696 lines
No EOL
22 KiB
C++
696 lines
No EOL
22 KiB
C++
#include "common.h"
|
|
#include "llama.h"
|
|
|
|
#include "binding.h"
|
|
|
|
#include <cassert>
|
|
#include <cinttypes>
|
|
#include <cmath>
|
|
#include <cstdio>
|
|
#include <cstring>
|
|
#include <fstream>
|
|
#include <iostream>
|
|
#include <regex>
|
|
#include <sstream>
|
|
#include <string>
|
|
#include <vector>
|
|
#if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__))
|
|
#include <signal.h>
|
|
#include <unistd.h>
|
|
#elif defined(_WIN32)
|
|
#define WIN32_LEAN_AND_MEAN
|
|
#define NOMINMAX
|
|
#include <signal.h>
|
|
#include <windows.h>
|
|
#endif
|
|
|
|
#if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__)) || \
|
|
defined(_WIN32)
|
|
void sigint_handler(int signo) {
|
|
if (signo == SIGINT) {
|
|
_exit(130);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
int get_embeddings(void *params_ptr, void *state_pr, float *res_embeddings) {
|
|
gpt_params *params_p = (gpt_params *)params_ptr;
|
|
llama_context *ctx = (llama_context *)state_pr;
|
|
gpt_params params = *params_p;
|
|
|
|
if (params.seed <= 0) {
|
|
params.seed = time(NULL);
|
|
}
|
|
|
|
std::mt19937 rng(params.seed);
|
|
|
|
llama_init_backend(params.numa);
|
|
|
|
int n_past = 0;
|
|
|
|
// Add a space in front of the first character to match OG llama tokenizer
|
|
// behavior
|
|
params.prompt.insert(0, 1, ' ');
|
|
|
|
// tokenize the prompt
|
|
auto embd_inp = ::llama_tokenize(ctx, params.prompt, true);
|
|
|
|
// determine newline token
|
|
auto llama_token_newline = ::llama_tokenize(ctx, "\n", false);
|
|
|
|
if (embd_inp.size() > 0) {
|
|
if (llama_eval(ctx, embd_inp.data(), embd_inp.size(), n_past,
|
|
params.n_threads)) {
|
|
fprintf(stderr, "%s : failed to eval\n", __func__);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
const int n_embd = llama_n_embd(ctx);
|
|
|
|
const auto embeddings = llama_get_embeddings(ctx);
|
|
|
|
for (int i = 0; i < n_embd; i++) {
|
|
res_embeddings[i] = embeddings[i];
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int get_token_embeddings(void *params_ptr, void *state_pr, int *tokens,
|
|
int tokenSize, float *res_embeddings) {
|
|
gpt_params *params_p = (gpt_params *)params_ptr;
|
|
llama_context *ctx = (llama_context *)state_pr;
|
|
gpt_params params = *params_p;
|
|
|
|
for (int i = 0; i < tokenSize; i++) {
|
|
auto token_str = llama_token_to_str(ctx, tokens[i]);
|
|
if (token_str == nullptr) {
|
|
continue;
|
|
}
|
|
std::vector<std::string> my_vector;
|
|
std::string str_token(token_str); // create a new std::string from the char*
|
|
params_p->prompt += str_token;
|
|
}
|
|
|
|
return get_embeddings(params_ptr, state_pr, res_embeddings);
|
|
}
|
|
|
|
int eval(void *params_ptr, void *state_pr, char *text) {
|
|
gpt_params *params_p = (gpt_params *)params_ptr;
|
|
llama_context *ctx = (llama_context *)state_pr;
|
|
|
|
auto n_past = 0;
|
|
auto last_n_tokens_data =
|
|
std::vector<llama_token>(params_p->repeat_last_n, 0);
|
|
|
|
auto tokens = std::vector<llama_token>(params_p->n_ctx);
|
|
auto n_prompt_tokens =
|
|
llama_tokenize(ctx, text, tokens.data(), tokens.size(), true);
