459 lines
11 KiB
Go
459 lines
11 KiB
Go
package llm
|
|
|
|
import (
|
|
"encoding/binary"
|
|
"errors"
|
|
"fmt"
|
|
"io"
|
|
"strings"
|
|
|
|
"github.com/ollama/ollama/util/bufioutil"
|
|
)
|
|
|
|
type GGML struct {
|
|
container
|
|
model
|
|
}
|
|
|
|
type model interface {
|
|
KV() KV
|
|
Tensors() Tensors
|
|
}
|
|
|
|
type KV map[string]any
|
|
|
|
func (kv KV) u64(key string) uint64 {
|
|
switch v := kv[key].(type) {
|
|
case uint64:
|
|
return v
|
|
case uint32:
|
|
return uint64(v)
|
|
case float64:
|
|
return uint64(v)
|
|
default:
|
|
return 0
|
|
}
|
|
}
|
|
|
|
func (kv KV) Architecture() string {
|
|
if s, ok := kv["general.architecture"].(string); ok {
|
|
return s
|
|
}
|
|
|
|
return "unknown"
|
|
}
|
|
|
|
func (kv KV) ParameterCount() uint64 {
|
|
return kv.u64("general.parameter_count")
|
|
}
|
|
|
|
func (kv KV) FileType() fileType {
|
|
if u64 := kv.u64("general.file_type"); u64 > 0 {
|
|
return fileType(uint32(u64))
|
|
}
|
|
|
|
return fileTypeUnknown
|
|
}
|
|
|
|
func (kv KV) BlockCount() uint64 {
|
|
return kv.u64(fmt.Sprintf("%s.block_count", kv.Architecture()))
|
|
}
|
|
|
|
func (kv KV) HeadCount() uint64 {
|
|
return kv.u64(fmt.Sprintf("%s.attention.head_count", kv.Architecture()))
|
|
}
|
|
|
|
func (kv KV) HeadCountKV() uint64 {
|
|
if headCountKV := kv.u64(fmt.Sprintf("%s.attention.head_count_kv", kv.Architecture())); headCountKV > 0 {
|
|
return headCountKV
|
|
}
|
|
|
|
return 1
|
|
}
|
|
|
|
func (kv KV) EmbeddingHeadCount() uint64 {
|
|
if heads := kv.HeadCount(); heads > 0 {
|
|
return kv.EmbeddingLength() / kv.HeadCount()
|
|
}
|
|
|
|
return 0
|
|
}
|
|
|
|
func (kv KV) EmbeddingHeadCountK() uint64 {
|
|
if k := kv.u64(fmt.Sprintf("%s.attention.key_length", kv.Architecture())); k > 0 {
|
|
return k
|
|
}
|
|
|
|
return kv.EmbeddingHeadCount()
|
|
}
|
|
|
|
func (kv KV) EmbeddingHeadCountV() uint64 {
|
|
if v := kv.u64(fmt.Sprintf("%s.attention.value_length", kv.Architecture())); v > 0 {
|
|
return v
|
|
}
|
|
|
|
return kv.EmbeddingHeadCount()
|
|
}
|
|
|
|
func (kv KV) GQA() uint64 {
|
|
return kv.HeadCount() / kv.HeadCountKV()
|
|
}
|
|
|
|
func (kv KV) EmbeddingLength() uint64 {
|
|
return kv.u64(fmt.Sprintf("%s.embedding_length", kv.Architecture()))
|
|
}
|
|
|
|
func (kv KV) ContextLength() uint64 {
|
|
return kv.u64(fmt.Sprintf("%s.context_length", kv.Architecture()))
|
|
}
|
|
|
|
func (kv KV) ChatTemplate() string {
|
|
s, _ := kv["tokenizer.chat_template"].(string)
|
|
return s
|
|
}
|
|
|
|
type Tensors struct {
|
|
Items []*Tensor
|
|
Offset uint64
|
|
}
|
|
|
|
func (ts Tensors) Layers() map[string]Layer {
|
|
layers := make(map[string]Layer)
|
|
for _, t := range ts.Items {
|
|
parts := strings.Split(t.Name, ".")
|
|
if parts[0] == "blk" {
|
|
// join first and second part, e.g. blk.%d
|
|
parts = append([]string{fmt.Sprintf("%s.%s", parts[0], parts[1])}, parts[2:]...)
