f2890a4494
* fix(ext_server): Port llama.cpp sampling refactors to ext_server
This was a fairly large changeset. I closely followed the changes here:
df270ef745
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(server.cpp): Refactor server.cpp logging for llama.cpp overhaul
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Bump llama.cpp to the latest master with `granite` support
This does not yet have granite MoE support, but that can come in a
follow up PR
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(patches): Update all patches (except solar-pro) to work with bumped llama.cpp
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(solar): Update solar patch for llama.cpp bump
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat(llama.cpp): Bump llama.cpp for granitemoe support
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat(llama.cpp): Bump llama.cpp for granitemoe support
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(solar): Update the solar-pro patch for latest llama.cpp bump
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat(llama.cpp): Bump to the latest master of llama.cpp
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(patches): Update all patches for latest bump
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat(llama): Always run sync.sh from the right directory
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama/patches): Update llama patches
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat(llama)!: Rough sync with llama.cpp submodule
There are a number of changes that will need to be propagated to llama.go
before any of this works!
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama/patches): Add a patch and update for missing ggml-impl.h include
This include is where the ggml_cgraph struct is defined. It is included in
many of the .c files to define the forward declartion in ggml.h. It seems
that with the subset of code included here, the import was somehow lost (or
out-of-order) when building, so adding this include to llama.cpp fixes the
missing definition.
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama/sync): Add missing ggml-cpu-impl.h copy-over in sync.sh
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama): Add missing log.cpp
This was added as part of the logging overhaul done in llama.cpp
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama): Overhaul use of sampling module for llama.cpp changes
The changes here reflect the changes made in the big llama.cpp sampling PR
https://github.com/ggerganov/llama.cpp/pull/9294
The sampling functionality is now broken into the base interface
(llama_sampler) and the generation implementation (gpt_sampler). The
changes here reflect that. Since the sampling.h/sampling.cpp code uses c++
STL headers, the sampling_ext.[h|cpp] wrapper is maintained to allow go to
access a pure-C interface.
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama): Fix the impl of SampleTokenGreedy for new sampling
I don't think this method is currently used, so it could probably just be
removed so that all sampling goes through the GPT interface, but in the
interest of doing no harm, this should keep the method working as expected.
Branch: IBMGraniteArchitectureSupport
* fix(llama): Remove unused SampleTokenGreedy
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(sync): Remove bash-specific change to sync.sh
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* chore(gofumpt): Format on llama.go to pass linting
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llm): Fix missing <thread> include in ext_server
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama): Remove TODO about grammar_first
This feature was not used/needed previously so should be fine without
plumbing it through now.
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama): Better naming for sampling wrapper and args
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama): Fix patch 05 to use new wrapper api and re-sync
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* runner: Flush pending responses before returning
If there are any pending reponses (such as from potential stop
tokens) then we should send them back before ending the sequence.
Otherwise, we can be missing tokens at the end of a response.
Fixes #6707
* fix(llama/sampling): Use gpt_sampler with a forward declaration
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llama): Remove unnecessary patch for gguf impl header
This was caused by an earlier mistake in the embeddings patch that was
dereferencing the pointer instead of using the wrapper API.