|
|
|
|
if (n_prompt_tokens < 1) {
|
|
fprintf(stderr, "%s : failed to tokenize prompt\n", __func__);
|
|
return 1;
|
|
}
|
|
|
|
// evaluate prompt
|
|
return llama_eval(ctx, tokens.data(), n_prompt_tokens, n_past,
|
|
params_p->n_threads);
|
|
}
|
|
|
|
int llama_predict(void *params_ptr, void *state_pr, char *result, bool debug) {
|
|
gpt_params *params_p = (gpt_params *)params_ptr;
|
|
llama_context *ctx = (llama_context *)state_pr;
|
|
|
|
gpt_params params = *params_p;
|
|
|
|
const int n_ctx = llama_n_ctx(ctx);
|
|
|
|
if (params.seed <= 0) {
|
|
params.seed = time(NULL);
|
|
}
|
|
|
|
std::mt19937 rng(params.seed);
|
|
|
|
std::string path_session = params.path_prompt_cache;
|
|
std::vector<llama_token> session_tokens;
|
|
|
|
if (!path_session.empty()) {
|
|
if (debug) {
|
|
fprintf(stderr, "%s: attempting to load saved session from '%s'\n",
|
|
__func__, path_session.c_str());
|
|
}
|
|
// fopen to check for existing session
|
|
FILE *fp = std::fopen(path_session.c_str(), "rb");
|
|
if (fp != NULL) {
|
|
std::fclose(fp);
|
|
|
|
session_tokens.resize(n_ctx);
|
|
size_t n_token_count_out = 0;
|
|
if (!llama_load_session_file(
|
|
ctx, path_session.c_str(), session_tokens.data(),
|
|
session_tokens.capacity(), &n_token_count_out)) {
|
|
fprintf(stderr, "%s: error: failed to load session file '%s'\n",
|
|
__func__, path_session.c_str());
|
|
return 1;
|
|
}
|
|
session_tokens.resize(n_token_count_out);
|
|
llama_set_rng_seed(ctx, params.seed);
|
|
if (debug) {
|
|
fprintf(stderr, "%s: loaded a session with prompt size of %d tokens\n",
|
|
__func__, (int)session_tokens.size());
|
|
}
|
|
} else {
|
|
if (debug) {
|
|
fprintf(stderr, "%s: session file does not exist, will create\n",
|
|
__func__);
|
|
}
|
|
}
|
|
}
|
|
|
|
std::vector<llama_token> embd_inp;
|
|
if (!params.prompt.empty() || session_tokens.empty()) {
|
|
// Add a space in front of the first character to match OG llama tokenizer
|
|
// behavior
|
|
params.prompt.insert(0, 1, ' ');
|
|
|
|
embd_inp = ::llama_tokenize(ctx, params.prompt, true);
|
|
} else {
|
|
embd_inp = session_tokens;
|
|
}
|
|
|
|
// debug message about similarity of saved session, if applicable
|
|
size_t n_matching_session_tokens = 0;
|
|
if (session_tokens.size()) {
|
|
for (llama_token id : session_tokens) {
|
|
if (n_matching_session_tokens >= embd_inp.size() ||
|
|
id != embd_inp[n_matching_session_tokens]) {
|
|
break;
|
|
}
|
|
n_matching_session_tokens++;
|
|
}
|
|
if (debug) {
|
|
if (params.prompt.empty() &&
|
|
n_matching_session_tokens == embd_inp.size()) {
|
|
fprintf(stderr, "%s: using full prompt from session file\n", __func__);
|
|
} else if (n_matching_session_tokens >= embd_inp.size()) {
|
|
fprintf(stderr, "%s: session file has exact match for prompt!\n",
|
|
__func__);
|
|
} else if (n_matching_session_tokens < (embd_inp.size() / 2)) {
|
|
fprintf(stderr,
|
|
"%s: warning: session file has low similarity to prompt (%zu / "
|
|
"%zu tokens); will mostly be reevaluated\n",
|
|
__func__, n_matching_session_tokens, embd_inp.size());
|
|
} else {
|
|
fprintf(stderr, "%s: session file matches %zu / %zu tokens of prompt\n",
