ollama/llama/ggml-cuda/vecdotq.cuh
Gabe Goodhart f2890a4494
IBM granite/granitemoe architecture support (#6760)
* fix(ext_server): Port llama.cpp sampling refactors to ext_server

This was a fairly large changeset. I closely followed the changes here:
df270ef745

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(server.cpp): Refactor server.cpp logging for llama.cpp overhaul

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Bump llama.cpp to the latest master with `granite` support

This does not yet have granite MoE support, but that can come in a
follow up PR

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(patches): Update all patches (except solar-pro) to work with bumped llama.cpp

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(solar): Update solar patch for llama.cpp bump

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat(llama.cpp): Bump llama.cpp for granitemoe support

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat(llama.cpp): Bump llama.cpp for granitemoe support

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(solar): Update the solar-pro patch for latest llama.cpp bump

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat(llama.cpp): Bump to the latest master of llama.cpp

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(patches): Update all patches for latest bump

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat(llama): Always run sync.sh from the right directory

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(llama/patches): Update llama patches

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat(llama)!: Rough sync with llama.cpp submodule

There are a number of changes that will need to be propagated to llama.go
before any of this works!

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(llama/patches): Add a patch and update for missing ggml-impl.h include

This include is where the ggml_cgraph struct is defined. It is included in
many of the .c files to define the forward declartion in ggml.h. It seems
that with the subset of code included here, the import was somehow lost (or
out-of-order) when building, so adding this include to llama.cpp fixes the
missing definition.

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(llama/sync): Add missing ggml-cpu-impl.h copy-over in sync.sh

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(llama): Add missing log.cpp

This was added as part of the logging overhaul done in llama.cpp

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(llama): Overhaul use of sampling module for llama.cpp changes

The changes here reflect the changes made in the big llama.cpp sampling PR
https://github.com/ggerganov/llama.cpp/pull/9294

The sampling functionality is now broken into the base interface
(llama_sampler) and the generation implementation (gpt_sampler). The
changes here reflect that. Since the sampling.h/sampling.cpp code uses c++
STL headers, the sampling_ext.[h|cpp] wrapper is maintained to allow go to
access a pure-C interface.

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(llama): Fix the impl of SampleTokenGreedy for new sampling

I don't think this method is currently used, so it could probably just be
removed so that all sampling goes through the GPT interface, but in the
interest of doing no harm, this should keep the method working as expected.

Branch: IBMGraniteArchitectureSupport

* fix(llama): Remove unused SampleTokenGreedy

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(sync): Remove bash-specific change to sync.sh

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* chore(gofumpt): Format on llama.go to pass linting

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(llm): Fix missing <thread> include in ext_server

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(llama): Remove TODO about grammar_first

This feature was not used/needed previously so should be fine without
plumbing it through now.

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(llama): Better naming for sampling wrapper and args

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(llama): Fix patch 05 to use new wrapper api and re-sync

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* runner: Flush pending responses before returning

If there are any pending reponses (such as from potential stop
tokens) then we should send them back before ending the sequence.
Otherwise, we can be missing tokens at the end of a response.

Fixes #6707

* fix(llama/sampling): Use gpt_sampler with a forward declaration

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(llama): Remove unnecessary patch for gguf impl header

This was caused by an earlier mistake in the embeddings patch that was
dereferencing the pointer instead of using the wrapper API.

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(llm): Remove use of deprecated --log-disable flag

