369 lines
10 KiB
Go
369 lines
10 KiB
Go
//go:build linux || windows
|
|
|
|
package gpu
|
|
|
|
/*
|
|
#cgo linux LDFLAGS: -lrt -lpthread -ldl -lstdc++ -lm
|
|
#cgo windows LDFLAGS: -lpthread
|
|
|
|
#include "gpu_info.h"
|
|
|
|
*/
|
|
import "C"
|
|
import (
|
|
"fmt"
|
|
"log/slog"
|
|
"os"
|
|
"path/filepath"
|
|
"runtime"
|
|
"strings"
|
|
"sync"
|
|
"unsafe"
|
|
|
|
"github.com/ollama/ollama/format"
|
|
"github.com/ollama/ollama/server/envconfig"
|
|
)
|
|
|
|
type handles struct {
|
|
deviceCount int
|
|
cudart *C.cudart_handle_t
|
|
nvcuda *C.nvcuda_handle_t
|
|
}
|
|
|
|
const (
|
|
cudaMinimumMemory = 256 * format.MebiByte
|
|
rocmMinimumMemory = 256 * format.MebiByte
|
|
)
|
|
|
|
var gpuMutex sync.Mutex
|
|
|
|
// With our current CUDA compile flags, older than 5.0 will not work properly
|
|
var CudaComputeMin = [2]C.int{5, 0}
|
|
|
|
var RocmComputeMin = 9
|
|
|
|
// TODO find a better way to detect iGPU instead of minimum memory
|
|
const IGPUMemLimit = 1 * format.GibiByte // 512G is what they typically report, so anything less than 1G must be iGPU
|
|
|
|
var CudartLinuxGlobs = []string{
|
|
"/usr/local/cuda/lib64/libcudart.so*",
|
|
"/usr/lib/x86_64-linux-gnu/nvidia/current/libcudart.so*",
|
|
"/usr/lib/x86_64-linux-gnu/libcudart.so*",
|
|
"/usr/lib/wsl/lib/libcudart.so*",
|
|
"/usr/lib/wsl/drivers/*/libcudart.so*",
|
|
"/opt/cuda/lib64/libcudart.so*",
|
|
"/usr/local/cuda*/targets/aarch64-linux/lib/libcudart.so*",
|
|
"/usr/lib/aarch64-linux-gnu/nvidia/current/libcudart.so*",
|
|
"/usr/lib/aarch64-linux-gnu/libcudart.so*",
|
|
"/usr/local/cuda/lib*/libcudart.so*",
|
|
"/usr/lib*/libcudart.so*",
|
|
"/usr/local/lib*/libcudart.so*",
|
|
}
|
|
|
|
var CudartWindowsGlobs = []string{
|
|
"c:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v*\\bin\\cudart64_*.dll",
|
|
}
|
|
|
|
var NvcudaLinuxGlobs = []string{
|
|
"/usr/local/cuda*/targets/*/lib/libcuda.so*",
|
|
"/usr/lib/*-linux-gnu/nvidia/current/libcuda.so*",
|
|
"/usr/lib/*-linux-gnu/libcuda.so*",
|
|
"/usr/lib/wsl/lib/libcuda.so*",
|
|
"/usr/lib/wsl/drivers/*/libcuda.so*",
|
|
"/opt/cuda/lib*/libcuda.so*",
|
|
"/usr/local/cuda/lib*/libcuda.so*",
|
|
"/usr/lib*/libcuda.so*",
|
|
"/usr/local/lib*/libcuda.so*",
|
|
}
|
|
|
|
var NvcudaWindowsGlobs = []string{
|
|
"c:\\windows\\system*\\nvcuda.dll",
|
|
}
|
|
|
|
// Jetson devices have JETSON_JETPACK="x.y.z" factory set to the Jetpack version installed.
|
|
// Included to drive logic for reducing Ollama-allocated overhead on L4T/Jetson devices.