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(llm): Remove use of deprecated --log-disable flag
Branch: IBMGraniteArchitectureSupport
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
---------
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
468 lines
18 KiB
Text
Vendored
468 lines
18 KiB
Text
Vendored
/**
|
|
* llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
|
|
*
|
|
* MIT License
|
|
*
|
|
* Copyright (c) 2023-2024 The ggml authors
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#include "common.cuh"
|
|
#include "fattn-common.cuh"
|
|
|
|
template<int D, int ncols, int parallel_blocks, ggml_type type_K, ggml_type type_V, bool use_logit_softcap> // D == head size
|
|
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
|
__launch_bounds__(D, 1)
|
|
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
|
static __global__ void flash_attn_vec_ext_f16(
|
|
const char * __restrict__ Q,
|
|
const char * __restrict__ K,
|
|
const char * __restrict__ V,
|
|
const char * __restrict__ mask,
|
|
float * __restrict__ dst,
|
|
float2 * __restrict__ dst_meta,
|
|
const float scale,
|
|
const float max_bias,
|
|
const float m0,
|
|
const float m1,
|
|
const uint32_t n_head_log2,
|
|
const float logit_softcap,
|
|
const int ne00,
|
|
const int ne01,
|
|
const int ne02,
|
|
const int ne03,
|
|
const int ne10,
|
|
const int ne11,
|
|
const int ne12,
|
|
const int ne13,
|
|
const int ne31,
|
|
const int nb31,
|
|
const int nb01,
|
|
const int nb02,
|
|
const int nb03,
|
|
const int nb11,
|
|
const int nb12,
|
|
const int nb13,
|
|
const int nb21,
|
|
const int nb22,
|
|
const int nb23,
|
|
const int ne0,
|
|
const int ne1,
|
|
const int ne2,
|
|
const int ne3) {
|
|
#ifdef FP16_AVAILABLE
|
|
// Skip unused kernel variants for faster compilation:
|
|
if (use_logit_softcap && !(D == 128 || D == 256)) {
|
|
NO_DEVICE_CODE;
|
|
return;
|
|
}
|
|
|
|
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
|
|
|
constexpr vec_dot_KQ_f16_t vec_dot_KQ = get_vec_dot_KQ_f16<D>(type_K);
|
|
constexpr bool Q_q8_1 = type_K != GGML_TYPE_F16;
|
|
constexpr dequantize_1_f16_t dequantize_1_v = get_dequantize_1_f16(type_V);
|
|
|
|
const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on.
|
|
const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
|
|
|
|
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
|
|
Q += nb02* blockIdx.y + nb01*ic0;
|
|
K += nb12*(blockIdx.y / gqa_ratio);
|
|
V += nb22*(blockIdx.y / gqa_ratio);
|
|
|
|
const half * maskh = (const half *) mask + ne11*ic0;
|
|
|
|
const float slopef = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
|
|
const half slopeh = __float2half(slopef);
|
|
|
|
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
|
|
constexpr int nwarps = D / WARP_SIZE;
|
|
const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
|
|
__builtin_assume(tid < D);
|
|
|
|
__shared__ half KQ[ncols*D];
|
|
half2 * KQ2 = (half2 *) KQ;
|
|
|
|
half kqmax[ncols];
|
|
#pragma unroll
|
|
for (int j = 0; j < ncols; ++j) {
|
|
kqmax[j] = -HALF_MAX_HALF;
|
|
}
|
|
half kqsum[ncols] = {0.0f};
|
|
|
|
__shared__ half kqmax_shared[ncols][WARP_SIZE];
|
|
__shared__ half kqsum_shared[ncols][WARP_SIZE];
|
|
#pragma unroll
|
|
for (int j = 0; j < ncols; ++j) {
|
|
if (threadIdx.y == 0) {
|
|
kqmax_shared[j][threadIdx.x] = -HALF_MAX_HALF;
|
|
kqsum_shared[j][threadIdx.x] = 0.0f;
|
|
}
|
|
}
|
|
__syncthreads();
|
|
|
|
// Convert Q to half2 (f16 K) or q8_1 (quantized K) and store in registers:
|
|
half2 Q_h2[ncols][D/(2*WARP_SIZE)];
|
|
int Q_i32[ncols][D/(sizeof(int)*QK8_1) == 0 ? 1 : D/(sizeof(int)*QK8_1)];
|
|
half2 Q_ds[ncols][D/QK8_1 == 0 ? 1 : D/QK8_1];
|
|
if (Q_q8_1) {
|
|
#pragma unroll
|
|
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
|
const int j = j0 + threadIdx.y;