Branch: IBMGraniteArchitectureSupport

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
2024-10-17 11:59:52 -07:00

1159 lines
39 KiB
Text
Vendored

/**
* llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
*
* MIT License
*
* Copyright (c) 2023-2024 The ggml authors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "common.cuh"
#include <cstdint>
static __device__ __forceinline__ int get_int_b2(const void * x, const int & i32) {
const uint16_t * x16 = (const uint16_t *) x; // assume at least 2 byte alignment
int x32 = x16[2*i32 + 0] << 0;
x32 |= x16[2*i32 + 1] << 16;
return x32;
}
static __device__ __forceinline__ int get_int_b4(const void * x, const int & i32) {
return ((const int *) x)[i32]; // assume at least 4 byte alignment
}
// VDR = vec dot ratio, how many contiguous integers each thread processes when the vec dot kernel is called
// MMVQ = mul_mat_vec_q, MMQ = mul_mat_q
#define VDR_Q4_0_Q8_1_MMVQ 2
#define VDR_Q4_0_Q8_1_MMQ 4
template <int vdr> static __device__ __forceinline__ float vec_dot_q4_0_q8_1_impl(
const int * v, const int * u, const float & d4, const half2 & ds8) {
int sumi = 0;
#pragma unroll
for (int i = 0; i < vdr; ++i) {
const int vi0 = (v[i] >> 0) & 0x0F0F0F0F;
const int vi1 = (v[i] >> 4) & 0x0F0F0F0F;
// SIMD dot product of quantized values
sumi = ggml_cuda_dp4a(vi0, u[2*i+0], sumi);
sumi = ggml_cuda_dp4a(vi1, u[2*i+1], sumi);
}
const float2 ds8f = __half22float2(ds8);
// second part effectively subtracts 8 from each quant value
return d4 * (sumi * ds8f.x - (8*vdr/QI4_0) * ds8f.y);
}
#define VDR_Q4_1_Q8_1_MMVQ 2
#define VDR_Q4_1_Q8_1_MMQ 4
template <int vdr> static __device__ __forceinline__ float vec_dot_q4_1_q8_1_impl(
const int * v, const int * u, const half2 & dm4, const half2 & ds8) {
int sumi = 0;
#pragma unroll
for (int i = 0; i < vdr; ++i) {
const int vi0 = (v[i] >> 0) & 0x0F0F0F0F;
const int vi1 = (v[i] >> 4) & 0x0F0F0F0F;
// SIMD dot product of quantized values
sumi = ggml_cuda_dp4a(vi0, u[2*i+0], sumi);
sumi = ggml_cuda_dp4a(vi1, u[2*i+1], sumi);
}
#ifdef GGML_CUDA_F16
const float2 tmp = __half22float2(__hmul2(dm4, ds8));
const float d4d8 = tmp.x;
const float m4s8 = tmp.y;
#else
const float2 dm4f = __half22float2(dm4);
const float2 ds8f = __half22float2(ds8);
const float d4d8 = dm4f.x * ds8f.x;
const float m4s8 = dm4f.y * ds8f.y;
#endif // GGML_CUDA_F16
// scale second part of sum by QI8_1/(vdr * QR4_1) to compensate for multiple threads adding it
return sumi * d4d8 + m4s8 / (QI8_1 / (vdr * QR4_1));
}
#define VDR_Q5_0_Q8_1_MMVQ 2
#define VDR_Q5_0_Q8_1_MMQ 4
template <int vdr> static __device__ __forceinline__ float vec_dot_q5_0_q8_1_impl(
const int * vl, const int * vh, const int * u, const float & d5, const half2 & ds8) {
int sumi = 0;
#pragma unroll
for (int i = 0; i < vdr; ++i) {
int vi0 = (vl[i] >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits
vi0 |= (vh[i] << 4) & 0x00000010; // 0 -> 4
vi0 |= (vh[i] << 11) & 0x00001000; // 1 -> 12
vi0 |= (vh[i] << 18) & 0x00100000; // 2 -> 20
vi0 |= (vh[i] << 25) & 0x10000000; // 3 -> 28
sumi = ggml_cuda_dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values
int vi1 = (vl[i] >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits
vi1 |= (vh[i] >> 12) & 0x00000010; // 16 -> 4
vi1 |= (vh[i] >> 5) & 0x00001000; // 17 -> 12
vi1 |= (vh[i] << 2) & 0x00100000; // 18 -> 20
vi1 |= (vh[i] << 9) & 0x10000000; // 19 -> 28
sumi = ggml_cuda_dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values
}
const float2 ds8f = __half22float2(ds8);
// second part effectively subtracts 16 from each quant value
return d5 * (sumi * ds8f.x - (16*vdr/QI5_0) * ds8f.y);
}
#define VDR_Q5_1_Q8_1_MMVQ 2
#define VDR_Q5_1_Q8_1_MMQ 4
template <int vdr> static __device__ __forceinline__ float vec_dot_q5_1_q8_1_impl(
const int * vl, const int * vh, const int * u, const half2 & dm5, const half2 & ds8) {
