ollama/server/sched.go

782 lines
27 KiB
Go

package server
import (
"context"
"errors"
"fmt"
"log/slog"
"reflect"
"runtime"
"sort"
"strings"
"sync"
"time"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/gpu"
"github.com/ollama/ollama/llm"
)
type LlmRequest struct {
ctx context.Context //nolint:containedctx
model *Model
opts api.Options
origNumCtx int // Track the initial ctx request
sessionDuration *api.Duration
successCh chan *runnerRef
errCh chan error
schedAttempts uint
}
type Scheduler struct {
pendingReqCh chan *LlmRequest
finishedReqCh chan *LlmRequest
expiredCh chan *runnerRef
unloadedCh chan interface{}
loaded map[string]*runnerRef
loadedMu sync.Mutex
loadFn func(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numParallel int)
newServerFn func(gpus gpu.GpuInfoList, model string, ggml *llm.GGML, adapters []string, projectors []string, opts api.Options, numParallel int) (llm.LlamaServer, error)
getGpuFn func() gpu.GpuInfoList
getCpuFn func() gpu.GpuInfoList
reschedDelay time.Duration
}
// Default automatic value for number of models we allow per GPU
// Model will still need to fit in VRAM, but loading many small models
// on a large GPU can cause stalling
var defaultModelsPerGPU = 3
// Default automatic value for parallel setting
// Model will still need to fit in VRAM. If this setting wont fit
// we'll back off down to 1 to try to get it to fit
var defaultParallel = 4
var ErrMaxQueue = fmt.Errorf("server busy, please try again. maximum pending requests exceeded")
func InitScheduler(ctx context.Context) *Scheduler {
sched := &Scheduler{
pendingReqCh: make(chan *LlmRequest, envconfig.MaxQueuedRequests),
finishedReqCh: make(chan *LlmRequest, envconfig.MaxQueuedRequests),
expiredCh: make(chan *runnerRef, envconfig.MaxQueuedRequests),
unloadedCh: make(chan interface{}, envconfig.MaxQueuedRequests),
loaded: make(map[string]*runnerRef),
newServerFn: llm.NewLlamaServer,
getGpuFn: gpu.GetGPUInfo,
getCpuFn: gpu.GetCPUInfo,
reschedDelay: 250 * time.Millisecond,
}
sched.loadFn = sched.load
return sched
}
// context must be canceled to decrement ref count and release the runner
func (s *Scheduler) GetRunner(c context.Context, model *Model, opts api.Options, sessionDuration *api.Duration) (chan *runnerRef, chan error) {
if opts.NumCtx < 4 {
opts.NumCtx = 4
}
req := &LlmRequest{
ctx: c,
model: model,
opts: opts,
sessionDuration: sessionDuration,
successCh: make(chan *runnerRef),
errCh: make(chan error, 1),
}
select {
case s.pendingReqCh <- req:
default:
req.errCh <- ErrMaxQueue
}
return req.successCh, req.errCh
}
// Returns immediately, spawns go routines for the scheduler which will shutdown when ctx is done
func (s *Scheduler) Run(ctx context.Context) {
slog.Debug("starting llm scheduler")
go func() {
s.processPending(ctx)
}()
go func() {
s.processCompleted(ctx)
}()
}
func (s *Scheduler) processPending(ctx context.Context) {
for {
select {
case <-ctx.Done():
slog.Debug("shutting down scheduler pending loop")
return
case pending := <-s.pendingReqCh:
// Block other requests until we get this pending request running
pending.schedAttempts++
if pending.origNumCtx == 0 {
pending.origNumCtx = pending.opts.NumCtx
}
if pending.ctx.Err() != nil {
slog.Debug("pending request cancelled or timed out, skipping scheduling")
continue
}
numParallel := envconfig.NumParallel
// TODO (jmorganca): multimodal models don't support parallel yet
// see https://github.com/ollama/ollama/issues/4165
if len(pending.model.ProjectorPaths) > 0 && numParallel != 1 {
numParallel = 1
slog.Warn("multimodal models don't support parallel requests yet")
}
for {
var runnerToExpire *runnerRef
s.loadedMu.Lock()
runner := s.loaded[pending.model.ModelPath]
loadedCount := len(s.loaded)
s.loadedMu.Unlock()
if runner != nil {
if runner.needsReload(ctx, pending) {