|
|
__func__, n_matching_session_tokens, embd_inp.size());
|
|
}
|
|
}
|
|
}
|
|
// if we will use the cache for the full prompt without reaching the end of
|
|
// the cache, force reevaluation of the last token token to recalculate the
|
|
// cached logits
|
|
if (!embd_inp.empty() && n_matching_session_tokens == embd_inp.size() &&
|
|
session_tokens.size() > embd_inp.size()) {
|
|
session_tokens.resize(embd_inp.size() - 1);
|
|
}
|
|
// number of tokens to keep when resetting context
|
|
if (params.n_keep < 0 || params.n_keep > (int)embd_inp.size()) {
|
|
params.n_keep = (int)embd_inp.size();
|
|
}
|
|
|
|
// determine newline token
|
|
auto llama_token_newline = ::llama_tokenize(ctx, "\n", false);
|
|
|
|
// TODO: replace with ring-buffer
|
|
std::vector<llama_token> last_n_tokens(n_ctx);
|
|
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
|
|
|
|
bool need_to_save_session =
|
|
!path_session.empty() && n_matching_session_tokens < embd_inp.size();
|
|
int n_past = 0;
|
|
int n_remain = params.n_predict;
|
|
int n_consumed = 0;
|
|
int n_session_consumed = 0;
|
|
|
|
std::vector<llama_token> embd;
|
|
std::string res = "";
|
|
|
|
// do one empty run to warm up the model
|
|
{
|
|
const std::vector<llama_token> tmp = {
|
|
llama_token_bos(),
|
|
};
|
|
llama_eval(ctx, tmp.data(), tmp.size(), 0, params.n_threads);
|
|
llama_reset_timings(ctx);
|
|
}
|
|
|
|
while (n_remain != 0) {
|
|
// predict
|
|
if (embd.size() > 0) {
|
|
// infinite text generation via context swapping
|
|
// if we run out of context:
|
|
// - take the n_keep first tokens from the original prompt (via n_past)
|
|
// - take half of the last (n_ctx - n_keep) tokens and recompute the
|
|
// logits in batches
|
|
if (n_past + (int)embd.size() > n_ctx) {
|
|
const int n_left = n_past - params.n_keep;
|
|
|
|
// always keep the first token - BOS
|
|
n_past = std::max(1, params.n_keep);
|
|
|
|
// insert n_left/2 tokens at the start of embd from last_n_tokens
|
|
embd.insert(embd.begin(),
|
|
last_n_tokens.begin() + n_ctx - n_left / 2 - embd.size(),
|
|
last_n_tokens.end() - embd.size());
|
|
|
|
// stop saving session if we run out of context
|
|
path_session.clear();
|
|
|
|
// printf("\n---\n");
|
|
// printf("resetting: '");
|
|
// for (int i = 0; i < (int) embd.size(); i++) {
|
|
// printf("%s", llama_token_to_str(ctx, embd[i]));
|
|
// }
|
|
// printf("'\n");
|
|
// printf("\n---\n");
|
|
}
|
|
|
|
// try to reuse a matching prefix from the loaded session instead of
|
|
// re-eval (via n_past)
|
|
if (n_session_consumed < (int)session_tokens.size()) {
|
|
size_t i = 0;
|
|
for (; i < embd.size(); i++) {
|
|
if (embd[i] != session_tokens[n_session_consumed]) {
|
|
session_tokens.resize(n_session_consumed);
|
|
break;
|
|
}
|
|
|
|
n_past++;
|
|
n_session_consumed++;
|
|
|
|
if (n_session_consumed >= (int)session_tokens.size()) {
|
|
++i;
|
|
break;
|
|
}
|
|
}
|
|
if (i > 0) {
|
|
embd.erase(embd.begin(), embd.begin() + i);
|
|
}
|
|
}
|
|
|
|
// evaluate tokens in batches
|
|
// embd is typically prepared beforehand to fit within a batch, but not
|
|
// always
|
|