int sumi = 0;
#pragma unroll
for (int i = 0; i < vdr; ++i) {
int vi0 = (vl[i] >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits
vi0 |= (vh[i] << 4) & 0x00000010; // 0 -> 4
vi0 |= (vh[i] << 11) & 0x00001000; // 1 -> 12
vi0 |= (vh[i] << 18) & 0x00100000; // 2 -> 20
vi0 |= (vh[i] << 25) & 0x10000000; // 3 -> 28
sumi = ggml_cuda_dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values
int vi1 = (vl[i] >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits
vi1 |= (vh[i] >> 12) & 0x00000010; // 16 -> 4
vi1 |= (vh[i] >> 5) & 0x00001000; // 17 -> 12
vi1 |= (vh[i] << 2) & 0x00100000; // 18 -> 20
vi1 |= (vh[i] << 9) & 0x10000000; // 19 -> 28
sumi = ggml_cuda_dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values
}
#ifdef GGML_CUDA_F16
const float2 tmp = __half22float2(__hmul2(dm5, ds8));
const float d5d8 = tmp.x;
const float m5s8 = tmp.y;
#else
const float2 dm5f = __half22float2(dm5);
const float2 ds8f = __half22float2(ds8);
const float d5d8 = dm5f.x * ds8f.x;
const float m5s8 = dm5f.y * ds8f.y;
#endif // GGML_CUDA_F16
// scale second part of sum by QI5_1 / vdr to compensate for multiple threads adding it
return sumi*d5d8 + m5s8 / (QI5_1 / vdr);
}
#define VDR_Q8_0_Q8_1_MMVQ 2
#define VDR_Q8_0_Q8_1_MMQ 8
template <typename T, int vdr> static __device__ __forceinline__ T vec_dot_q8_0_q8_1_impl(
const int * v, const int * u, const T & d8_0, const T & d8_1) {
int sumi = 0;
#pragma unroll
for (int i = 0; i < vdr; ++i) {
// SIMD dot product of quantized values
sumi = ggml_cuda_dp4a(v[i], u[i], sumi);
}
return d8_0*d8_1 * ((T) sumi);
}
template <int vdr> static __device__ __forceinline__ float vec_dot_q8_1_q8_1_impl(
const int * v, const int * u, const half2 & dm8, const half2 & ds8) {
int sumi = 0;
#pragma unroll
for (int i = 0; i < vdr; ++i) {
// SIMD dot product of quantized values
sumi = ggml_cuda_dp4a(v[i], u[i], sumi);
}
#ifdef GGML_CUDA_F16
const float2 tmp = __half22float2(__hmul2(dm8, ds8));
const float d8d8 = tmp.x;
const float m8s8 = tmp.y;
#else
const float2 dm8f = __half22float2(dm8);
const float2 ds8f = __half22float2(ds8);
const float d8d8 = dm8f.x * ds8f.x;
const float m8s8 = dm8f.y * ds8f.y;
#endif // GGML_CUDA_F16
// scale second part of sum by QI8_1/ vdr to compensate for multiple threads adding it
return sumi*d8d8 + m8s8 / (QI8_1 / vdr);
}
template <int vdr> static __device__ __forceinline__ float vec_dot_q8_0_16_q8_1_impl(
const int * v, const int * u, const float * d8_0, const float & d8_1) {
float sumf = 0.0f;
#pragma unroll
for (int i0 = 0; i0 < vdr; i0 += QI8_0/2) {
int sumi = 0;
#pragma unroll
for (int i = i0; i < i0 + QI8_0/2; ++i) {
// SIMD dot product of quantized values
sumi = ggml_cuda_dp4a(v[i], u[i], sumi);
}
sumf += d8_0[i0/(QI8_0/2)]*sumi;
}
return d8_1*sumf;
}
#define VDR_Q2_K_Q8_1_MMVQ 1
#define VDR_Q2_K_Q8_1_MMQ 4
// contiguous v/x values
static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmvq(
const int & v, const int * __restrict__ u, const uint8_t * __restrict__ scales,
const half2 & dm2, const float * __restrict__ d8) {
float sumf_d = 0.0f;
float sumf_m = 0.0f;
#pragma unroll
for (int i = 0; i < QR2_K; ++i) {
const int sc = scales[2*i];
const int vi = (v >> (2*i)) & 0x03030303;
sumf_d += d8[i] * (ggml_cuda_dp4a(vi, u[i], 0) * (sc & 0xF)); // SIMD dot product
// fill int with 4x m
int m = sc >> 4;
m |= m << 8;
m |= m << 16;
sumf_m += d8[i] * ggml_cuda_dp4a(m, u[i], 0); // multiply constant q2_K part with sum of q8_1 values
}
const float2 dm2f = __half22float2(dm2);
return dm2f.x*sumf_d - dm2f.y*sumf_m;
}
// contiguous v/x + u/y values
template <int ns8>
static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmq(
const int * __restrict__ v, const int * __restrict__ u, const half2 * dm2, const float & d8, const half2 * s8) {
float sumf = 0.0f;
float sumf_d8 = 0.0f;
#pragma unroll
for (int i0 = 0; i0 < QR2_K*VDR_Q2_K_Q8_1_MMQ; i0 += QI8_1) {