|
|
}
|
|
|
|
if _, ok := layers[parts[0]]; !ok {
|
|
layers[parts[0]] = make(Layer)
|
|
}
|
|
|
|
layers[parts[0]][strings.Join(parts[1:], ".")] = t
|
|
}
|
|
|
|
return layers
|
|
}
|
|
|
|
type Layer map[string]*Tensor
|
|
|
|
func (l Layer) size() (size uint64) {
|
|
for _, t := range l {
|
|
size += t.Size()
|
|
}
|
|
|
|
return size
|
|
}
|
|
|
|
type Tensor struct {
|
|
Name string `json:"name"`
|
|
Kind uint32 `json:"kind"`
|
|
Offset uint64 `json:"-"`
|
|
|
|
// Shape is the number of elements in each dimension
|
|
Shape []uint64 `json:"shape"`
|
|
|
|
io.WriterTo `json:"-"`
|
|
}
|
|
|
|
func (t Tensor) blockSize() uint64 {
|
|
switch t.Kind {
|
|
case 0, 1, 24, 25, 26, 27, 28, 30: // F32, F16, I8, I16, I32, I64, F64, BF16
|
|
return 1
|
|
case 2, 3, 4, 5, 6, 7, 8, 9, 20: // Q4_0, Q4_1, Q5_0, Q5_1, Q8_0, Q8_1, IQ4_NL
|
|
return 32
|
|
default: // All others
|
|
return 256
|
|
}
|
|
}
|
|
|
|
func (t Tensor) typeSize() uint64 {
|
|
blockSize := t.blockSize()
|
|
|
|
switch t.Kind {
|
|
case 0: // FP32
|
|
return 4
|
|
case 1: // FP16
|
|
return 2
|
|
case 2: // Q4_0
|
|
return 2 + blockSize/2
|
|
case 3: // Q4_1
|
|
return 2 + 2 + blockSize/2
|
|
case 6: // Q5_0
|
|
return 2 + 4 + blockSize/2
|
|
case 7: // Q5_1
|
|
return 2 + 2 + 4 + blockSize/2
|
|
case 8: // Q8_0
|
|
return 2 + blockSize
|
|
case 9: // Q8_1
|
|
return 4 + 4 + blockSize
|
|
case 10: // Q2_K
|
|
return blockSize/16 + blockSize/4 + 2 + 2
|
|
case 11: // Q3_K
|
|
return blockSize/8 + blockSize/4 + 12 + 2
|
|
case 12: // Q4_K
|
|
return 2 + 2 + 12 + blockSize/2
|
|
case 13: // Q5_K
|
|
return 2 + 2 + 12 + blockSize/8 + blockSize/2
|
|
case 14: // Q6_K
|
|
return blockSize/2 + blockSize/4 + blockSize/16 + 2
|
|
case 15: // Q8_K
|
|
return 2 + blockSize + 2*blockSize/16
|
|
case 16: // IQ2_XXS
|
|
return 2 + 2*blockSize/8
|
|
case 17: // IQ2_XS
|
|
return 2 + 2*blockSize/8 + blockSize/32
|
|
case 18: // IQ3_XXS
|
|
return 2 + blockSize/4 + blockSize/8
|
|
case 19: // IQ1_S
|
|
return 2 + blockSize/8 + blockSize/16
|
|
case 20: // IQ4_NL
|
|
return 2 + blockSize/2
|
|
case 21: // IQ3_S
|
|
return 2 + blockSize/4 + blockSize/8 + blockSize/32 + 4
|
|
case 22: // IQ2_S
|
|
return 2 + blockSize/4 + blockSize/16
|
|
case 23: // IQ4_XS
|
|
return 2 + 2 + blockSize/2 + blockSize/64
|
|
case 24: // I8
|
|
return 1
|
|
case 25: // I16
|
|
return 2
|
|
case 26: // I32
|
|
return 4
|
|
case 27: // I64
|
|
return 8
|
|
case 28: // F64
|
|
return 8
|
|
case 29: // IQ1_M
|
|
return blockSize/8 + blockSize/16 + blockSize/32
|
|
default:
|
|
return 0
|
|
}
|
|
}
|
|
|
|
func (t Tensor) parameters() uint64 {
|
|
var count uint64 = 1
|
|
for _, n := range t.Shape {
|
|
count *= n
|
|
}
|
|
return count
|
|
}
|
|
|
|
func (t Tensor) Size() uint64 {
|
|
return t.parameters() * t.typeSize() / t.blockSize()
|
|
}
|
|
|
|
type container interface {
|
|
Name() string
|
|
Decode(io.ReadSeeker) (model, error)
|
|
}
|
|
|
|
const (
|
|
// Magic constant for `ggml` files (unversioned).
|
|
FILE_MAGIC_GGML = 0x67676d6c
|
|
// Magic constant for `ggml` files (versioned, ggmf).
|
|
FILE_MAGIC_GGMF = 0x67676d66
|
|
// Magic constant for `ggml` files (versioned, ggjt).
|
|
FILE_MAGIC_GGJT = 0x67676a74
|
|
// Magic constant for `ggla` files (LoRA adapter).