for (int i = 0; i < (int)embd.size(); i += params.n_batch) {
|
|
int n_eval = (int)embd.size() - i;
|
|
if (n_eval > params.n_batch) {
|
|
n_eval = params.n_batch;
|
|
}
|
|
if (llama_eval(ctx, &embd[i], n_eval, n_past, params.n_threads)) {
|
|
fprintf(stderr, "%s : failed to eval\n", __func__);
|
|
return 1;
|
|
}
|
|
n_past += n_eval;
|
|
}
|
|
|
|
if (embd.size() > 0 && !path_session.empty()) {
|
|
session_tokens.insert(session_tokens.end(), embd.begin(), embd.end());
|
|
n_session_consumed = session_tokens.size();
|
|
}
|
|
}
|
|
|
|
embd.clear();
|
|
|
|
if ((int)embd_inp.size() <= n_consumed) {
|
|
// out of user input, sample next token
|
|
const float temp = params.temp;
|
|
const int32_t top_k =
|
|
params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k;
|
|
const float top_p = params.top_p;
|
|
const float tfs_z = params.tfs_z;
|
|
const float typical_p = params.typical_p;
|
|
const int32_t repeat_last_n =
|
|
params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
|
|
const float repeat_penalty = params.repeat_penalty;
|
|
const float alpha_presence = params.presence_penalty;
|
|
const float alpha_frequency = params.frequency_penalty;
|
|
const int mirostat = params.mirostat;
|
|
const float mirostat_tau = params.mirostat_tau;
|
|
const float mirostat_eta = params.mirostat_eta;
|
|
const bool penalize_nl = params.penalize_nl;
|
|
|
|
// optionally save the session on first sample (for faster prompt loading
|
|
// next time)
|
|
if (!path_session.empty() && need_to_save_session &&
|
|
!params.prompt_cache_ro) {
|
|
need_to_save_session = false;
|
|
llama_save_session_file(ctx, path_session.c_str(),
|
|
session_tokens.data(), session_tokens.size());
|
|
}
|
|
|
|
llama_token id = 0;
|
|
|
|
{
|
|
auto logits = llama_get_logits(ctx);
|
|
auto n_vocab = llama_n_vocab(ctx);
|
|
|
|
// Apply params.logit_bias map
|
|
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end();
|
|
it++) {
|
|
logits[it->first] += it->second;
|
|
}
|
|
|
|
std::vector<llama_token_data> candidates;
|
|
candidates.reserve(n_vocab);
|
|
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
|
candidates.emplace_back(
|
|
llama_token_data{token_id, logits[token_id], 0.0f});
|
|
}
|
|
|
|
llama_token_data_array candidates_p = {candidates.data(),
|
|
candidates.size(), false};
|
|
|
|
// Apply penalties
|
|
float nl_logit = logits[llama_token_nl()];
|
|
auto last_n_repeat =
|
|
std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
|
|
llama_sample_repetition_penalty(
|
|
ctx, &candidates_p,
|
|
last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
|
|
last_n_repeat, repeat_penalty);
|
|
llama_sample_frequency_and_presence_penalties(
|
|
ctx, &candidates_p,
|
|
last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
|
|
last_n_repeat, alpha_frequency, alpha_presence);
|
|
if (!penalize_nl) {
|
|
logits[llama_token_nl()] = nl_logit;
|
|
}
|
|
|
|
if (temp <= 0) {
|
|
// Greedy sampling
|
|
id = llama_sample_token_greedy(ctx, &candidates_p);
|
|
} else {
|
|
if (mirostat == 1) {
|
|
static float mirostat_mu = 2.0f * mirostat_tau;
|
|
const int mirostat_m = 100;
|
|
llama_sample_temperature(ctx, &candidates_p, temp);
