServerStatusError
|
|
)
|
|
|
|
func (s ServerStatus) ToString() string {
|
|
switch s {
|
|
case ServerStatusReady:
|
|
return "llm server ready"
|
|
case ServerStatusNoSlotsAvailable:
|
|
return "llm busy - no slots available"
|
|
case ServerStatusLoadingModel:
|
|
return "llm server loading model"
|
|
case ServerStatusNotResponding:
|
|
return "llm server not responding"
|
|
default:
|
|
return "llm server error"
|
|
}
|
|
}
|
|
|
|
type ServerStatusResp struct {
|
|
Status string `json:"status"`
|
|
SlotsIdle int `json:"slots_idle"`
|
|
SlotsProcessing int `json:"slots_processing"`
|
|
Error string `json:"error"`
|
|
Progress float32 `json:"progress"`
|
|
}
|
|
|
|
func (s *llmServer) getServerStatus(ctx context.Context) (ServerStatus, error) {
|
|
// Fail fast if its exited
|
|
if s.cmd.ProcessState != nil {
|
|
msg := ""
|
|
if s.status != nil && s.status.LastErrMsg != "" {
|
|
msg = s.status.LastErrMsg
|
|
}
|
|
if s.cmd.ProcessState.ExitCode() == -1 {
|
|
// Most likely a signal killed it, log some more details to try to help troubleshoot
|
|
slog.Warn("llama runner process no longer running", "sys", s.cmd.ProcessState.Sys(), "string", s.cmd.ProcessState.String())
|
|
}
|
|
return ServerStatusError, fmt.Errorf("llama runner process no longer running: %d %s", s.cmd.ProcessState.ExitCode(), msg)
|
|
}
|
|
|
|
req, err := http.NewRequestWithContext(ctx, http.MethodGet, fmt.Sprintf("http://127.0.0.1:%d/health", s.port), nil)
|
|
if err != nil {
|
|
return ServerStatusError, fmt.Errorf("error creating GET request: %v", err)
|
|
}
|
|
req.Header.Set("Content-Type", "application/json")
|
|
|
|
resp, err := http.DefaultClient.Do(req)
|
|
if err != nil {
|
|
if errors.Is(err, context.DeadlineExceeded) {
|
|
return ServerStatusNotResponding, fmt.Errorf("server not responding")
|
|
}
|
|
return ServerStatusError, fmt.Errorf("health resp: %w", err)
|
|
}
|
|
defer resp.Body.Close()
|
|
|
|
body, err := io.ReadAll(resp.Body)
|
|
if err != nil {
|
|
return ServerStatusError, fmt.Errorf("read health request: %w", err)
|
|
}
|
|
|
|
var status ServerStatusResp
|
|
if err := json.Unmarshal(body, &status); err != nil {
|
|
return ServerStatusError, fmt.Errorf("health unmarshal encode response: %w", err)
|
|
}
|
|
|
|
switch status.Status {
|
|
case "ok":
|
|
return ServerStatusReady, nil
|
|
case "no slot available":
|
|
return ServerStatusNoSlotsAvailable, nil
|
|
case "loading model":
|
|
s.loadProgress = status.Progress
|
|
return ServerStatusLoadingModel, nil
|
|
default:
|
|
return ServerStatusError, fmt.Errorf("server error: %+v", status)
|
|
}
|
|
}
|
|
|
|
// getServerStatusRetry will retry if ServerStatusNoSlotsAvailable is received
|
|
func (s *llmServer) getServerStatusRetry(ctx context.Context) (ServerStatus, error) {
|
|
var retries int
|
|
for {
|
|
status, err := s.getServerStatus(ctx)
|
|
if err != nil {
|
|
return status, err
|
|
}
|
|
|
|
if status == ServerStatusNoSlotsAvailable {
|
|
if retries >= 10 {
|
|
return status, fmt.Errorf("no slots available after %d retries", retries)
|
|
}
|
|
|
|
time.Sleep(5 * time.Millisecond)
|
|
retries++
|
|
continue
|
|
}
|
|
|
|
return status, nil
|
|
}
|
|
}
|
|
|
|
func (s *llmServer) Ping(ctx context.Context) error {
|
|
_, err := s.getServerStatus(ctx)
|
|
if err != nil {
|
|
slog.Debug("server unhealthy", "error", err)