const float2 dm2f0 = __half22float2(dm2[i0/(QI8_1/2) + 0]);
int sumi_d0 = 0;
const float2 dm2f1 = __half22float2(dm2[i0/(QI8_1/2) + 1]);
int sumi_d1 = 0;
#pragma unroll
for (int i = i0; i < i0 + QI8_1/2; ++i) {
sumi_d0 = ggml_cuda_dp4a(v[i], u[i], sumi_d0);
}
sumf_d8 += dm2f0.x * sumi_d0;
#pragma unroll
for (int i = i0 + QI8_1/2; i < i0 + QI8_1; ++i) {
sumi_d1 = ggml_cuda_dp4a(v[i], u[i], sumi_d1);
}
sumf_d8 += dm2f1.x * sumi_d1;
if (i0/QI8_1 < ns8) {
const float2 s8f = __half22float2(s8[i0/QI8_1]);
sumf -= dm2f0.y*s8f.x;
sumf -= dm2f1.y*s8f.y;
} else {
int sumi_m0 = 0;
#pragma unroll
for (int i = i0; i < i0 + QI8_1/2; ++i) {
sumi_m0 = ggml_cuda_dp4a(0x01010101, u[i], sumi_m0);
}
sumf_d8 -= dm2f0.y * sumi_m0;
int sumi_m1 = 0;
#pragma unroll
for (int i = i0 + QI8_1/2; i < i0 + QI8_1; ++i) {
sumi_m1 = ggml_cuda_dp4a(0x01010101, u[i], sumi_m1);
}
sumf_d8 -= dm2f1.y * sumi_m1;
}
}
return sumf + d8*sumf_d8;
}
#define VDR_Q3_K_Q8_1_MMVQ 1
#define VDR_Q3_K_Q8_1_MMQ 2
// contiguous v/x values
static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmvq(
const int & vl, const int & vh, const int * __restrict__ u, const uint8_t * __restrict__ scales,
const int & scale_offset, const float & d3, const float * __restrict__ d8) {
float sumf = 0.0f;
#pragma unroll
for (int i = 0; i < QR3_K; ++i) {
const int isc = scale_offset + 2*i;
const int isc_low = isc % (QK_K/32);
const int sc_shift_low = 4 * (isc / (QK_K/32));
const int sc_low = (scales[isc_low] >> sc_shift_low) & 0xF;
const int isc_high = isc % (QK_K/64);
const int sc_shift_high = 2 * (isc / (QK_K/64));
const int sc_high = ((scales[(QK_K/32) + isc_high] >> sc_shift_high) & 3) << 4;
const int sc = (sc_low | sc_high) - 32;
const int vil = (vl >> (2*i)) & 0x03030303;
const int vih = ((vh >> i) << 2) & 0x04040404;
const int vi = __vsubss4(vil, vih);
sumf += d8[i] * (ggml_cuda_dp4a(vi, u[i], 0) * sc); // SIMD dot product
}
return d3 * sumf;
}
// contiguous v/x + u/y values
static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmq(
const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ scales,
const float & d3, const float & d8) {
int sumi = 0;
#pragma unroll
for (int i0 = 0; i0 < QR3_K*VDR_Q3_K_Q8_1_MMQ; i0 += QI8_1/2) {
int sumi_sc = 0;
#pragma unroll
for (int i = i0; i < i0 + QI8_1/2; ++i) {
sumi_sc = ggml_cuda_dp4a(v[i], u[i], sumi_sc); // SIMD dot product
}
sumi += sumi_sc * scales[i0 / (QI8_1/2)];
}
return d3*d8 * sumi;
}
#define VDR_Q4_K_Q8_1_MMVQ 2
#define VDR_Q4_K_Q8_1_MMQ 8
// contiguous v/x values
static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_vmmq(
const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
const uint8_t * __restrict__ m, const half2 & dm4, const float * __restrict__ d8) {
float sumf_d = 0.0f;
float sumf_m = 0.0f;
#pragma unroll
for (int i = 0; i < QR4_K; ++i) {
const int v0i = (v[0] >> (4*i)) & 0x0F0F0F0F;
const int v1i = (v[1] >> (4*i)) & 0x0F0F0F0F;
const int dot1 = ggml_cuda_dp4a(v1i, u[2*i+1], ggml_cuda_dp4a(v0i, u[2*i+0], 0)); // SIMD dot product
const int dot2 = ggml_cuda_dp4a(0x01010101, u[2*i+1], ggml_cuda_dp4a(0x01010101, u[2*i+0], 0)); // sum of u
sumf_d += d8[i] * (dot1 * sc[i]);
sumf_m += d8[i] * (dot2 * m[i]); // multiply constant part of q4_K with sum of q8_1 values
}
const float2 dm4f = __half22float2(dm4);
return dm4f.x*sumf_d - dm4f.y*sumf_m;
}
// contiguous v/x + u/y values
static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_mmq(
const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) {
float sumf_d = 0.0f;
float sumf_m = 0.0f;
#pragma unroll
for (int i = 0; i < QR4_K*VDR_Q4_K_Q8_1_MMQ/QI8_1; ++i) {
int sumi_d = 0;
#pragma unroll
for (int j = 0; j < QI8_1; ++j) {
sumi_d = ggml_cuda_dp4a((v[j] >> (4*i)) & 0x0F0F0F0F, u[i*QI8_1 + j], sumi_d); // SIMD dot product
}
const float2 ds8f = __half22float2(ds8[i]);
sumf_d += ds8f.x * (sc[i] * sumi_d);