|
|
var CudaTegra string = os.Getenv("JETSON_JETPACK")
|
|
|
|
// Note: gpuMutex must already be held
|
|
func initGPUHandles() *handles {
|
|
|
|
// TODO - if the ollama build is CPU only, don't do these checks as they're irrelevant and confusing
|
|
|
|
gpuHandles := &handles{}
|
|
var cudartMgmtName string
|
|
var cudartMgmtPatterns []string
|
|
var nvcudaMgmtName string
|
|
var nvcudaMgmtPatterns []string
|
|
|
|
tmpDir, _ := PayloadsDir()
|
|
switch runtime.GOOS {
|
|
case "windows":
|
|
cudartMgmtName = "cudart64_*.dll"
|
|
localAppData := os.Getenv("LOCALAPPDATA")
|
|
cudartMgmtPatterns = []string{filepath.Join(localAppData, "Programs", "Ollama", cudartMgmtName)}
|
|
cudartMgmtPatterns = append(cudartMgmtPatterns, CudartWindowsGlobs...)
|
|
// Aligned with driver, we can't carry as payloads
|
|
nvcudaMgmtName = "nvcuda.dll"
|
|
nvcudaMgmtPatterns = NvcudaWindowsGlobs
|
|
case "linux":
|
|
cudartMgmtName = "libcudart.so*"
|
|
if tmpDir != "" {
|
|
// TODO - add "payloads" for subprocess
|
|
cudartMgmtPatterns = []string{filepath.Join(tmpDir, "cuda*", cudartMgmtName)}
|
|
}
|
|
cudartMgmtPatterns = append(cudartMgmtPatterns, CudartLinuxGlobs...)
|
|
// Aligned with driver, we can't carry as payloads
|
|
nvcudaMgmtName = "libcuda.so*"
|
|
nvcudaMgmtPatterns = NvcudaLinuxGlobs
|
|
default:
|
|
return gpuHandles
|
|
}
|
|
|
|
slog.Info("Detecting GPUs")
|
|
nvcudaLibPaths := FindGPULibs(nvcudaMgmtName, nvcudaMgmtPatterns)
|
|
if len(nvcudaLibPaths) > 0 {
|
|
deviceCount, nvcuda, libPath := LoadNVCUDAMgmt(nvcudaLibPaths)
|
|
if nvcuda != nil {
|
|
slog.Info("detected GPUs", "count", deviceCount, "library", libPath)
|
|
gpuHandles.nvcuda = nvcuda
|
|
gpuHandles.deviceCount = deviceCount
|
|
return gpuHandles
|
|
}
|
|
}
|
|
|
|
cudartLibPaths := FindGPULibs(cudartMgmtName, cudartMgmtPatterns)
|
|
if len(cudartLibPaths) > 0 {
|
|
deviceCount, cudart, libPath := LoadCUDARTMgmt(cudartLibPaths)
|
|
if cudart != nil {
|
|
slog.Info("detected GPUs", "library", libPath, "count", deviceCount)
|
|
gpuHandles.cudart = cudart
|
|
gpuHandles.deviceCount = deviceCount
|
|
return gpuHandles
|
|
}
|
|
}
|
|
return gpuHandles
|
|
}
|
|
|
|
func GetGPUInfo() GpuInfoList {
|
|
// TODO - consider exploring lspci (and equivalent on windows) to check for
|
|
// GPUs so we can report warnings if we see Nvidia/AMD but fail to load the libraries
|
|
gpuMutex.Lock()
|
|
defer gpuMutex.Unlock()
|
|
|
|
gpuHandles := initGPUHandles()
|
|
defer func() {
|
|
if gpuHandles.cudart != nil {
|
|
C.cudart_release(*gpuHandles.cudart)
|
|
}
|
|
if gpuHandles.nvcuda != nil {
|
|
C.nvcuda_release(*gpuHandles.nvcuda)
|
|
}
|
|
}()
|
|
|
|
// All our GPU builds on x86 have AVX enabled, so fallback to CPU if we don't detect at least AVX
|
|
cpuVariant := GetCPUVariant()
|
|
if cpuVariant == "" && runtime.GOARCH == "amd64" {
|
|
slog.Warn("CPU does not have AVX or AVX2, disabling GPU support.")