|
|
return err
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func (s *llmServer) WaitUntilRunning(ctx context.Context) error {
|
|
start := time.Now()
|
|
stallDuration := 5 * time.Minute // If no progress happens
|
|
finalLoadDuration := 5 * time.Minute // After we hit 100%, give the runner more time to come online
|
|
stallTimer := time.Now().Add(stallDuration) // give up if we stall
|
|
|
|
slog.Info("waiting for llama runner to start responding")
|
|
var lastStatus ServerStatus = -1
|
|
fullyLoaded := false
|
|
|
|
for {
|
|
select {
|
|
case <-ctx.Done():
|
|
slog.Warn("client connection closed before server finished loading, aborting load")
|
|
return fmt.Errorf("timed out waiting for llama runner to start: %w", ctx.Err())
|
|
case err := <-s.done:
|
|
msg := ""
|
|
if s.status != nil && s.status.LastErrMsg != "" {
|
|
msg = s.status.LastErrMsg
|
|
}
|
|
return fmt.Errorf("llama runner process has terminated: %v %s", err, msg)
|
|
default:
|
|
}
|
|
if time.Now().After(stallTimer) {
|
|
// timeout
|
|
msg := ""
|
|
if s.status != nil && s.status.LastErrMsg != "" {
|
|
msg = s.status.LastErrMsg
|
|
}
|
|
return fmt.Errorf("timed out waiting for llama runner to start - progress %0.2f - %s", s.loadProgress, msg)
|
|
}
|
|
if s.cmd.ProcessState != nil {
|
|
msg := ""
|
|
if s.status != nil && s.status.LastErrMsg != "" {
|
|
msg = s.status.LastErrMsg
|
|
}
|
|
return fmt.Errorf("llama runner process no longer running: %d %s", s.cmd.ProcessState.ExitCode(), msg)
|
|
}
|
|
ctx, cancel := context.WithTimeout(ctx, 200*time.Millisecond)
|
|
defer cancel()
|
|
priorProgress := s.loadProgress
|
|
status, _ := s.getServerStatus(ctx)
|
|
if lastStatus != status && status != ServerStatusReady {
|
|
// Only log on status changes
|
|
slog.Info("waiting for server to become available", "status", status.ToString())
|
|
}
|
|
switch status {
|
|
case ServerStatusReady:
|
|
s.loadDuration = time.Since(start)
|
|
slog.Info(fmt.Sprintf("llama runner started in %0.2f seconds", s.loadDuration.Seconds()))
|
|
return nil
|
|
default:
|
|
lastStatus = status
|
|
// Reset the timer as long as we're making forward progress on the load
|
|
if priorProgress != s.loadProgress {
|
|
slog.Debug(fmt.Sprintf("model load progress %0.2f", s.loadProgress))
|
|
stallTimer = time.Now().Add(stallDuration)
|
|
} else if !fullyLoaded && int(s.loadProgress*100.0) >= 100 {
|
|
slog.Debug("model load completed, waiting for server to become available", "status", status.ToString())
|
|
stallTimer = time.Now().Add(finalLoadDuration)
|
|
fullyLoaded = true
|
|
}
|
|
time.Sleep(time.Millisecond * 250)
|
|
continue
|
|
}
|
|
}
|
|
}
|
|
|
|
const jsonGrammar = `
|
|
root ::= object
|
|
value ::= object | array | string | number | ("true" | "false" | "null") ws
|
|
|
|
object ::=
|
|
"{" ws (
|
|
string ":" ws value
|
|
("," ws string ":" ws value)*
|
|
)? "}" ws
|
|
|
|
array ::=
|
|
"[" ws (
|
|
value
|
|
("," ws value)*
|
|
)? "]" ws
|
|
|
|
string ::=
|
|
"\"" (
|
|
[^"\\] |
|
|
"\\" (["\\/bfnrt] | "u" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F]) # escapes
|
|
)* "\"" ws
|
|
|
|
number ::= ("-"? ([0-9] | [1-9] [0-9]*)) ("." [0-9]+)? ([eE] [-+]? [0-9]+)? ws
|
|
|
|
# Optional space: by convention, applied in this grammar after literal chars when allowed
|
|
ws ::= ([ \t\n] ws)?