runnerToExpire = runner
} else {
// Runner is usable, return it
pending.useLoadedRunner(runner, s.finishedReqCh)
break
}
} else if envconfig.MaxRunners > 0 && loadedCount >= envconfig.MaxRunners {
slog.Debug("max runners achieved, unloading one to make room", "runner_count", loadedCount)
runnerToExpire = s.findRunnerToUnload()
} else {
// Either no models are loaded or below envconfig.MaxRunners
// Get a refreshed GPU list
var gpus gpu.GpuInfoList
if pending.opts.NumGPU == 0 {
gpus = s.getCpuFn()
} else {
gpus = s.getGpuFn()
}
if envconfig.MaxRunners <= 0 {
// No user specified MaxRunners, so figure out what automatic setting to use
// If all GPUs have reliable free memory reporting, defaultModelsPerGPU * the number of GPUs
// if any GPU has unreliable free memory reporting, 1x the number of GPUs
allReliable := true
for _, gpu := range gpus {
if gpu.UnreliableFreeMemory {
allReliable = false
break
}
}
if allReliable {
envconfig.MaxRunners = defaultModelsPerGPU * len(gpus)
slog.Debug("updating default concurrency", "OLLAMA_MAX_LOADED_MODELS", envconfig.MaxRunners, "gpu_count", len(gpus))
} else {
slog.Info("one or more GPUs detected that are unable to accurately report free memory - disabling default concurrency")
envconfig.MaxRunners = len(gpus)
}
}
// Load model for fitting
ggml, err := llm.LoadModel(pending.model.ModelPath, 0)
if err != nil {
pending.errCh <- err
break
}
// Evaluate if the model will fit in the available system memory, or if we should unload a model first
if len(gpus) == 1 && gpus[0].Library == "cpu" {
// simplifying assumption of defaultParallel when in CPU mode
if numParallel <= 0 {
numParallel = defaultParallel
}
pending.opts.NumCtx = pending.origNumCtx * numParallel
if loadedCount == 0 {
slog.Debug("cpu mode with first model, loading")
s.loadFn(pending, ggml, gpus, numParallel)
break
}
runnerToExpire = s.maybeFindCPURunnerToUnload(pending, ggml, gpus)
if runnerToExpire == nil {
slog.Debug("cpu mode with available system memory or first model, loading")
s.loadFn(pending, ggml, gpus, numParallel)
break
}
// else we need to expire a runner
} else if loadedCount == 0 {
// No models loaded. Load the model but prefer the best fit.
slog.Debug("loading first model", "model", pending.model.ModelPath)
g := pickBestFitGPUs(pending, ggml, gpus, &numParallel)
if g != nil {
gpus = g
}
s.loadFn(pending, ggml, gpus, numParallel)
break
}
if runnerToExpire == nil {
// More than one loaded model, so we have to see if the
// new one fits
//
// We want to avoid loading on any GPUs that have other
// models still loading on them to avoid potential races
// with VRAM consumption ramping up during load
availGpus := s.filterGPUsWithoutLoadingModels(gpus)
// Update free memory from currently loaded models
s.updateFreeSpace(availGpus)
fitGpus := pickBestFitGPUs(pending, ggml, availGpus, &numParallel)
if fitGpus != nil {
slog.Debug("new model fits with existing models, loading")
s.loadFn(pending, ggml, fitGpus, numParallel)
break
}
// We couldn't find a set of GPUs to fully load the new
// model. If no other models are loading (both GPU lists
// are the same) then we need to unload another model to
// make room
if len(availGpus) < len(gpus) {
// There are other requests pending, and this one
// needs more time, so put it on the back of the
// queue so that we might satisfy other pending
// requests that aren't blocked
go func() {
// Process in a go routine to avoid deadlocking
// the scheduler if our queue is full
slog.Debug("delaying scheduling while other models finish loading", "attempts", pending.schedAttempts, "model", pending.model.ModelPath)
time.Sleep(s.reschedDelay)
s.pendingReqCh <- pending
}()
break
}
runnerToExpire = s.findRunnerToUnload()
}
}
if runnerToExpire == nil {
// Shouildn't happen
slog.Error("runner to expire was nil!")