|
|
|
|
if (j0 + nwarps > ncols && j >= ncols) {
|
|
break;
|
|
}
|
|
|
|
// Reuse KQ as temporary storage for converting Q to q8_1:
|
|
int * tmp_q_i32 = (int *) &KQ[j*D];
|
|
half2 * tmp_q_ds = (half2 *) (tmp_q_i32 + D/sizeof(int));
|
|
|
|
// Set memory to zero if out of bounds:
|
|
if (ncols > 2 && ic0 + j >= ne01) {
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) {
|
|
const int i = i0 + threadIdx.x;
|
|
|
|
tmp_q_i32[i] = 0;
|
|
}
|
|
if (threadIdx.x < D/QK8_1) {
|
|
tmp_q_ds[threadIdx.x] = make_half2(0.0f, 0.0f);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
const float * Q_f = (const float *) (Q + j*nb01);
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) {
|
|
quantize_q8_1_to_shared<half2>(Q_f + 4*i0, scale, tmp_q_i32, tmp_q_ds);
|
|
}
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
#pragma unroll
|
|
for (int j = 0; j < ncols; ++j) {
|
|
int * tmp_q_i32 = (int *) &KQ[j*D];
|
|
half2 * tmp_q_ds = (half2 *) (tmp_q_i32 + D/sizeof(int));
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) {
|
|
const int i = i0 + threadIdx.x;
|
|
|
|
Q_i32[j][i0/WARP_SIZE] = tmp_q_i32[i];
|
|
Q_ds[j][i0/WARP_SIZE] = tmp_q_ds[i/QI8_1];
|
|
}
|
|
}
|
|
|
|
__syncthreads();
|
|
} else {
|
|
#pragma unroll
|
|
for (int j = 0; j < ncols; ++j) {
|
|
const float2 * Q_f2_j = (const float2 *) (Q + j*nb01);
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
|
const int i = i0 + threadIdx.x;
|
|
|
|
const float2 tmp = ncols <= 2 || ic0 + j < ne01 ? Q_f2_j[i] : make_float2(0.0f, 0.0f);
|
|
Q_h2[j][i0/WARP_SIZE] = make_half2(scale, scale) * make_half2(tmp.x, tmp.y);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
#pragma unroll
|
|
for (int j = 0; j < ncols; ++j) {
|
|
KQ[j*D + tid] = -HALF_MAX_HALF;
|
|
}
|
|
|
|
half2 VKQ[ncols] = {{0.0f, 0.0f}};
|
|
|
|
const int k_start = parallel_blocks == 1 ? 0 : ip*D;
|
|
for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*D) {
|
|
// Calculate KQ tile and keep track of new maximum KQ values:
|
|
|
|
// For unknown reasons using a half array of size 1 for kqmax_new causes a performance regression,
|
|
// see https://github.com/ggerganov/llama.cpp/pull/7061 .
|
|
// Therefore this variable is defined twice but only used once (so that the compiler can optimize out the unused variable).
|
|
half kqmax_new = kqmax[0];
|
|
half kqmax_new_arr[ncols];
|
|
#pragma unroll
|
|
for (int j = 0; j < ncols; ++j) {
|
|
kqmax_new_arr[j] = kqmax[j];
|
|
}
|
|
|
|
#pragma unroll
|
|
for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += nwarps) {
|
|
const int i_KQ = i_KQ_0 + threadIdx.y;
|
|
|
|
if ((i_KQ_0 + nwarps > D && i_KQ >= D) || (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + i_KQ >= ne11)) {
|
|
break;
|
|
}
|
|
|
|
#pragma unroll
|
|
for (int j = 0; j < ncols; ++j) {
|
|
half sum = vec_dot_KQ(K + (k_VKQ_0 + i_KQ)*nb11, Q_h2[j], Q_i32[j], Q_ds[j]);
|
|
sum = warp_reduce_sum(sum);
|
|
|
|
if (use_logit_softcap) {
|
|
sum = logit_softcap*tanhf(sum);
|
|
}
|
|
|
|
sum += mask ? slopeh*maskh[j*ne11 + k_VKQ_0 + i_KQ] : __float2half(0.0f);
|
|
|
|
if (ncols == 1) {
|
|
kqmax_new = ggml_cuda_hmax(kqmax_new, sum);
|
|
} else {
|
|
kqmax_new_arr[j] = ggml_cuda_hmax(kqmax_new_arr[j], sum);
|
|
}
|
|
|
|
if (threadIdx.x == 0) {
|
|
KQ[j*D + i_KQ] = sum;
|
|
}
|
|
}
|
|
}
|
|
|
|
#pragma unroll
|
|
for (int j = 0; j < ncols; ++j) {
|
|
half kqmax_new_j = ncols == 1 ? kqmax_new : kqmax_new_arr[j];
|
|
|
|
kqmax_new_j = warp_reduce_max(kqmax_new_j);
|
|
if (threadIdx.x == 0) {
|
|
kqmax_shared[j][threadIdx.y] = kqmax_new_j;
|
|
}
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
#pragma unroll
|
|
for (int j = 0; j < ncols; ++j) {
|
|
half kqmax_new_j = kqmax_shared[j][threadIdx.x];
|
|
kqmax_new_j = warp_reduce_max(kqmax_new_j);
|
|
|
|