|
|
FILE_MAGIC_GGLA = 0x67676C61
|
|
// Magic constant for `gguf` files (versioned, gguf)
|
|
FILE_MAGIC_GGUF_LE = 0x46554747
|
|
FILE_MAGIC_GGUF_BE = 0x47475546
|
|
)
|
|
|
|
var ErrUnsupportedFormat = errors.New("unsupported model format")
|
|
|
|
func DetectGGMLType(b []byte) string {
|
|
switch binary.LittleEndian.Uint32(b[:4]) {
|
|
case FILE_MAGIC_GGML:
|
|
return "ggml"
|
|
case FILE_MAGIC_GGMF:
|
|
return "ggmf"
|
|
case FILE_MAGIC_GGJT:
|
|
return "ggjt"
|
|
case FILE_MAGIC_GGLA:
|
|
return "ggla"
|
|
case FILE_MAGIC_GGUF_LE, FILE_MAGIC_GGUF_BE:
|
|
return "gguf"
|
|
default:
|
|
return ""
|
|
}
|
|
}
|
|
|
|
// DecodeGGML decodes a GGML model from the given reader.
|
|
//
|
|
// It collects array values for arrays with a size less than or equal to
|
|
// maxArraySize. If maxArraySize is 0, the default value of 1024 is used. If
|
|
// the maxArraySize is negative, all arrays are collected.
|
|
func DecodeGGML(rs io.ReadSeeker, maxArraySize int) (*GGML, int64, error) {
|
|
if maxArraySize == 0 {
|
|
maxArraySize = 1024
|
|
}
|
|
|
|
rs = bufioutil.NewBufferedSeeker(rs, 32<<10)
|
|
|
|
var magic uint32
|
|
if err := binary.Read(rs, binary.LittleEndian, &magic); err != nil {
|
|
return nil, 0, err
|
|
}
|
|
|
|
var c container
|
|
switch magic {
|
|
case FILE_MAGIC_GGML, FILE_MAGIC_GGMF, FILE_MAGIC_GGJT:
|
|
return nil, 0, ErrUnsupportedFormat
|
|
case FILE_MAGIC_GGLA:
|
|
c = &containerGGLA{}
|
|
case FILE_MAGIC_GGUF_LE:
|
|
c = &containerGGUF{ByteOrder: binary.LittleEndian, maxArraySize: maxArraySize}
|
|
case FILE_MAGIC_GGUF_BE:
|
|
c = &containerGGUF{ByteOrder: binary.BigEndian, maxArraySize: maxArraySize}
|
|
default:
|
|
return nil, 0, errors.New("invalid file magic")
|
|
}
|
|
|
|
model, err := c.Decode(rs)
|
|
if err != nil {
|
|
return nil, 0, err
|
|
}
|
|
|
|
offset, err := rs.Seek(0, io.SeekCurrent)
|
|
if err != nil {
|
|
return nil, 0, err
|
|
}
|
|
|
|
// final model type
|
|
return &GGML{
|
|
container: c,
|
|
model: model,
|
|
}, offset, nil
|
|
}
|
|
|
|
func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload uint64) {
|
|
embedding := llm.KV().EmbeddingLength()
|
|
heads := llm.KV().HeadCount()
|
|
headsKV := llm.KV().HeadCountKV()
|
|
vocab := uint64(llm.KV()["tokenizer.ggml.tokens"].(*array).size)
|
|
|
|
embeddingHeads := llm.KV().EmbeddingHeadCount()
|
|
embeddingHeadsK := llm.KV().EmbeddingHeadCountK()
|
|
|
|
layers := llm.Tensors().Layers()
|
|
|
|
switch llm.KV().Architecture() {
|
|
case "llama":
|
|
fullOffload = 4 * batch * (1 + 4*embedding + context*(1+heads))
|
|
|
|
partialOffload = 4 * batch * embedding
|
|
partialOffload += max(
|
|
// 4*batch*(4+6*embedding+context*(2*heads)+llm.KV().GQA()),
|
|
4*batch*(1+embedding+max(context, embedding))+embedding*embedding*9/16+4*context*(batch*heads+embeddingHeads*headsKV),
|
|
4*batch*(embedding+vocab)+embedding*vocab*105/128,
|
|
)
|
|
|
|
if ffnGateExpsWeight, ok := layers["blk.0"]["ffn_gate_exps.weight"]; ok {
|
|
// mixtral 8x22b
|
|
ff := uint64(llm.KV()["llama.feed_forward_length"].(uint32))
|
|
partialOffload = max(
|
|
3*ffnGateExpsWeight.Size()+4*batch*(2*ff+headsKV+embedding+context+embeddingHeads*headsKV),