|
|
`
|
|
|
|
const maxBufferSize = 512 * format.KiloByte
|
|
|
|
type ImageData struct {
|
|
Data []byte `json:"data"`
|
|
ID int `json:"id"`
|
|
}
|
|
|
|
type completion struct {
|
|
Content string `json:"content"`
|
|
Model string `json:"model"`
|
|
Prompt string `json:"prompt"`
|
|
Stop bool `json:"stop"`
|
|
StoppedLimit bool `json:"stopped_limit"`
|
|
|
|
Timings struct {
|
|
PredictedN int `json:"predicted_n"`
|
|
PredictedMS float64 `json:"predicted_ms"`
|
|
PromptN int `json:"prompt_n"`
|
|
PromptMS float64 `json:"prompt_ms"`
|
|
}
|
|
}
|
|
|
|
type CompletionRequest struct {
|
|
Prompt string
|
|
Format string
|
|
Images []ImageData
|
|
Options api.Options
|
|
}
|
|
|
|
type CompletionResponse struct {
|
|
Content string
|
|
DoneReason string
|
|
Done bool
|
|
PromptEvalCount int
|
|
PromptEvalDuration time.Duration
|
|
EvalCount int
|
|
EvalDuration time.Duration
|
|
}
|
|
|
|
func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn func(CompletionResponse)) error {
|
|
if err := s.sem.Acquire(ctx, 1); err != nil {
|
|
slog.Error("Failed to acquire semaphore", "error", err)
|
|
return err
|
|
}
|
|
defer s.sem.Release(1)
|
|
|
|
// only allow maximum 10 "context shifts" to avoid infinite generation
|
|
if req.Options.NumPredict < 0 || req.Options.NumPredict > 10*s.options.NumCtx {
|
|
req.Options.NumPredict = 10 * s.options.NumCtx
|
|
slog.Debug("setting token limit to 10x num_ctx", "num_ctx", s.options.NumCtx, "num_predict", req.Options.NumPredict)
|
|
}
|
|
|
|
request := map[string]any{
|
|
"prompt": req.Prompt,
|
|
"stream": true,
|
|
"n_predict": req.Options.NumPredict,
|
|
"n_keep": req.Options.NumKeep,
|
|
"main_gpu": req.Options.MainGPU,
|
|
"temperature": req.Options.Temperature,
|
|
"top_k": req.Options.TopK,
|
|
"top_p": req.Options.TopP,
|
|
"tfs_z": req.Options.TFSZ,
|
|
"typical_p": req.Options.TypicalP,
|
|
"repeat_last_n": req.Options.RepeatLastN,
|
|
"repeat_penalty": req.Options.RepeatPenalty,
|
|
"presence_penalty": req.Options.PresencePenalty,
|
|
"frequency_penalty": req.Options.FrequencyPenalty,
|
|
"mirostat": req.Options.Mirostat,
|
|
"mirostat_tau": req.Options.MirostatTau,
|
|
"mirostat_eta": req.Options.MirostatEta,
|
|
"penalize_nl": req.Options.PenalizeNewline,
|
|
"seed": req.Options.Seed,
|
|
"stop": req.Options.Stop,
|
|
"image_data": req.Images,
|
|
"cache_prompt": true,
|
|
}
|
|
|
|
// Make sure the server is ready
|
|
status, err := s.getServerStatusRetry(ctx)
|
|
if err != nil {
|
|
return err
|
|
} else if status != ServerStatusReady {
|
|
return fmt.Errorf("unexpected server status: %s", status.ToString())
|
|
}
|
|
|
|
if req.Format == "json" {
|
|
request["grammar"] = jsonGrammar
|
|
if !strings.Contains(strings.ToLower(req.Prompt), "json") {
|
|
slog.Warn("Prompt does not specify that the LLM should response in JSON, but JSON format is expected. For best results specify that JSON is expected in the system prompt.")