|
|
id = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau,
|
|
mirostat_eta, mirostat_m,
|
|
&mirostat_mu);
|
|
} else if (mirostat == 2) {
|
|
static float mirostat_mu = 2.0f * mirostat_tau;
|
|
llama_sample_temperature(ctx, &candidates_p, temp);
|
|
id = llama_sample_token_mirostat_v2(
|
|
ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
|
|
} else {
|
|
// Temperature sampling
|
|
llama_sample_top_k(ctx, &candidates_p, top_k, 1);
|
|
llama_sample_tail_free(ctx, &candidates_p, tfs_z, 1);
|
|
llama_sample_typical(ctx, &candidates_p, typical_p, 1);
|
|
llama_sample_top_p(ctx, &candidates_p, top_p, 1);
|
|
llama_sample_temperature(ctx, &candidates_p, temp);
|
|
id = llama_sample_token(ctx, &candidates_p);
|
|
}
|
|
}
|
|
// printf("`%d`", candidates_p.size);
|
|
|
|
last_n_tokens.erase(last_n_tokens.begin());
|
|
last_n_tokens.push_back(id);
|
|
}
|
|
|
|
// add it to the context
|
|
embd.push_back(id);
|
|
|
|
// decrement remaining sampling budget
|
|
--n_remain;
|
|
|
|
// call the token callback, no need to check if one is actually
|
|
// registered, that will be handled on the Go side.
|
|
auto token_str = llama_token_to_str(ctx, id);
|
|
if (!tokenCallback(state_pr, (char *)token_str)) {
|
|
break;
|
|
}
|
|
} else {
|
|
// some user input remains from prompt or interaction, forward it to
|
|
// processing
|
|
while ((int)embd_inp.size() > n_consumed) {
|
|
embd.push_back(embd_inp[n_consumed]);
|
|
last_n_tokens.erase(last_n_tokens.begin());
|
|
last_n_tokens.push_back(embd_inp[n_consumed]);
|
|
++n_consumed;
|
|
if ((int)embd.size() >= params.n_batch) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (auto id : embd) {
|
|
res += llama_token_to_str(ctx, id);
|
|
}
|
|
|
|
// check for stop prompt
|
|
if (params.antiprompt.size()) {
|
|
std::string last_output;
|
|
for (auto id : last_n_tokens) {
|
|
last_output += llama_token_to_str(ctx, id);
|
|
}
|
|
// Check if each of the reverse prompts appears at the end of the output.
|
|
for (std::string &antiprompt : params.antiprompt) {
|
|
// size_t extra_padding = params.interactive ? 0 : 2;
|
|
size_t extra_padding = 2;
|
|
size_t search_start_pos =
|
|
last_output.length() >
|
|
static_cast<size_t>(antiprompt.length() + extra_padding)
|
|
? last_output.length() -
|
|
static_cast<size_t>(antiprompt.length() + extra_padding)
|
|
: 0;
|
|
|
|
if (last_output.find(antiprompt.c_str(), search_start_pos) !=
|
|
std::string::npos) {
|
|
goto end;
|
|
}
|
|
}
|
|
}
|
|
|
|
// end of text token
|
|
if (!embd.empty() && embd.back() == llama_token_eos()) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!path_session.empty() && params.prompt_cache_all &&
|
|
!params.prompt_cache_ro) {
|
|
if (debug) {
|
|
fprintf(stderr, "\n%s: saving final output to session file '%s'\n",
|
|
__func__, path_session.c_str());
|
|
}
|
|
llama_save_session_file(ctx, path_session.c_str(), session_tokens.data(),
|
|
session_tokens.size());
|
|
}
|
|
|
|
end:
|
|
#if defined(_WIN32)
|
|
signal(SIGINT, SIG_DFL);
|
|
#endif
|
|
|
|
if (debug) {
|
|
llama_print_timings(ctx);
|
|
llama_reset_timings(ctx);
|
|
}
|
|
|
|
strcpy(result, res.c_str());