continue
}
// Trigger an expiration to unload once it's done
runnerToExpire.refMu.Lock()
slog.Debug("resetting model to expire immediately to make room", "modelPath", runnerToExpire.modelPath, "refCount", runnerToExpire.refCount)
if runnerToExpire.expireTimer != nil {
runnerToExpire.expireTimer.Stop()
runnerToExpire.expireTimer = nil
}
runnerToExpire.sessionDuration = 0
if runnerToExpire.refCount <= 0 {
s.expiredCh <- runnerToExpire
}
runnerToExpire.refMu.Unlock()
// Wait for the unload to happen
// Note: at this point we're queueing up all incoming requests, even if they were for
// a different model that's loaded and not scheduled to be removed.
slog.Debug("waiting for pending requests to complete and unload to occur", "modelPath", runnerToExpire.modelPath)
select {
case <-ctx.Done():
slog.Debug("shutting down scheduler pending loop")
return
case <-s.unloadedCh:
slog.Debug("unload completed", "modelPath", runnerToExpire.modelPath)
continue
}
}
case <-s.unloadedCh:
// An unload request when there are no pending request can be ignored
slog.Debug("ignoring unload event with no pending requests")
}
}
}
func (s *Scheduler) processCompleted(ctx context.Context) {
// Process completed requests, expired timers, and unloading models
for {
select {
case <-ctx.Done():
slog.Debug("shutting down scheduler completed loop")
return
case finished := <-s.finishedReqCh:
s.loadedMu.Lock()
runner := s.loaded[finished.model.ModelPath]
s.loadedMu.Unlock()
if runner == nil {
slog.Error("finished request signal received after model unloaded", "modelPath", finished.model.ModelPath)
continue
}
runner.refMu.Lock()
runner.refCount--
if runner.refCount <= 0 {
if runner.sessionDuration <= 0 {
slog.Debug("runner with zero duration has gone idle, expiring to unload", "modelPath", runner.modelPath)
if runner.expireTimer != nil {
runner.expireTimer.Stop()
runner.expireTimer = nil
}
s.expiredCh <- runner
} else if runner.expireTimer == nil {
slog.Debug("runner with non-zero duration has gone idle, adding timer", "modelPath", runner.modelPath, "duration", runner.sessionDuration)
runner.expireTimer = time.AfterFunc(runner.sessionDuration, func() {
slog.Debug("timer expired, expiring to unload", "modelPath", runner.modelPath)
runner.refMu.Lock()
defer runner.refMu.Unlock()
if runner.expireTimer != nil {
runner.expireTimer.Stop()
runner.expireTimer = nil
}
s.expiredCh <- runner
})
runner.expiresAt = time.Now().Add(runner.sessionDuration)
} else {
slog.Debug("runner with non-zero duration has gone idle, resetting timer", "modelPath", runner.modelPath, "duration", runner.sessionDuration)
runner.expireTimer.Reset(runner.sessionDuration)
runner.expiresAt = time.Now().Add(runner.sessionDuration)
}
}
slog.Debug("after processing request finished event", "modelPath", runner.modelPath, "refCount", runner.refCount)
runner.refMu.Unlock()
case runner := <-s.expiredCh:
slog.Debug("runner expired event received", "modelPath", runner.modelPath)
runner.refMu.Lock()
if runner.refCount > 0 {
// Shouldn't happen, but safeguard to ensure no leaked runners
slog.Debug("expired event with positive ref count, retrying", "modelPath", runner.modelPath, "refCount", runner.refCount)
go func(runner *runnerRef) {
// We can't unload yet, but want to as soon as the current request completes
// So queue up another expired event
time.Sleep(10 * time.Millisecond)
s.expiredCh <- runner
}(runner)
runner.refMu.Unlock()
continue
}
s.loadedMu.Lock()
slog.Debug("got lock to unload", "modelPath", runner.modelPath)
finished := runner.waitForVRAMRecovery()
runner.unload()
delete(s.loaded, runner.modelPath)
s.loadedMu.Unlock()
slog.Debug("runner released", "modelPath", runner.modelPath)
runner.refMu.Unlock()
<-finished
slog.Debug("sending an unloaded event", "modelPath", runner.modelPath)
s.unloadedCh <- struct{}{}
}
}
}
// Complete the pending request and send the runner back to the requester
// Wires up a finished event after the request context is completed