|
|
}
|
|
|
|
// On windows we bundle the nvidia library one level above the runner dir
|
|
depPath := ""
|
|
if runtime.GOOS == "windows" && envconfig.RunnersDir != "" {
|
|
depPath = filepath.Dir(envconfig.RunnersDir)
|
|
}
|
|
|
|
var memInfo C.mem_info_t
|
|
resp := []GpuInfo{}
|
|
|
|
// NVIDIA first
|
|
for i := 0; i < gpuHandles.deviceCount; i++ {
|
|
// TODO once we support CPU compilation variants of GPU libraries refine this...
|
|
if cpuVariant == "" && runtime.GOARCH == "amd64" {
|
|
continue
|
|
}
|
|
gpuInfo := GpuInfo{
|
|
Library: "cuda",
|
|
}
|
|
if gpuHandles.cudart != nil {
|
|
C.cudart_check_vram(*gpuHandles.cudart, C.int(i), &memInfo)
|
|
} else {
|
|
C.nvcuda_check_vram(*gpuHandles.nvcuda, C.int(i), &memInfo)
|
|
}
|
|
if memInfo.err != nil {
|
|
slog.Info("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err))
|
|
C.free(unsafe.Pointer(memInfo.err))
|
|
continue
|
|
}
|
|
if memInfo.major < CudaComputeMin[0] || (memInfo.major == CudaComputeMin[0] && memInfo.minor < CudaComputeMin[1]) {
|
|
slog.Info(fmt.Sprintf("[%d] CUDA GPU is too old. Compute Capability detected: %d.%d", i, memInfo.major, memInfo.minor))
|
|
continue
|
|
}
|
|
gpuInfo.TotalMemory = uint64(memInfo.total)
|
|
gpuInfo.FreeMemory = uint64(memInfo.free)
|
|
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
|
|
gpuInfo.Major = int(memInfo.major)
|
|
gpuInfo.Minor = int(memInfo.minor)
|
|
gpuInfo.MinimumMemory = cudaMinimumMemory
|
|
gpuInfo.DependencyPath = depPath
|
|
|
|
// TODO potentially sort on our own algorithm instead of what the underlying GPU library does...
|
|
resp = append(resp, gpuInfo)
|
|
}
|
|
|
|
// Then AMD
|
|
resp = append(resp, AMDGetGPUInfo()...)
|
|
|
|
if len(resp) == 0 {
|
|
C.cpu_check_ram(&memInfo)
|
|
if memInfo.err != nil {
|
|
slog.Info("error looking up CPU memory", "error", C.GoString(memInfo.err))
|
|
C.free(unsafe.Pointer(memInfo.err))
|
|
return resp
|
|
}
|
|
gpuInfo := GpuInfo{
|
|
Library: "cpu",
|
|
Variant: cpuVariant,
|
|
}
|
|
gpuInfo.TotalMemory = uint64(memInfo.total)
|
|
gpuInfo.FreeMemory = uint64(memInfo.free)
|
|
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
|
|
|
|
resp = append(resp, gpuInfo)
|
|
}
|
|
|
|
return resp
|
|
}
|
|
|
|
func GetCPUMem() (memInfo, error) {
|
|
var ret memInfo
|
|
var info C.mem_info_t
|
|
C.cpu_check_ram(&info)
|
|
if info.err != nil {
|
|
defer C.free(unsafe.Pointer(info.err))
|
|
return ret, fmt.Errorf(C.GoString(info.err))
|
|
}
|
|
ret.FreeMemory = uint64(info.free)
|
|
ret.TotalMemory = uint64(info.total)
|
|
return ret, nil
|
|
}
|
|
|
|
func FindGPULibs(baseLibName string, defaultPatterns []string) []string {
|
|
// Multiple GPU libraries may exist, and some may not work, so keep trying until we exhaust them
|
|
var ldPaths []string
|
|
var patterns []string
|
|
gpuLibPaths := []string{}
|
|
slog.Debug("Searching for GPU library", "name", baseLibName)
|
|
|
|
switch runtime.GOOS {
|
|
case "windows":
|
|
ldPaths = strings.Split(os.Getenv("PATH"), ";")
|
|
case "linux":
|
|
ldPaths = strings.Split(os.Getenv("LD_LIBRARY_PATH"), ":")
|
|
default:
|
|
return gpuLibPaths
|
|
}
|
|
// Start with whatever we find in the PATH/LD_LIBRARY_PATH
|
|
for _, ldPath := range ldPaths {
|
|
d, err := filepath.Abs(ldPath)
|
|
if err != nil {
|
|
continue
|
|
}
|
|
patterns = append(patterns, filepath.Join(d, baseLibName+"*"))
|
|
}
|
|
patterns = append(patterns, defaultPatterns...)