const half KQ_max_scale = hexp(kqmax[j] - kqmax_new_j);
|
|
kqmax[j] = kqmax_new_j;
|
|
|
|
const half val = hexp(KQ[j*D + tid] - kqmax[j]);
|
|
kqsum[j] = kqsum[j]*KQ_max_scale + val;
|
|
KQ[j*D + tid] = val;
|
|
|
|
VKQ[j] *= __half2half2(KQ_max_scale);
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
#pragma unroll
|
|
for (int k0 = 0; k0 < D; k0 += 2) {
|
|
if (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + k0 >= ne11) {
|
|
break;
|
|
}
|
|
|
|
half2 V_k;
|
|
reinterpret_cast<half&>(V_k.x) = dequantize_1_v(V + (k_VKQ_0 + k0 + 0)*nb21, tid);
|
|
reinterpret_cast<half&>(V_k.y) = dequantize_1_v(V + (k_VKQ_0 + k0 + 1)*nb21, tid);
|
|
#pragma unroll
|
|
for (int j = 0; j < ncols; ++j) {
|
|
VKQ[j] += V_k*KQ2[j*(D/2) + k0/2];
|
|
}
|
|
}
|
|
|
|
__syncthreads();
|
|
}
|
|
|
|
#pragma unroll
|
|
for (int j = 0; j < ncols; ++j) {
|
|
kqsum[j] = warp_reduce_sum(kqsum[j]);
|
|
if (threadIdx.x == 0) {
|
|
kqsum_shared[j][threadIdx.y] = kqsum[j];
|
|
}
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
#pragma unroll
|
|
for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) {
|
|
if (ncols > 2 && ic0 + j_VKQ >= ne01) {
|
|
break;
|
|
}
|
|
|
|
kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x];
|
|
kqsum[j_VKQ] = warp_reduce_sum(kqsum[j_VKQ]);
|
|
|
|
half dst_val = (__low2half(VKQ[j_VKQ]) + __high2half(VKQ[j_VKQ]));
|
|
if (parallel_blocks == 1) {
|
|
dst_val /= kqsum[j_VKQ];
|
|
}
|
|
const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
|
|
dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val;
|
|
}
|
|
|
|
if (parallel_blocks != 1 && tid < ncols && (ncols <= 2 || ic0 + tid < ne01)) {
|
|
dst_meta[(ic0 + tid)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[tid], kqsum[tid]);
|
|
}
|
|
#else
|
|
NO_DEVICE_CODE;
|
|
#endif // FP16_AVAILABLE
|
|
}
|
|
|
|
template <int D, int cols_per_block, int parallel_blocks, ggml_type type_K, ggml_type type_V, bool use_logit_softcap>
|
|
void ggml_cuda_flash_attn_ext_vec_f16_case_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
constexpr int nwarps = D/WARP_SIZE;
|
|
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>;
|
|
constexpr bool need_f16_K = D != 128;
|
|
constexpr bool need_f16_V = D != 128 && D != 64;
|
|
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, need_f16_K, need_f16_V);
|
|
}
|
|
|
|
template <int D, ggml_type type_K, ggml_type type_V>
|
|
void ggml_cuda_flash_attn_ext_vec_f16_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
const ggml_tensor * KQV = dst;
|
|
const ggml_tensor * Q = dst->src[0];
|
|
const ggml_tensor * K = dst->src[1];
|
|
const ggml_tensor * V = dst->src[2];
|
|
|
|
const int32_t precision = KQV->op_params[3];
|
|
GGML_ASSERT(precision == GGML_PREC_DEFAULT);
|
|
|
|
GGML_ASSERT(K->type == type_K);
|
|
GGML_ASSERT(V->type == type_V);
|
|
|
|
float logit_softcap;
|
|
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
|
|
|
|
if (Q->ne[1] == 1) {
|
|
constexpr int cols_per_block = 1;
|
|
constexpr int parallel_blocks = 4;
|
|
if (logit_softcap == 0.0f) {
|
|
constexpr bool use_logit_softcap = false;
|
|
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
|
|
} else {
|
|
constexpr bool use_logit_softcap = true;
|
|
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (Q->ne[1] == 2) {
|
|
constexpr int cols_per_block = 2;
|
|
constexpr int parallel_blocks = 4;
|
|
if (logit_softcap == 0.0f) {
|
|
constexpr bool use_logit_softcap = false;
|
|
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
|
|
} else {
|
|
constexpr bool use_logit_softcap = true;
|
|
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (Q->ne[1] <= 4) {
|
|
constexpr int cols_per_block = 4;
|
|
constexpr int parallel_blocks = 4;
|
|
if (logit_softcap == 0.0f) {
|
|
constexpr bool use_logit_softcap = false;
|
|
