b173cfc558
progress: fix bar rate |
||
---|---|---|
api | ||
app | ||
cmd | ||
docs | ||
examples | ||
format | ||
llm | ||
parser | ||
progress | ||
readline | ||
scripts | ||
server | ||
version | ||
.dockerignore | ||
.gitignore | ||
.gitmodules | ||
.prettierrc.json | ||
Dockerfile | ||
Dockerfile.build | ||
go.mod | ||
go.sum | ||
LICENSE | ||
main.go | ||
README.md |
Ollama
Get up and running with large language models locally.
macOS
Windows
Coming soon!
Linux & WSL2
curl https://ollama.ai/install.sh | sh
Docker
The official Ollama Docker image ollama/ollama
is available on Docker Hub.
Quickstart
To run and chat with Llama 2:
ollama run llama2
Model library
Ollama supports a list of open-source models available on ollama.ai/library
Here are some example open-source models that can be downloaded:
Model | Parameters | Size | Download |
---|---|---|---|
Mistral | 7B | 4.1GB | ollama run mistral |
Llama 2 | 7B | 3.8GB | ollama run llama2 |
Code Llama | 7B | 3.8GB | ollama run codellama |
Llama 2 Uncensored | 7B | 3.8GB | ollama run llama2-uncensored |
Llama 2 13B | 13B | 7.3GB | ollama run llama2:13b |
Llama 2 70B | 70B | 39GB | ollama run llama2:70b |
Orca Mini | 3B | 1.9GB | ollama run orca-mini |
Vicuna | 7B | 3.8GB | ollama run vicuna |
Note: You should have at least 8 GB of RAM to run the 3B models, 16 GB to run the 7B models, and 32 GB to run the 13B models.
Customize your own model
Import from GGUF
Ollama supports importing GGUF models in the Modelfile:
-
Create a file named
Modelfile
, with aFROM
instruction with the local filepath to the model you want to import.FROM ./vicuna-33b.Q4_0.gguf
-
Create the model in Ollama
ollama create example -f Modelfile
-
Run the model
ollama run example
Import from PyTorch or Safetensors
See the guide on importing models for more information.
Customize a prompt
Models from the Ollama library can be customized with a prompt. For example, to customize the llama2
model:
ollama pull llama2
Create a Modelfile
:
FROM llama2
# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1
# set the system prompt
SYSTEM """
You are Mario from Super Mario Bros. Answer as Mario, the assistant, only.
"""
Next, create and run the model:
ollama create mario -f ./Modelfile
ollama run mario
>>> hi
Hello! It's your friend Mario.
For more examples, see the examples directory. For more information on working with a Modelfile, see the Modelfile documentation.
CLI Reference
Create a model
ollama create
is used to create a model from a Modelfile.
Pull a model
ollama pull llama2
This command can also be used to update a local model. Only the diff will be pulled.
Remove a model
ollama rm llama2
Copy a model
ollama cp llama2 my-llama2
Multiline input
For multiline input, you can wrap text with """
:
>>> """Hello,
... world!
... """
I'm a basic program that prints the famous "Hello, world!" message to the console.
Pass in prompt as arguments
$ ollama run llama2 "Summarize this file: $(cat README.md)"
Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.
List models on your computer
ollama list
Start Ollama
ollama serve
is used when you want to start ollama without running the desktop application.
Building
Install cmake
and go
:
brew install cmake go
Then generate dependencies and build:
go generate ./...
go build .
Next, start the server:
./ollama serve
Finally, in a separate shell, run a model:
./ollama run llama2
REST API
Ollama has a REST API for running and managing models. For example, to generate text from a model:
curl http://localhost:11434/api/generate -d '{
"model": "llama2",
"prompt":"Why is the sky blue?"
}'
See the API documentation for all endpoints.
Community Integrations
Mobile
Web & Desktop
- HTML UI
- Chatbot UI
- Typescript UI
- Minimalistic React UI for Ollama Models
- Web UI
- Ollamac
- big-AGI
- Cheshire Cat assistant framework
- Amica
Terminal
Package managers
Libraries
- LangChain and LangChain.js with example
- LangChainGo with example
- LlamaIndex
- LiteLLM
- OllamaSharp for .NET
- Ollama-rs for Rust
- Ollama4j for Java
- ModelFusion Typescript Library
- OllamaKit for Swift
- Ollama for Dart
- Ollama for Laravel
Mobile
- Maid (Mobile Artificial Intelligence Distribution)
Extensions & Plugins
- Raycast extension
- Discollama (Discord bot inside the Ollama discord channel)
- Continue
- Obsidian Ollama plugin
- Logseq Ollama plugin
- Dagger Chatbot
- Discord AI Bot
- Hass Ollama Conversation
- Rivet plugin
- Llama Coder (Copilot alternative using Ollama)
- Obsidian BMO Chatbot plugin