ollama/convert/convert_mixtral.go
2024-08-20 17:27:51 -07:00

94 lines
2.2 KiB
Go

package convert
import (
"fmt"
"io"
"slices"
"strings"
"github.com/ollama/ollama/llm"
)
type mixtral struct {
llama
NumLocalExperts uint32 `json:"num_local_experts"`
NumExpertsPerToken uint32 `json:"num_experts_per_tok"`
}
func (p *mixtral) KV(t *Tokenizer) llm.KV {
kv := p.llama.KV(t)
if p.NumLocalExperts > 0 {
kv["llama.expert_count"] = p.NumLocalExperts
}
if p.NumExpertsPerToken > 0 {
kv["llama.expert_used_count"] = p.NumExpertsPerToken
}
return kv
}
func (p *mixtral) Tensors(ts []Tensor) []llm.Tensor {
oldnew := []string{
"model.layers", "blk",
"w1", "ffn_gate_exps",
"w2", "ffn_down_exps",
"w3", "ffn_up_exps",
}
for i := range p.NumLocalExperts {
oldnew = append(oldnew, fmt.Sprintf(".block_sparse_moe.experts.%d.", i), ".")
}
// group experts of the same layer (model.layers.%d) and type (w[123]) into a single tensor
namer := strings.NewReplacer(oldnew...)
experts := make(map[string]experts)
// merge experts into a single tensor while removing them from ts
ts = slices.DeleteFunc(ts, func(t Tensor) bool {
if !strings.Contains(t.Name(), ".block_sparse_moe.experts.") {
return false
}
name := namer.Replace(t.Name())
experts[name] = append(experts[name], t)
return true
})
var out []llm.Tensor
for n, e := range experts {
// TODO(mxyng): sanity check experts
out = append(out, llm.Tensor{
Name: n,
Kind: e[0].Kind(),
Shape: append([]uint64{uint64(len(e))}, e[0].Shape()...),
WriterTo: e,
})
}
return append(out, p.llama.Tensors(ts)...)
}
func (p *mixtral) Replacements() []string {
return append(
p.llama.Replacements(),
"block_sparse_moe.gate", "ffn_gate_inp",
)
}
type experts []Tensor
func (e experts) WriteTo(w io.Writer) (int64, error) {
// TODO(mxyng): experts _should_ be numerically sorted by expert but this should check
for _, t := range e {
// the canonical merged experts tensor stacks all experts along a new, 0 axis,
// e.g. `tensor.Stack(0, e[0], e[1:]...)`, which requires allocating temporary buffers
// this accomplishes the same thing by writing each expert tensor in sequence
if _, err := t.WriteTo(w); err != nil {
return 0, err
}
}
return 0, nil
}