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
|
|
} else {
|
|
constexpr bool use_logit_softcap = true;
|
|
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (Q->ne[1] <= 8) {
|
|
constexpr int cols_per_block = 8;
|
|
constexpr int parallel_blocks = 4;
|
|
if (logit_softcap == 0.0f) {
|
|
constexpr bool use_logit_softcap = false;
|
|
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
|
|
} else {
|
|
constexpr bool use_logit_softcap = true;
|
|
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
|
|
}
|
|
return;
|
|
}
|
|
|
|
constexpr int cols_per_block = 8;
|
|
constexpr int parallel_blocks = 1;
|
|
if (logit_softcap == 0.0f) {
|
|
constexpr bool use_logit_softcap = false;
|
|
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
|
|
} else {
|
|
constexpr bool use_logit_softcap = true;
|
|
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
|
|
}
|
|
}
|
|
|
|
#define DECL_FATTN_VEC_F16_CASE(D, type_K, type_V) \
|
|
template void ggml_cuda_flash_attn_ext_vec_f16_case \
|
|
<D, type_K, type_V>(ggml_backend_cuda_context & ctx, ggml_tensor * dst) \
|
|
|
|
extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_0);
|
|
extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_1);
|
|
extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_0);
|
|
extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_1);
|
|
extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q8_0);
|
|
extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16);
|
|
|
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0);
|
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_0);
|
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_0);
|
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_0);
|
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0);
|
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_0);
|
|
|
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1);
|
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_1);
|
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_1);
|
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_1);
|
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_1);
|
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_1);
|
|
|
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_0);
|
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_0);
|
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_0);
|
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_0);
|
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_0);
|
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_0);
|
|
|
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_1);
|
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_1);
|
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_1);
|
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_1);
|
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_1);
|
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_1);
|
|
|
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0);
|
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q8_0);
|
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q8_0);
|
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q8_0);
|
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0);
|
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q8_0);
|
|
|
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_F16);
|
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_F16);
|
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_F16);
|
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_F16);
|
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_F16);
|
|
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16);
|
|
|
|
extern DECL_FATTN_VEC_F16_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16);
|