|
|
}
|
|
}
|
|
|
|
// Handling JSON marshaling with special characters unescaped.
|
|
buffer := &bytes.Buffer{}
|
|
enc := json.NewEncoder(buffer)
|
|
enc.SetEscapeHTML(false)
|
|
|
|
if err := enc.Encode(request); err != nil {
|
|
return fmt.Errorf("failed to marshal data: %v", err)
|
|
}
|
|
|
|
endpoint := fmt.Sprintf("http://127.0.0.1:%d/completion", s.port)
|
|
serverReq, err := http.NewRequestWithContext(ctx, http.MethodPost, endpoint, buffer)
|
|
if err != nil {
|
|
return fmt.Errorf("error creating POST request: %v", err)
|
|
}
|
|
serverReq.Header.Set("Content-Type", "application/json")
|
|
|
|
res, err := http.DefaultClient.Do(serverReq)
|
|
if err != nil {
|
|
return fmt.Errorf("POST predict: %v", err)
|
|
}
|
|
defer res.Body.Close()
|
|
|
|
if res.StatusCode >= 400 {
|
|
bodyBytes, err := io.ReadAll(res.Body)
|
|
if err != nil {
|
|
return fmt.Errorf("failed reading llm error response: %w", err)
|
|
}
|
|
log.Printf("llm predict error: %s", bodyBytes)
|
|
return fmt.Errorf("%s", bodyBytes)
|
|
}
|
|
|
|
scanner := bufio.NewScanner(res.Body)
|
|
buf := make([]byte, 0, maxBufferSize)
|
|
scanner.Buffer(buf, maxBufferSize)
|
|
|
|
// keep track of the last token generated, this is used to abort if the model starts looping
|
|
var lastToken string
|
|
var tokenRepeat int
|
|
|
|
for scanner.Scan() {
|
|
select {
|
|
case <-ctx.Done():
|
|
// This handles the request cancellation
|
|
return ctx.Err()
|
|
default:
|
|
line := scanner.Bytes()
|
|
if len(line) == 0 {
|
|
continue
|
|
}
|
|
|
|
evt, ok := bytes.CutPrefix(line, []byte("data: "))
|
|
if !ok {
|
|
return fmt.Errorf("error parsing llm response stream: %s", line)
|
|
}
|
|
|
|
var c completion
|
|
if err := json.Unmarshal(evt, &c); err != nil {
|
|
return fmt.Errorf("error unmarshalling llm prediction response: %v", err)
|
|
}
|
|
|
|
switch {
|
|
case strings.TrimSpace(c.Content) == lastToken:
|
|
tokenRepeat++
|
|
default:
|
|
lastToken = strings.TrimSpace(c.Content)
|
|
tokenRepeat = 0
|
|
}
|
|
|
|
// 30 picked as an arbitrary max token repeat limit, modify as needed
|
|
if tokenRepeat > 30 {
|
|
slog.Debug("prediction aborted, token repeat limit reached")
|
|
return ctx.Err()
|
|
}
|
|
|
|
if c.Content != "" {
|
|
fn(CompletionResponse{
|
|
Content: c.Content,
|
|
})
|
|
}
|
|
|
|
if c.Stop {
|
|
doneReason := "stop"
|
|
if c.StoppedLimit {
|
|
doneReason = "length"
|
|
}
|
|
|
|
fn(CompletionResponse{
|
|
Done: true,
|
|
DoneReason: doneReason,
|
|
PromptEvalCount: c.Timings.PromptN,
|
|
PromptEvalDuration: parseDurationMs(c.Timings.PromptMS),
|
|
EvalCount: c.Timings.PredictedN,
|
|
EvalDuration: parseDurationMs(c.Timings.PredictedMS),
|
|
})
|
|
return nil
|
|
}
|
|
}
|
|
}
|
|
|
|
if err := scanner.Err(); err != nil {
|
|
if strings.Contains(err.Error(), "unexpected EOF") {
|
|
s.Close()
|
|
msg := ""
|
|
if s.status != nil && s.status.LastErrMsg != "" {
|
|
msg = s.status.LastErrMsg
|
|
}
|
|
return fmt.Errorf("an unknown error was encountered while running the model %s", msg)
|
|
}
|
|
|
|
return fmt.Errorf("error reading llm response: %v", err)