sumf_m += ds8f.y * m[i]; // sum of q8_1 block * q4_K min val
}
const float2 dm4f = __half22float2(dm4);
return dm4f.x*sumf_d - dm4f.y*sumf_m;
}
#define VDR_Q5_K_Q8_1_MMVQ 2
#define VDR_Q5_K_Q8_1_MMQ 8
// contiguous v/x values
static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_vmmq(
const int * __restrict__ vl, const int * __restrict__ vh, const int * __restrict__ u, const uint8_t * __restrict__ sc,
const uint8_t * __restrict__ m, const half2 & dm5, const float * __restrict__ d8) {
float sumf_d = 0.0f;
float sumf_m = 0.0f;
#pragma unroll
for (int i = 0; i < QR5_K; ++i) {
const int vl0i = (vl[0] >> (4*i)) & 0x0F0F0F0F;
const int vl1i = (vl[1] >> (4*i)) & 0x0F0F0F0F;
const int vh0i = ((vh[0] >> i) << 4) & 0x10101010;
const int vh1i = ((vh[1] >> i) << 4) & 0x10101010;
const int v0i = vl0i | vh0i;
const int v1i = vl1i | vh1i;
const int dot1 = ggml_cuda_dp4a(v0i, u[2*i+0], ggml_cuda_dp4a(v1i, u[2*i+1], 0)); // SIMD dot product
const int dot2 = ggml_cuda_dp4a(0x01010101, u[2*i+0], ggml_cuda_dp4a(0x01010101, u[2*i+1], 0)); // sum of u
sumf_d += d8[i] * (dot1 * sc[i]);
sumf_m += d8[i] * (dot2 * m[i]);
}
const float2 dm5f = __half22float2(dm5);
return dm5f.x*sumf_d - dm5f.y*sumf_m;
}
// contiguous v/x + u/y values
static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_mmq(
const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) {
float sumf_d = 0.0f;
float sumf_m = 0.0f;
#pragma unroll
for (int i = 0; i < QR5_K*VDR_Q5_K_Q8_1_MMQ/QI8_1; ++i) {
int sumi_d = 0;
#pragma unroll
for (int j = 0; j < QI8_1; ++j) {
sumi_d = ggml_cuda_dp4a(v[i*QI8_1 + j], u[i*QI8_1 + j], sumi_d); // SIMD dot product
}
const float2 ds8f = __half22float2(ds8[i]);
sumf_d += ds8f.x * (sc[i] * sumi_d);
sumf_m += ds8f.y * m[i]; // sum of q8_1 block * q4_K min val
}
const float2 dm4f = __half22float2(dm4);
return dm4f.x*sumf_d - dm4f.y*sumf_m;
}
#define VDR_Q6_K_Q8_1_MMVQ 1
#define VDR_Q6_K_Q8_1_MMQ 8
// contiguous v/x values
static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmvq(
const int & vl, const int & vh, const int * __restrict__ u, const int8_t * __restrict__ scales,
const float & d, const float * __restrict__ d8) {
float sumf = 0.0f;
#pragma unroll
for (int i = 0; i < QR6_K; ++i) {
const int sc = scales[4*i];
const int vil = (vl >> (4*i)) & 0x0F0F0F0F;
const int vih = ((vh >> (4*i)) << 4) & 0x30303030;
const int vi = __vsubss4((vil | vih), 0x20202020); // vi = (vil | vih) - 32
sumf += d8[i] * (ggml_cuda_dp4a(vi, u[i], 0) * sc); // SIMD dot product
}
return d*sumf;
}
// contiguous v/x + u/y values
static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmq(
const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ sc,
const float & d6, const float * __restrict__ d8) {
float sumf_d = 0.0f;
const int sc_packed = get_int_b4(sc, 0);
const int8_t * sc_reg = (const int8_t *) &sc_packed;
#pragma unroll
for (int i0 = 0; i0 < VDR_Q6_K_Q8_1_MMQ; i0 += 4) {
int2 sumi_d = {0, 0}; // 2 q6_K scales per q8_1 scale
#pragma unroll
for (int i = i0; i < i0 + 2; ++i) {
sumi_d.x = ggml_cuda_dp4a(v[2*i+0], u[2*i+0], sumi_d.x); // SIMD dot product
sumi_d.x = ggml_cuda_dp4a(v[2*i+1], u[2*i+1], sumi_d.x); // SIMD dot product
sumi_d.y = ggml_cuda_dp4a(v[2*i+4], u[2*i+4], sumi_d.y); // SIMD dot product
sumi_d.y = ggml_cuda_dp4a(v[2*i+5], u[2*i+5], sumi_d.y); // SIMD dot product
}
sumf_d += d8[i0/4] * (sc_reg[i0/2+0]*sumi_d.x + sc_reg[i0/2+1]*sumi_d.y);
}
return d6 * sumf_d;
}
static __device__ __forceinline__ float vec_dot_q4_0_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
const block_q4_0 * bq4_0 = (const block_q4_0 *) vbq + kbx;
int v[VDR_Q4_0_Q8_1_MMVQ];
int u[2*VDR_Q4_0_Q8_1_MMVQ];
#pragma unroll
for (int i = 0; i < VDR_Q4_0_Q8_1_MMVQ; ++i) {
v[i] = get_int_b2(bq4_0->qs, iqs + i);
u[2*i+0] = get_int_b4(bq8_1->qs, iqs + i);
u[2*i+1] = get_int_b4(bq8_1->qs, iqs + i + QI4_0);