|
|
return 0;
|
|
}
|
|
|
|
void llama_binding_free_model(void *state_ptr) {
|
|
llama_context *ctx = (llama_context *)state_ptr;
|
|
llama_free(ctx);
|
|
}
|
|
|
|
void llama_free_params(void *params_ptr) {
|
|
gpt_params *params = (gpt_params *)params_ptr;
|
|
delete params;
|
|
}
|
|
|
|
std::vector<std::string> create_vector(const char **strings, int count) {
|
|
std::vector<std::string> *vec = new std::vector<std::string>;
|
|
for (int i = 0; i < count; i++) {
|
|
vec->push_back(std::string(strings[i]));
|
|
}
|
|
return *vec;
|
|
}
|
|
|
|
void delete_vector(std::vector<std::string> *vec) { delete vec; }
|
|
|
|
int load_state(void *ctx, char *statefile, char *modes) {
|
|
llama_context *state = (llama_context *)ctx;
|
|
const llama_context *constState = static_cast<const llama_context *>(state);
|
|
const size_t state_size = llama_get_state_size(state);
|
|
uint8_t *state_mem = new uint8_t[state_size];
|
|
|
|
{
|
|
FILE *fp_read = fopen(statefile, modes);
|
|
if (state_size != llama_get_state_size(constState)) {
|
|
fprintf(stderr, "\n%s : failed to validate state size\n", __func__);
|
|
return 1;
|
|
}
|
|
|
|
const size_t ret = fread(state_mem, 1, state_size, fp_read);
|
|
if (ret != state_size) {
|
|
fprintf(stderr, "\n%s : failed to read state\n", __func__);
|
|
return 1;
|
|
}
|
|
|
|
llama_set_state_data(
|
|
state, state_mem); // could also read directly from memory mapped file
|
|
fclose(fp_read);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void save_state(void *ctx, char *dst, char *modes) {
|
|
llama_context *state = (llama_context *)ctx;
|
|
|
|
const size_t state_size = llama_get_state_size(state);
|
|
uint8_t *state_mem = new uint8_t[state_size];
|
|
|
|
// Save state (rng, logits, embedding and kv_cache) to file
|
|
{
|
|
FILE *fp_write = fopen(dst, modes);
|
|
llama_copy_state_data(
|
|
state, state_mem); // could also copy directly to memory mapped file
|
|
fwrite(state_mem, 1, state_size, fp_write);
|
|
fclose(fp_write);
|
|
}
|
|
}
|
|
|
|
void *llama_allocate_params(
|
|
const char *prompt, int seed, int threads, int tokens, int top_k,
|
|
float top_p, float temp, float repeat_penalty, int repeat_last_n,
|
|
bool ignore_eos, bool memory_f16, int n_batch, int n_keep,
|
|
const char **antiprompt, int antiprompt_count, float tfs_z, float typical_p,
|
|
float frequency_penalty, float presence_penalty, int mirostat,
|
|
float mirostat_eta, float mirostat_tau, bool penalize_nl,
|
|
const char *logit_bias, const char *session_file, bool prompt_cache_all,
|
|
bool mlock, bool mmap, const char *maingpu, const char *tensorsplit,
|
|
bool prompt_cache_ro) {
|
|
gpt_params *params = new gpt_params;
|
|
params->seed = seed;
|
|
params->n_threads = threads;
|
|
params->n_predict = tokens;
|
|
params->repeat_last_n = repeat_last_n;
|
|
params->prompt_cache_ro = prompt_cache_ro;
|
|
params->top_k = top_k;
|
|
params->top_p = top_p;
|
|
params->memory_f16 = memory_f16;
|
|
params->temp = temp;
|
|
params->use_mmap = mmap;
|
|
params->use_mlock = mlock;
|
|
params->repeat_penalty = repeat_penalty;
|
|
params->n_batch = n_batch;
|
|
params->n_keep = n_keep;