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
type EmbeddingRequest struct {
|
|
Content string `json:"content"`
|
|
}
|
|
|
|
type EmbeddingResponse struct {
|
|
Embedding []float64 `json:"embedding"`
|
|
}
|
|
|
|
func (s *llmServer) Embedding(ctx context.Context, prompt string) ([]float64, error) {
|
|
if err := s.sem.Acquire(ctx, 1); err != nil {
|
|
slog.Error("Failed to acquire semaphore", "error", err)
|
|
return nil, err
|
|
}
|
|
defer s.sem.Release(1)
|
|
|
|
// Make sure the server is ready
|
|
status, err := s.getServerStatusRetry(ctx)
|
|
if err != nil {
|
|
return nil, err
|
|
} else if status != ServerStatusReady {
|
|
return nil, fmt.Errorf("unexpected server status: %s", status.ToString())
|
|
}
|
|
|
|
var b bytes.Buffer
|
|
if err := json.NewEncoder(&b).Encode(EmbeddingRequest{Content: prompt}); err != nil {
|
|
return nil, fmt.Errorf("error marshaling embed data: %w", err)
|
|
}
|
|
|
|
req, err := http.NewRequestWithContext(ctx, http.MethodPost, fmt.Sprintf("http://127.0.0.1:%d/embedding", s.port), &b)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("error creating embed request: %w", err)
|
|
}
|
|
req.Header.Set("Content-Type", "application/json")
|
|
|
|
resp, err := http.DefaultClient.Do(req)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("do embedding request: %w", err)
|
|
}
|
|
defer resp.Body.Close()
|
|
|
|
body, err := io.ReadAll(resp.Body)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("error reading embed response: %w", err)
|
|
}
|
|
|
|
if resp.StatusCode >= 400 {
|
|
log.Printf("llm encode error: %s", body)
|
|
return nil, fmt.Errorf("%s", body)
|
|
}
|
|
|
|
var embedding EmbeddingResponse
|
|
if err := json.Unmarshal(body, &embedding); err != nil {
|
|
return nil, fmt.Errorf("unmarshal tokenize response: %w", err)
|
|
}
|
|
|
|
return embedding.Embedding, nil
|
|
}
|
|
|
|
func (s *llmServer) Tokenize(ctx context.Context, content string) ([]int, error) {
|
|
return s.llamaModel.Tokenize(content), nil
|
|
}
|
|
|
|
func (s *llmServer) Detokenize(ctx context.Context, tokens []int) (string, error) {
|
|
return s.llamaModel.Detokenize(tokens), nil
|
|
}
|
|
|
|
func (s *llmServer) Close() error {
|
|
if s.cmd != nil {
|
|
slog.Debug("stopping llama server")
|
|
if err := s.cmd.Process.Kill(); err != nil {
|
|
return err
|
|
}
|
|
// if ProcessState is already populated, Wait already completed, no need to wait again
|
|
if s.cmd.ProcessState == nil {
|
|
slog.Debug("waiting for llama server to exit")
|
|
<-s.done
|
|
}
|
|
|
|
slog.Debug("llama server stopped")
|
|
}
|
|
|
|
if s.llamaModel != nil {
|
|
s.llamaModel.Close()
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
func (s *llmServer) EstimatedVRAM() uint64 {
|
|
return s.estimatedVRAM
|
|
}
|
|
|
|
func (s *llmServer) EstimatedTotal() uint64 {
|
|
return s.estimatedTotal
|
|
}
|
|
|
|
func parseDurationMs(ms float64) time.Duration {
|
|
dur, err := time.ParseDuration(fmt.Sprintf("%fms", ms))
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
|
|
return dur
|
|
}
|