158 lines
4 KiB
Go
158 lines
4 KiB
Go
package convert
|
|
|
|
import (
|
|
"cmp"
|
|
"errors"
|
|
"fmt"
|
|
"io"
|
|
"os"
|
|
"path/filepath"
|
|
"regexp"
|
|
"strings"
|
|
|
|
"github.com/pdevine/tensor"
|
|
"github.com/pdevine/tensor/native"
|
|
|
|
"github.com/ollama/ollama/llm"
|
|
)
|
|
|
|
type LlamaModel struct {
|
|
ModelData
|
|
}
|
|
|
|
func (m *LlamaModel) GetTensors() error {
|
|
t, err := m.Format.GetTensors(m.Path, m.Params)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
pattern := `^blk\.[0-9]+\.attn_(?P<layer>q|k)\.weight$`
|
|
re, err := regexp.Compile(pattern)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
for _, l := range t {
|
|
matches := re.FindAllStringSubmatch(l.Name, -1)
|
|
if len(matches) > 0 {
|
|
switch m.Format.(type) {
|
|
case *TorchFormat:
|
|
wt := l.WriterTo.(torchWriterTo)
|
|
wt.repacker = m.Repack
|
|
l.WriterTo = wt
|
|
case *SafetensorFormat:
|
|
wt := l.WriterTo.(safetensorWriterTo)
|
|
wt.repacker = m.Repack
|
|
l.WriterTo = wt
|
|
}
|
|
}
|
|
m.Tensors = append(m.Tensors, l)
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
func (m *LlamaModel) LoadVocab() (err error) {
|
|
pre, ts, merges, err := parseTokens(filepath.Join(m.Path, "tokenizer.json"))
|
|
if errors.Is(err, os.ErrNotExist) {
|
|
return nil
|
|
} else if err != nil {
|
|
return err
|
|
}
|
|
|
|
m.Vocab = &Vocab{}
|
|
for _, t := range ts {
|
|
m.Vocab.Tokens = append(m.Vocab.Tokens, t.Content)
|
|
m.Vocab.Types = append(m.Vocab.Types, t.Type())
|
|
}
|
|
|
|
m.Vocab.Merges = merges
|
|
m.Params.PreTokenizer = pre
|
|
return nil
|
|
}
|
|
|
|
func (m *LlamaModel) WriteGGUF(ws io.WriteSeeker) error {
|
|
kv := llm.KV{
|
|
"general.architecture": "llama",
|
|
"general.name": m.Name,
|
|
"llama.vocab_size": uint32(len(m.Vocab.Tokens)),
|
|
"llama.context_length": uint32(m.Params.ContextSize),
|
|
"llama.embedding_length": uint32(m.Params.HiddenSize),
|
|
"llama.block_count": uint32(m.Params.HiddenLayers),
|
|
"llama.feed_forward_length": uint32(m.Params.IntermediateSize),
|
|
"llama.rope.freq_base": float32(m.Params.RopeFrequencyBase),
|
|
"llama.rope.dimension_count": uint32(m.Params.HiddenSize / m.Params.AttentionHeads),
|
|
"llama.attention.head_count": uint32(m.Params.AttentionHeads),
|
|
"llama.attention.head_count_kv": uint32(m.Params.KeyValHeads),
|
|
"llama.attention.layer_norm_rms_epsilon": float32(m.Params.NormEPS),
|
|
"general.file_type": uint32(1),
|
|
"tokenizer.ggml.model": "gpt2",
|
|
|
|
"tokenizer.ggml.pre": m.Params.PreTokenizer,
|
|
"tokenizer.ggml.tokens": m.Vocab.Tokens,
|
|
"tokenizer.ggml.token_type": m.Vocab.Types,
|
|
|
|
"tokenizer.ggml.bos_token_id": uint32(m.Params.BoSTokenID),
|
|
"tokenizer.ggml.eos_token_id": uint32(m.Params.EoSTokenID),
|
|
"tokenizer.ggml.unknown_token_id": uint32(0),
|
|
}
|
|
|
|
if len(m.Vocab.Merges) > 0 {
|
|
kv["tokenizer.ggml.merges"] = m.Vocab.Merges
|
|
} else {
|
|
kv["tokenizer.ggml.scores"] = m.Vocab.Scores
|
|
}
|
|
|
|
return llm.NewGGUFV3(m.Params.ByteOrder).Encode(ws, kv, m.Tensors)
|
|
}
|
|
|
|
func (m *LlamaModel) Repack(name string, data []float32, shape []uint64) ([]float32, error) {
|
|
return llamaRepack(name, m.Params, data, shape)
|
|
}
|
|
|
|
func llamaRepack(name string, params *Params, data []float32, shape []uint64) ([]float32, error) {
|
|
var dims []int
|
|
for _, dim := range shape {
|
|
if dim != 0 {
|
|
dims = append(dims, int(dim))
|
|
}
|
|
}
|
|
|
|
var heads int
|
|
if strings.HasSuffix(name, "attn_q.weight") {
|
|
heads = params.AttentionHeads
|
|
} else if strings.HasSuffix(name, "attn_k.weight") {
|
|
heads = cmp.Or(params.KeyValHeads, params.AttentionHeads)
|
|
} else {
|
|
return nil, fmt.Errorf("unknown tensor name: %s", name)
|
|
}
|
|
|
|
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
|
|
if err := n.Reshape(append([]int{heads, 2, dims[0] / heads / 2}, dims[1:]...)...); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
if err := n.T(0, 2, 1, 3); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
if err := n.Reshape(dims...); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
if err := n.Transpose(); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
ts, err := native.SelectF32(n, 1)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
var f32s []float32
|
|
for _, t := range ts {
|
|
f32s = append(f32s, t...)
|
|
}
|
|
|
|
return f32s, nil
|
|
}
|