|
|
if (maingpu[0] != '\0') {
|
|
params->main_gpu = std::stoi(maingpu);
|
|
}
|
|
|
|
if (tensorsplit[0] != '\0') {
|
|
std::string arg_next = tensorsplit;
|
|
// split string by , and /
|
|
const std::regex regex{R"([,/]+)"};
|
|
std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
|
|
std::vector<std::string> split_arg{it, {}};
|
|
GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
|
|
|
|
for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) {
|
|
if (i < split_arg.size()) {
|
|
params->tensor_split[i] = std::stof(split_arg[i]);
|
|
} else {
|
|
params->tensor_split[i] = 0.0f;
|
|
}
|
|
}
|
|
}
|
|
|
|
params->prompt_cache_all = prompt_cache_all;
|
|
params->path_prompt_cache = session_file;
|
|
|
|
if (ignore_eos) {
|
|
params->logit_bias[llama_token_eos()] = -INFINITY;
|
|
}
|
|
if (antiprompt_count > 0) {
|
|
params->antiprompt = create_vector(antiprompt, antiprompt_count);
|
|
}
|
|
params->tfs_z = tfs_z;
|
|
params->typical_p = typical_p;
|
|
params->presence_penalty = presence_penalty;
|
|
params->mirostat = mirostat;
|
|
params->mirostat_eta = mirostat_eta;
|
|
params->mirostat_tau = mirostat_tau;
|
|
params->penalize_nl = penalize_nl;
|
|
std::stringstream ss(logit_bias);
|
|
llama_token key;
|
|
char sign;
|
|
std::string value_str;
|
|
if (ss >> key && ss >> sign && std::getline(ss, value_str) &&
|
|
(sign == '+' || sign == '-')) {
|
|
params->logit_bias[key] =
|
|
std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
|
|
}
|
|
params->frequency_penalty = frequency_penalty;
|
|
params->prompt = prompt;
|
|
|
|
return params;
|
|
}
|
|
|
|
void *load_model(const char *fname, int n_ctx, int n_seed, bool memory_f16,
|
|
bool mlock, bool embeddings, bool mmap, bool low_vram,
|
|
bool vocab_only, int n_gpu_layers, int n_batch,
|
|
const char *maingpu, const char *tensorsplit, bool numa) {
|
|
// load the model
|
|
auto lparams = llama_context_default_params();
|
|
|
|
lparams.n_ctx = n_ctx;
|
|
lparams.seed = n_seed;
|
|
lparams.f16_kv = memory_f16;
|
|
lparams.embedding = embeddings;
|
|
lparams.use_mlock = mlock;
|
|
lparams.n_gpu_layers = n_gpu_layers;
|
|
lparams.use_mmap = mmap;
|
|
lparams.low_vram = low_vram;
|
|
lparams.vocab_only = vocab_only;
|
|
|
|
if (maingpu[0] != '\0') {
|
|
lparams.main_gpu = std::stoi(maingpu);
|
|
}
|
|
|
|
if (tensorsplit[0] != '\0') {
|
|
std::string arg_next = tensorsplit;
|
|
// split string by , and /
|
|
const std::regex regex{R"([,/]+)"};
|
|
std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
|
|
std::vector<std::string> split_arg{it, {}};
|
|
GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
|
|
|
|
for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) {
|
|
if (i < split_arg.size()) {
|
|
lparams.tensor_split[i] = std::stof(split_arg[i]);
|
|
} else {
|
|
lparams.tensor_split[i] = 0.0f;
|
|
}
|
|
}
|
|
}
|
|
|
|
lparams.n_batch = n_batch;
|
|
|
|
llama_init_backend(numa);
|
|
void *res = nullptr;
|
|
try {
|
|
res = llama_init_from_file(fname, lparams);
|
|
} catch (std::runtime_error &e) {
|
|
fprintf(stderr, "failed %s", e.what());
|
|
return res;
|
|
}
|
|
|
|
return res;
|
|
} |