}
return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMVQ>(v, u, bq4_0->d, bq8_1->ds);
}
static __device__ __forceinline__ float vec_dot_q4_1_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
const block_q4_1 * bq4_1 = (const block_q4_1 *) vbq + kbx;
int v[VDR_Q4_1_Q8_1_MMVQ];
int u[2*VDR_Q4_1_Q8_1_MMVQ];
#pragma unroll
for (int i = 0; i < VDR_Q4_1_Q8_1_MMVQ; ++i) {
v[i] = get_int_b4(bq4_1->qs, iqs + i);
u[2*i+0] = get_int_b4(bq8_1->qs, iqs + i);
u[2*i+1] = get_int_b4(bq8_1->qs, iqs + i + QI4_1);
}
return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMVQ>(v, u, bq4_1->dm, bq8_1->ds);
}
static __device__ __forceinline__ float vec_dot_q5_0_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
const block_q5_0 * bq5_0 = (const block_q5_0 *) vbq + kbx;
int vl[VDR_Q5_0_Q8_1_MMVQ];
int vh[VDR_Q5_0_Q8_1_MMVQ];
int u[2*VDR_Q5_0_Q8_1_MMVQ];
#pragma unroll
for (int i = 0; i < VDR_Q5_0_Q8_1_MMVQ; ++i) {
vl[i] = get_int_b2(bq5_0->qs, iqs + i);
vh[i] = get_int_b2(bq5_0->qh, 0) >> (4 * (iqs + i));
u[2*i+0] = get_int_b4(bq8_1->qs, iqs + i);
u[2*i+1] = get_int_b4(bq8_1->qs, iqs + i + QI5_0);
}
return vec_dot_q5_0_q8_1_impl<VDR_Q5_0_Q8_1_MMVQ>(vl, vh, u, bq5_0->d, bq8_1->ds);
}
static __device__ __forceinline__ float vec_dot_q5_1_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
const block_q5_1 * bq5_1 = (const block_q5_1 *) vbq + kbx;
int vl[VDR_Q5_1_Q8_1_MMVQ];
int vh[VDR_Q5_1_Q8_1_MMVQ];
int u[2*VDR_Q5_1_Q8_1_MMVQ];
#pragma unroll
for (int i = 0; i < VDR_Q5_1_Q8_1_MMVQ; ++i) {
vl[i] = get_int_b4(bq5_1->qs, iqs + i);
vh[i] = get_int_b4(bq5_1->qh, 0) >> (4 * (iqs + i));
u[2*i+0] = get_int_b4(bq8_1->qs, iqs + i);
u[2*i+1] = get_int_b4(bq8_1->qs, iqs + i + QI5_1);
}
return vec_dot_q5_1_q8_1_impl<VDR_Q5_1_Q8_1_MMVQ>(vl, vh, u, bq5_1->dm, bq8_1->ds);
}
static __device__ __forceinline__ float vec_dot_q8_0_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
const block_q8_0 * bq8_0 = (const block_q8_0 *) vbq + kbx;
int v[VDR_Q8_0_Q8_1_MMVQ];
int u[VDR_Q8_0_Q8_1_MMVQ];
#pragma unroll
for (int i = 0; i < VDR_Q8_0_Q8_1_MMVQ; ++i) {
v[i] = get_int_b2(bq8_0->qs, iqs + i);
u[i] = get_int_b4(bq8_1->qs, iqs + i);
}
return vec_dot_q8_0_q8_1_impl<float, VDR_Q8_0_Q8_1_MMVQ>(v, u, bq8_0->d, __low2half(bq8_1->ds));
}
static __device__ __forceinline__ float vec_dot_q2_K_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
const block_q2_K * bq2_K = (const block_q2_K *) vbq + kbx;
const int bq8_offset = QR2_K * (iqs / QI8_1);
const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
const uint8_t * scales = bq2_K->scales + scale_offset;
const int v = get_int_b4(bq2_K->qs, iqs);
int u[QR2_K];
float d8[QR2_K];
#pragma unroll
for (int i = 0; i < QR2_K; ++ i) {
u[i] = get_int_b4(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
d8[i] = __low2float(bq8_1[bq8_offset + i].ds);
}
return vec_dot_q2_K_q8_1_impl_mmvq(v, u, scales, bq2_K->dm, d8);
}
static __device__ __forceinline__ float vec_dot_q3_K_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
const block_q3_K * bq3_K = (const block_q3_K *) vbq + kbx;
const int bq8_offset = QR3_K * (iqs / (QI3_K/2));
const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
const float d = bq3_K->d;
const int vl = get_int_b2(bq3_K->qs, iqs);
// invert the mask with ~ so that a 0/1 results in 4/0 being subtracted
const int vh = ~get_int_b2(bq3_K->hmask, iqs % (QI3_K/2)) >> bq8_offset;
int u[QR3_K];
float d8[QR3_K];
#pragma unroll
for (int i = 0; i < QR3_K; ++i) {
u[i] = get_int_b4(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
d8[i] = __low2float(bq8_1[bq8_offset + i].ds);
}
return vec_dot_q3_K_q8_1_impl_mmvq(vl, vh, u, bq3_K->scales, scale_offset, d, d8);
}
static __device__ __forceinline__ float vec_dot_q4_K_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
const block_q4_K * bq4_K = (const block_q4_K *) vbq + kbx;
int v[2];