// Updates session duration, and resets expiration timer
func (pending *LlmRequest) useLoadedRunner(runner *runnerRef, finished chan *LlmRequest) {
runner.refMu.Lock()
defer runner.refMu.Unlock()
runner.refCount++
if runner.expireTimer != nil {
runner.expireTimer.Stop()
runner.expireTimer = nil
}
if pending.sessionDuration != nil {
runner.sessionDuration = pending.sessionDuration.Duration
}
pending.successCh <- runner
go func() {
<-pending.ctx.Done()
slog.Debug("context for request finished")
finished <- pending
}()
}
func (s *Scheduler) load(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numParallel int) {
if numParallel < 1 {
numParallel = 1
}
sessionDuration := envconfig.KeepAlive
if req.sessionDuration != nil {
sessionDuration = req.sessionDuration.Duration
}
llama, err := s.newServerFn(gpus, req.model.ModelPath, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts, numParallel)
if err != nil {
// some older models are not compatible with newer versions of llama.cpp
// show a generalized compatibility error until there is a better way to
// check for model compatibility
if errors.Is(llm.ErrUnsupportedFormat, err) || strings.Contains(err.Error(), "failed to load model") {
err = fmt.Errorf("%v: this model may be incompatible with your version of Ollama. If you previously pulled this model, try updating it by running `ollama pull %s`", err, req.model.ShortName)
}
slog.Info("NewLlamaServer failed", "model", req.model.ModelPath, "error", err)
req.errCh <- err
return
}
runner := &runnerRef{
model: req.model,
modelPath: req.model.ModelPath,
llama: llama,
Options: &req.opts,
sessionDuration: sessionDuration,
gpus: gpus,
estimatedVRAM: llama.EstimatedVRAM(),
estimatedTotal: llama.EstimatedTotal(),
loading: true,
refCount: 1,
}
runner.numParallel = numParallel
runner.refMu.Lock()
s.loadedMu.Lock()
s.loaded[req.model.ModelPath] = runner
slog.Info("loaded runners", "count", len(s.loaded))
s.loadedMu.Unlock()
go func() {
defer runner.refMu.Unlock()
if err = llama.WaitUntilRunning(req.ctx); err != nil {
slog.Error("error loading llama server", "error", err)
runner.refCount--
req.errCh <- err
slog.Debug("triggering expiration for failed load", "model", runner.modelPath)
s.expiredCh <- runner
return
}
slog.Debug("finished setting up runner", "model", req.model.ModelPath)
runner.loading = false
go func() {
<-req.ctx.Done()
slog.Debug("context for request finished")
s.finishedReqCh <- req
}()
req.successCh <- runner
}()
}
func (s *Scheduler) updateFreeSpace(allGpus gpu.GpuInfoList) {
type predKey struct {
Library string
ID string
}
predMap := map[predKey]uint64{} // Sum up the total predicted usage per GPU for all runners
s.loadedMu.Lock()
for _, r := range s.loaded {
r.refMu.Lock()
if r.llama != nil {
for _, gpu := range allGpus {
predMap[predKey{gpu.Library, gpu.ID}] += r.llama.EstimatedVRAMByGPU(gpu.ID)
}
} else {
slog.Warn("unexpected nil runner reference, memory prediction may be incorrect")
}
r.refMu.Unlock()
}
s.loadedMu.Unlock()
// Now that we've summed up all the GPU usage predictions across all the loaded runners, update the gpu list
for i := range allGpus {
if p, ok := predMap[predKey{allGpus[i].Library, allGpus[i].ID}]; ok {
slog.Debug("gpu reported", "gpu", allGpus[i].ID, "library", allGpus[i].Library, "available", format.HumanBytes2(allGpus[i].FreeMemory))
if p > allGpus[i].TotalMemory {
// Shouldn't happen
slog.Warn("predicted usage exceeds VRAM", "gpu", allGpus[i].ID, "totalMemory", allGpus[i].TotalMemory, "predicted", p)
allGpus[i].FreeMemory = 0
} else if (allGpus[i].TotalMemory - p) < allGpus[i].FreeMemory { // predicted free is smaller than reported free, use it
// TODO maybe we should just always trust our numbers, since cuda's free memory reporting is laggy
// and we might unload models we didn't actually need to. The risk is if some other GPU intensive app is loaded
// after we start our first runner, then we'll never acount for that, so picking the smallest free value seems prudent.