|
|
slog.Debug("gpu library search", "globs", patterns)
|
|
for _, pattern := range patterns {
|
|
|
|
// Nvidia PhysX known to return bogus results
|
|
if strings.Contains(pattern, "PhysX") {
|
|
slog.Debug("skipping PhysX cuda library path", "path", pattern)
|
|
}
|
|
// Ignore glob discovery errors
|
|
matches, _ := filepath.Glob(pattern)
|
|
for _, match := range matches {
|
|
// Resolve any links so we don't try the same lib multiple times
|
|
// and weed out any dups across globs
|
|
libPath := match
|
|
tmp := match
|
|
var err error
|
|
for ; err == nil; tmp, err = os.Readlink(libPath) {
|
|
if !filepath.IsAbs(tmp) {
|
|
tmp = filepath.Join(filepath.Dir(libPath), tmp)
|
|
}
|
|
libPath = tmp
|
|
}
|
|
new := true
|
|
for _, cmp := range gpuLibPaths {
|
|
if cmp == libPath {
|
|
new = false
|
|
break
|
|
}
|
|
}
|
|
if new {
|
|
gpuLibPaths = append(gpuLibPaths, libPath)
|
|
}
|
|
}
|
|
}
|
|
slog.Debug("discovered GPU libraries", "paths", gpuLibPaths)
|
|
return gpuLibPaths
|
|
}
|
|
|
|
func LoadCUDARTMgmt(cudartLibPaths []string) (int, *C.cudart_handle_t, string) {
|
|
var resp C.cudart_init_resp_t
|
|
resp.ch.verbose = getVerboseState()
|
|
for _, libPath := range cudartLibPaths {
|
|
lib := C.CString(libPath)
|
|
defer C.free(unsafe.Pointer(lib))
|
|
C.cudart_init(lib, &resp)
|
|
if resp.err != nil {
|
|
slog.Debug("Unable to load cudart", "library", libPath, "error", C.GoString(resp.err))
|
|
C.free(unsafe.Pointer(resp.err))
|
|
} else {
|
|
return int(resp.num_devices), &resp.ch, libPath
|
|
}
|
|
}
|
|
return 0, nil, ""
|
|
}
|
|
|
|
func LoadNVCUDAMgmt(nvcudaLibPaths []string) (int, *C.nvcuda_handle_t, string) {
|
|
var resp C.nvcuda_init_resp_t
|
|
resp.ch.verbose = getVerboseState()
|
|
for _, libPath := range nvcudaLibPaths {
|
|
lib := C.CString(libPath)
|
|
defer C.free(unsafe.Pointer(lib))
|
|
C.nvcuda_init(lib, &resp)
|
|
if resp.err != nil {
|
|
slog.Debug("Unable to load nvcuda", "library", libPath, "error", C.GoString(resp.err))
|
|
C.free(unsafe.Pointer(resp.err))
|
|
} else {
|
|
return int(resp.num_devices), &resp.ch, libPath
|
|
}
|
|
}
|
|
return 0, nil, ""
|
|
}
|
|
|
|
func getVerboseState() C.uint16_t {
|
|
if envconfig.Debug {
|
|
return C.uint16_t(1)
|
|
}
|
|
return C.uint16_t(0)
|
|
}
|
|
|
|
// Given the list of GPUs this instantiation is targeted for,
|
|
// figure out the visible devices environment variable
|
|
//
|
|
// If different libraries are detected, the first one is what we use
|
|
func (l GpuInfoList) GetVisibleDevicesEnv() (string, string) {
|
|
if len(l) == 0 {
|
|
return "", ""
|
|
}
|
|
switch l[0].Library {
|
|
case "cuda":
|
|
return cudaGetVisibleDevicesEnv(l)
|
|
case "rocm":
|
|
return rocmGetVisibleDevicesEnv(l)
|
|
default:
|
|
slog.Debug("no filter required for library " + l[0].Library)
|
|
return "", ""
|
|
}
|
|
}
|