int u[2*QR4_K];
float d8[QR4_K];
// iqs is in 0,2..30. bq8_offset = iqs/4 -> bq8_offset = 0, 2, 4, 6
const int bq8_offset = QR4_K * ((iqs/2) / (QI8_1/2));
// iqs = 0....3 -> bq8_offset = 0, want q4_offset = 0, 4, 8, 12
// iqs = 4....7 -> bq8_offset = 2, want q4_offset = 32, 36, 40, 44
// iqs = 8...11 -> bq8_offset = 4, want q4_offset = 64, 68, 72, 76
// iqs = 12..15 -> bq8_offset = 6, want q4_offset = 96, 100, 104, 108
const int * q4 = (const int *)(bq4_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4));
v[0] = q4[0];
v[1] = q4[4];
const uint16_t * scales = (const uint16_t *)bq4_K->scales;
uint16_t aux[2];
const int j = bq8_offset/2;
if (j < 2) {
aux[0] = scales[j+0] & 0x3f3f;
aux[1] = scales[j+2] & 0x3f3f;
} else {
aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
}
const uint8_t * sc = (const uint8_t *)aux;
const uint8_t * m = sc + 2;
for (int i = 0; i < QR4_K; ++i) {
const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
d8[i] = __low2float(bq8i->ds);
const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
u[2*i+0] = q8[0];
u[2*i+1] = q8[4];
}
return vec_dot_q4_K_q8_1_impl_vmmq(v, u, sc, m, bq4_K->dm, d8);
}
static __device__ __forceinline__ float vec_dot_q5_K_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
const block_q5_K * bq5_K = (const block_q5_K *) vbq + kbx;
int vl[2];
int vh[2];
int u[2*QR5_K];
float d8[QR5_K];
const int bq8_offset = QR5_K * ((iqs/2) / (QI8_1/2));
const int * ql = (const int *)(bq5_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4));
const int * qh = (const int *)(bq5_K->qh + 4 * ((iqs/2)%4));
vl[0] = ql[0];
vl[1] = ql[4];
vh[0] = qh[0] >> bq8_offset;
vh[1] = qh[4] >> bq8_offset;
const uint16_t * scales = (const uint16_t *)bq5_K->scales;
uint16_t aux[2];
const int j = bq8_offset/2;
if (j < 2) {
aux[0] = scales[j+0] & 0x3f3f;
aux[1] = scales[j+2] & 0x3f3f;
} else {
aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
}
const uint8_t * sc = (const uint8_t *)aux;
const uint8_t * m = sc + 2;
#pragma unroll
for (int i = 0; i < QR5_K; ++i) {
const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
d8[i] = __low2float(bq8i->ds);
const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
u[2*i+0] = q8[0];
u[2*i+1] = q8[4];
}
return vec_dot_q5_K_q8_1_impl_vmmq(vl, vh, u, sc, m, bq5_K->dm, d8);
}
static __device__ __forceinline__ float vec_dot_q6_K_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
const block_q6_K * bq6_K = (const block_q6_K *) vbq + kbx;
const int bq8_offset = 2 * QR6_K * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/4);
const int scale_offset = (QI6_K/4) * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/8);
const int vh_shift = 2 * ((iqs % (QI6_K/2)) / (QI6_K/4));
const int vl = get_int_b2(bq6_K->ql, iqs);
const int vh = get_int_b2(bq6_K->qh, (QI6_K/4) * (iqs / (QI6_K/2)) + iqs % (QI6_K/4)) >> vh_shift;
const int8_t * scales = bq6_K->scales + scale_offset;
int u[QR6_K];
float d8[QR6_K];
#pragma unroll
for (int i = 0; i < QR6_K; ++i) {
u[i] = get_int_b4(bq8_1[bq8_offset + 2*i].qs, iqs % QI8_1);
d8[i] = __low2float(bq8_1[bq8_offset + 2*i].ds);
}
return vec_dot_q6_K_q8_1_impl_mmvq(vl, vh, u, scales, bq6_K->d, d8);
}
#define VDR_IQ2_XXS_Q8_1_MMVQ 2
#define VDR_IQ2_XXS_Q8_1_MMQ 2
static __device__ __forceinline__ float vec_dot_iq2_xxs_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
const block_iq2_xxs * bq2 = (const block_iq2_xxs *) vbq + kbx;
const int q2 = get_int_b2(bq2->qs, iqs);
const uint8_t * aux8 = (const uint8_t *) &q2;
const uint32_t aux32 = get_int_b2(bq2->qs, iqs + 1);
int sumi = 0;
#pragma unroll
for (int k0 = 0; k0 < 8; k0 += 2) {
const int * grid_pos = (const int *) (iq2xxs_grid + aux8[k0/2]);
const int signs_packed = ksigns_iq2xs[(aux32 >> (7*k0/2)) & 0x7F];
const int signs0 = __vcmpne4(((signs_packed & 0x03) << 7) | ((signs_packed & 0x0C) << 21), 0x00000000);