allGpus[i].FreeMemory = allGpus[i].TotalMemory - p
}
slog.Info("updated VRAM based on existing loaded models", "gpu", allGpus[i].ID, "library", allGpus[i].Library, "total", format.HumanBytes2(allGpus[i].TotalMemory), "available", format.HumanBytes2(allGpus[i].FreeMemory))
}
}
}
// While models are loading the VRAM consumption numbers will be indeterminate, so we have
// to avoid scheduling another model on the same GPU(s) that haven't stabilized.
// This routine returns the set of GPUs that do not have an active loading model.
// If all GPUs have loading models, an empty list will be returned (not a single CPU entry)
func (s *Scheduler) filterGPUsWithoutLoadingModels(allGpus gpu.GpuInfoList) gpu.GpuInfoList {
ret := append(gpu.GpuInfoList{}, allGpus...)
s.loadedMu.Lock()
defer s.loadedMu.Unlock()
for _, runner := range s.loaded {
if runner.loading {
slog.Debug("overlapping loads detected", "gpus", runner.gpus, "model", runner.modelPath)
for _, busyGPU := range runner.gpus {
for i := range ret {
if ret[i].ID == busyGPU.ID {
ret = append(ret[:i], ret[i+1:]...)
break
}
}
}
}
}
return ret
}
// TODO consolidate sched_types.go
type runnerRef struct {
refMu sync.Mutex
// refCond sync.Cond // Signaled on transition from 1 -> 0 refCount
refCount uint // prevent unloading if > 0
// unloading bool // set to true when we are trying to unload the runner
llama llm.LlamaServer
loading bool // True only during initial load, then false forever
gpus gpu.GpuInfoList // Recorded at time of provisioning
estimatedVRAM uint64
estimatedTotal uint64
sessionDuration time.Duration
expireTimer *time.Timer
expiresAt time.Time
model *Model
modelPath string
numParallel int
*api.Options
}
// The refMu must already be held when calling unload
func (runner *runnerRef) unload() {
if runner.expireTimer != nil {
runner.expireTimer.Stop()
runner.expireTimer = nil
}
if runner.llama != nil {
runner.llama.Close()
}
runner.model = nil
runner.llama = nil
runner.Options = nil
runner.gpus = nil
}
func (runner *runnerRef) needsReload(ctx context.Context, req *LlmRequest) bool {
slog.Debug("evaluating already loaded", "model", req.model.ModelPath)
runner.refMu.Lock()
defer runner.refMu.Unlock()
timeout := 10 * time.Second
if runner.loading {
timeout = 2 * time.Minute // Initial load can take a long time for big models on slow systems...
}
if runner.Options == nil {
return true
}
// Don't reload runner if num_gpu=-1 was provided
optsExisting := runner.Options.Runner
optsNew := req.opts.Runner
if optsNew.NumGPU < 0 {
optsExisting.NumGPU = -1
optsNew.NumGPU = -1
}
// Normalize the NumCtx for parallelism
optsExisting.NumCtx = optsExisting.NumCtx / runner.numParallel
ctx, cancel := context.WithTimeout(ctx, timeout)
defer cancel()
if !reflect.DeepEqual(runner.model.AdapterPaths, req.model.AdapterPaths) || // have the adapters changed?