|
|
4*(context*batch*heads+context*embeddingHeads*headsKV+batch*1024+embeddingHeads*headsKV*batch),
|
|
)
|
|
} else if ffnGateWeight, ok := layers["blk.0"]["ffn_gate.0.weight"]; ok {
|
|
// mixtral 8x7b
|
|
ffnGateWeight1 := ffnGateWeight.Shape[1]
|
|
fullOffload = 4 * batch * (2 + 3*embedding + context*(1+heads) + 2*headsKV + ffnGateWeight1)
|
|
partialOffload = max(
|
|
4*batch*(3+embeddingHeads*headsKV+embedding+context*(1+heads)+ffnGateWeight1)+(embedding*embedding+3*embedding*headsKV*ffnGateWeight1)*9/16,
|
|
4*batch*(1+2*embedding+context*(1+heads))+embedding*(6*context*headsKV/heads+embedding*9/16),
|
|
)
|
|
}
|
|
case "gemma", "gemma2":
|
|
fullOffload = max(
|
|
4*batch*(embedding+vocab),
|
|
4*batch*(2+context+context*heads+2*embedding+2*embeddingHeadsK*heads),
|
|
)
|
|
|
|
partialOffload = max(
|
|
4*embedding*batch+embedding*vocab*105/128+4*vocab*batch,
|
|
4*batch*(2*embedding+1+2*embeddingHeadsK*heads+context+context*heads)+
|
|
4*embeddingHeadsK*context*8+
|
|
embedding*embeddingHeadsK*heads*9/16,
|
|
)
|
|
case "command-r":
|
|
fullOffload = max(
|
|
4*batch*(embedding+vocab),
|
|
4*batch*(2+4*embedding+context*(1+heads)),
|
|
)
|
|
|
|
partialOffload = max(
|
|
4*batch*(embedding+vocab)+embedding*vocab*105/128,
|
|
4*batch*(1+2*embedding+context*(1+heads))+4*embedding*context+embedding*embedding*9/16,
|
|
)
|
|
case "qwen2":
|
|
fullOffload = max(
|
|
4*batch*(embedding+vocab),
|
|
4*batch*(1+2*embedding+context+context*heads),
|
|
)
|
|
|
|
partialOffload = max(
|
|
4*batch*(embedding+vocab)+embedding*vocab*105/128,
|
|
4*(batch*(1+2*embedding+context*(1+heads))+embedding*(1+context)),
|
|
)
|
|
case "phi2":
|
|
fullOffload = max(
|
|
4*batch*(embedding+vocab),
|
|
4*batch*(1+4*embedding+context+context*heads),
|
|
)
|
|
|
|
partialOffload = max(
|
|
4*batch*(2*embedding+vocab)+embedding*vocab*105/128,
|
|
4*batch*(2+3*embedding+context+context*heads),
|
|
)
|
|
case "stablelm":
|
|
fullOffload = 4 * batch * (context*(1+heads) + 3*embedding + 2)
|
|
partialOffload = max(
|
|
4*batch*(vocab+2*embedding),
|
|
fullOffload,
|
|
)
|
|
case "deepseek2":
|
|
fullOffload = max(
|
|
4*batch*(3*embedding+vocab),
|
|
4*batch*(3*embedding+2+context*(1+headsKV)+2*embeddingHeadsK*headsKV),
|
|
)
|
|
|
|
partialOffload = max(
|
|
4*batch*(3*embedding+vocab)+embedding*vocab*105/128,
|
|
4*batch*(2*embedding+1+2*embeddingHeadsK*headsKV+context+context*headsKV)+4*embeddingHeadsK*context*headsKV+embedding*embeddingHeadsK*headsKV*9/16,
|
|
)
|
|
case "chatglm":
|
|
fullOffload = 4 * batch * (embedding + vocab)
|
|
partialOffload = 4*batch*(embedding+vocab) + embedding*vocab*105/128
|
|
if qkvBias, ok := layers["blk.0"]["attn_qkv.bias"]; ok {
|
|
fullOffload = max(
|
|
fullOffload,
|
|
4*batch*(2+
|
|
2*embedding+
|
|
context+
|
|
context*heads+
|
|
embeddingHeadsK*heads+
|
|
qkvBias.Shape[0]),
|
|
)
|
|
|
|
partialOffload = max(
|
|
partialOffload,
|
|
4*batch*(1+
|
|
2*embedding+
|
|
embeddingHeadsK*heads+
|
|
context+
|
|
context*heads)+
|
|
4*embeddingHeadsK*context+
|
|
4*context*embeddingHeadsK+
|
|
4*qkvBias.Shape[0],
|
|
)
|
|
}
|
|
}
|
|
|
|
return
|
|
}
|