!reflect.DeepEqual(runner.model.ProjectorPaths, req.model.ProjectorPaths) || // have the projectors changed?
!reflect.DeepEqual(optsExisting, optsNew) || // have the runner options changed?
runner.llama.Ping(ctx) != nil {
return true
}
return false
}
// Free memory reporting on GPUs can lag for a while even after the runner
// exits, so we have to keep checking until we see the available memory recover,
// otherwise subsequent model loads will get far less layers loaded or worse
// case, may completely fall back to CPU mode.
// This routine must be called before the runner unloads so it can establish
// a before and after GPU memory allocation. The returned channel
// will be notified when we're done waiting, or have timed out and should
// proceed anyway
func (runner *runnerRef) waitForVRAMRecovery() chan interface{} {
finished := make(chan interface{}, 1)
// CPU or Metal don't need checking, so no waiting required
// windows can page VRAM, only cuda currently can report accurate used vram usage
if len(runner.gpus) == 0 ||
(len(runner.gpus) == 1 && (runner.gpus[0].Library == "cpu" || runner.gpus[0].Library == "metal")) ||
(runtime.GOOS == "windows" && runner.gpus[0].Library != "cuda") {
finished <- struct{}{}
return finished
}
start := time.Now()
// Establish a baseline before we unload
gpusBefore := gpu.GetGPUInfo()
var totalMemoryBefore, freeMemoryBefore uint64
for _, gpu := range gpusBefore {
totalMemoryBefore += gpu.TotalMemory
freeMemoryBefore += gpu.FreeMemory
}
go func() {
expiresAt := start.Add(5 * time.Second) // typical convergence is 0.5-1.5s
ticker := time.NewTicker(250 * time.Millisecond)
defer ticker.Stop()
for {
<-ticker.C
if time.Now().After(expiresAt) {
slog.Warn("gpu VRAM usage didn't recover within timeout", "seconds", time.Since(start).Seconds(), "model", runner.modelPath)
finished <- struct{}{}
}
// Query GPUs, look for free to go back up
gpusNow := gpu.GetGPUInfo()
var totalMemoryNow, freeMemoryNow uint64
for _, gpu := range gpusNow {
totalMemoryNow += gpu.TotalMemory
freeMemoryNow += gpu.FreeMemory
}
// If we're within ~80% of the estimated memory usage recovered, bail out
if float32(freeMemoryNow-freeMemoryBefore) > float32(runner.estimatedVRAM)*0.8 {
slog.Debug(fmt.Sprintf("gpu VRAM free memory converged after %0.2f seconds", time.Since(start).Seconds()), "model", runner.modelPath)
finished <- struct{}{}
return
}
}
}()
return finished
}
type ByDuration []*runnerRef
func (a ByDuration) Len() int { return len(a) }
func (a ByDuration) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func (a ByDuration) Less(i, j int) bool {
// uint64 to turn negative time (never unload) to largest
return uint64(a[i].sessionDuration) < uint64(a[j].sessionDuration)
}
// TODO - future consideration to pick runners based on size
// type BySize []*runnerRef
// func (a BySize) Len() int { return len(a) }
// func (a BySize) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
// func (a BySize) Less(i, j int) bool { return a[i].estimatedVRAM < a[j].estimatedVRAM }
// pickBestFitGPUs will try to find the optimal placement of the model in the available GPUs where the model fully fits
// If the model can not be fit fully within the available GPU(s) nil is returned
// If numParallel is <= 0, this will attempt try to optimize parallism based on available VRAM, and adjust
// opts.NumCtx accordingly
func pickBestFitGPUs(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numParallel *int) gpu.GpuInfoList {
var estimatedVRAM uint64
var numParallelToTry []int
if *numParallel <= 0 {
// If no specific parallel setting was provided, try larger then smaller, always end with 1
numParallelToTry = append(numParallelToTry, defaultParallel, 1)
} else {
numParallelToTry = []int{*numParallel}
}
for _, gl := range gpus.ByLibrary() {
var ok bool
sgl := append(make(gpu.GpuInfoList, 0, len(gl)), gl...)
// TODO - potentially sort by performance capability, existing models loaded, etc.
// TODO - Eliminate any GPUs that already have envconfig.MaxRunners loaded on them
// Note: at present, this will favor more VRAM over faster GPU speed in mixed setups
sort.Sort(sort.Reverse(gpu.ByFreeMemory(sgl)))
// First attempt to fit the model into a single GPU
for _, p := range numParallelToTry {
req.opts.NumCtx = req.origNumCtx * p
if !envconfig.SchedSpread {
for _, g := range sgl {
if ok, estimatedVRAM = llm.PredictServerFit([]gpu.GpuInfo{g}, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts); ok {
slog.Info("new model will fit in available VRAM in single GPU, loading", "model", req.model.ModelPath, "gpu", g.ID, "parallel", p, "available", g.FreeMemory, "required", format.HumanBytes2(estimatedVRAM))
*numParallel = p
return []gpu.GpuInfo{g}
}
}
}
}
// TODO future refinements
// - if multiple Libraries, see if any single GPU in any Library will fit
// - try subsets of GPUs instead of just falling back to 1 or all in a family
// Now try all the GPUs
for _, p := range numParallelToTry {
req.opts.NumCtx = req.origNumCtx * p
if ok, estimatedVRAM = llm.PredictServerFit(sgl, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts); ok {
slog.Info("new model will fit in available VRAM, loading", "model", req.model.ModelPath, "library", sgl[0].Library, "parallel", p, "required", format.HumanBytes2(estimatedVRAM))
*numParallel = p
return sgl
}
}
}
return nil
}
// findRunnerToUnload finds a runner to unload to make room for a new model
func (s *Scheduler) findRunnerToUnload() *runnerRef {
s.loadedMu.Lock()
runnerList := make([]*runnerRef, 0, len(s.loaded))
for _, r := range s.loaded {
runnerList = append(runnerList, r)
}
s.loadedMu.Unlock()
if len(runnerList) == 0 {
slog.Debug("no loaded runner to unload")
return nil
}
// In the future we can enhance the algorithm to be smarter about picking the optimal runner to unload
// e.g., if we have multiple options, will one make room for the request?
sort.Sort(ByDuration(runnerList))
// First try to find a runner that's already idle
for _, runner := range runnerList {
runner.refMu.Lock()
rc := runner.refCount
runner.refMu.Unlock()
if rc == 0 {
slog.Debug("found an idle runner to unload")
return runner
}
}
// None appear idle, just wait for the one with the shortest duration
slog.Debug("no idle runners, picking the shortest duration", "count", len(runnerList))
return runnerList[0]
}
func (s *Scheduler) unloadAllRunners() {
s.loadedMu.Lock()
defer s.loadedMu.Unlock()
for model, runner := range s.loaded {
if runner.llama != nil {
slog.Debug("shutting down runner", "model", model)
runner.llama.Close()
}
}
}
// If other runners are loaded, make sure the pending request will fit in system memory
// If not, pick a runner to unload, else return nil and the request can be loaded
func (s *Scheduler) maybeFindCPURunnerToUnload(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList) *runnerRef {
slog.Debug("evaluating if CPU model load will fit in available system memory")
estimate := llm.EstimateGPULayers(gpus, ggml, req.model.ProjectorPaths, req.opts)
if estimate.TotalSize <= gpus[0].FreeMemory {
slog.Debug("cpu inference mode, model fits in available system memory", "model", format.HumanBytes2(estimate.TotalSize), "available", format.HumanBytes2(gpus[0].FreeMemory))
return nil
}
// TODO - optimization: try to find CPU only runners first, or partial offloads with enough in system memory to make room
return s.findRunnerToUnload()
}