const int grid0 = __vsub4(grid_pos[0] ^ signs0, signs0);
const int u0 = get_int_b4(bq8_1[iqs/2].qs, k0 + 0);
sumi = ggml_cuda_dp4a(grid0, u0, sumi);
const int signs1 = __vcmpne4(((signs_packed & 0x30) << 3) | ((signs_packed & 0xC0) << 17), 0x00000000);
const int grid1 = __vsub4(grid_pos[1] ^ signs1, signs1);
const int u1 = get_int_b4(bq8_1[iqs/2].qs, k0 + 1);
sumi = ggml_cuda_dp4a(grid1, u1, sumi);
}
const int ls = aux32 >> 28;
sumi = (ls*sumi + sumi/2)/4;
const float d = __half2float(bq2->d) * __low2float(bq8_1[iqs/2].ds);
return d * sumi;
}
#define VDR_IQ2_XS_Q8_1_MMVQ 2
#define VDR_IQ2_XS_Q8_1_MMQ 2
static __device__ __forceinline__ float vec_dot_iq2_xs_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
const block_iq2_xs * bq2 = (const block_iq2_xs *) vbq + kbx;
const int2 q2_packed = make_int2(get_int_b2(bq2->qs, iqs + 0), get_int_b2(bq2->qs, iqs + 1));
const uint16_t * q2 = (const uint16_t *) &q2_packed;
const int ls0 = bq2->scales[iqs/2] & 0x0F;
const int ls1 = bq2->scales[iqs/2] >> 4;
int sumi0 = 0;
int sumi1 = 0;
#pragma unroll
for (int l0 = 0; l0 < 8; l0 += 2) {
const uint32_t * grid_pos = (const uint32_t *)(iq2xs_grid + (q2[l0/2] & 0x000001FF));
const uint32_t * signs = (const uint32_t *)(ksigns64 + (q2[l0/2] >> 9));
const int grid_l = __vsub4(grid_pos[0] ^ signs[0], signs[0]);
const int grid_h = __vsub4(grid_pos[1] ^ signs[1], signs[1]);
const int u0 = get_int_b4(bq8_1[iqs/2].qs, l0 + 0);
const int u1 = get_int_b4(bq8_1[iqs/2].qs, l0 + 1);
if (l0 < 4) {
sumi0 = ggml_cuda_dp4a(grid_l, u0, sumi0);
sumi0 = ggml_cuda_dp4a(grid_h, u1, sumi0);
} else {
sumi1 = ggml_cuda_dp4a(grid_l, u0, sumi1);
sumi1 = ggml_cuda_dp4a(grid_h, u1, sumi1);
}
}
const int sumi = (sumi0*ls0 + sumi1*ls1 + (sumi0 + sumi1)/2)/4;
const float d = __half2float(bq2->d) * __low2float(bq8_1[iqs/2].ds);
return d * sumi;
}
#define VDR_IQ2_S_Q8_1_MMVQ 2
#define VDR_IQ2_S_Q8_1_MMQ 2
static __device__ __forceinline__ float vec_dot_iq2_s_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
const block_iq2_s * bq2 = (const block_iq2_s *) vbq + kbx;
const int qs_packed = get_int_b2(bq2->qs, iqs/2);
const uint8_t * qs = (const uint8_t *) &qs_packed;
const int qh = bq2->qh[iqs/2];
const int signs_packed_32 = get_int_b2(bq2->qs, QK_K/32 + iqs/2);
const uint8_t * signs_packed_8 = (const uint8_t *) &signs_packed_32;
const int ls0 = bq2->scales[iqs/2] & 0x0F;
const int ls1 = bq2->scales[iqs/2] >> 4;
int sumi0 = 0;
int sumi1 = 0;
#pragma unroll
for (int l0 = 0; l0 < 8; l0 += 2) {
const int * grid_pos = (const int *)(iq2s_grid + (qs[l0/2] | ((qh << (8-l0)) & 0x300)));
const int signs0 = __vcmpne4(((signs_packed_8[l0/2] & 0x03) << 7) | ((signs_packed_8[l0/2] & 0x0C) << 21), 0x00000000);
const int signs1 = __vcmpne4(((signs_packed_8[l0/2] & 0x30) << 3) | ((signs_packed_8[l0/2] & 0xC0) << 17), 0x00000000);
const int grid_l = __vsub4(grid_pos[0] ^ signs0, signs0);
const int grid_h = __vsub4(grid_pos[1] ^ signs1, signs1);
const int u0 = get_int_b4(bq8_1[iqs/2].qs, l0 + 0);
const int u1 = get_int_b4(bq8_1[iqs/2].qs, l0 + 1);
if (l0 < 4) {
sumi0 = ggml_cuda_dp4a(grid_l, u0, sumi0);
sumi0 = ggml_cuda_dp4a(grid_h, u1, sumi0);
} else {
sumi1 = ggml_cuda_dp4a(grid_l, u0, sumi1);
sumi1 = ggml_cuda_dp4a(grid_h, u1, sumi1);
}
}
const int sumi = (sumi0*ls0 + sumi1*ls1 + (sumi0 + sumi1)/2)/4;
const float d = __half2float(bq2->d) * __low2float(bq8_1[iqs/2].ds);
return d * sumi;
}
#define VDR_IQ3_XXS_Q8_1_MMVQ 2
#define VDR_IQ3_XXS_Q8_1_MMQ 2
static __device__ __forceinline__ float vec_dot_iq3_xxs_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
const block_iq3_xxs * bq3 = (const block_iq3_xxs *) vbq + kbx;
const int2 q3_packed = make_int2(get_int_b2(bq3->qs, iqs), get_int_b2(bq3->qs, iqs+1));
const uint8_t * q3 = (const uint8_t *) &q3_packed;
const uint32_t aux32 = get_int_b2(bq3->qs, QK_K/16 + iqs/2);
int sumi = 0;
#pragma unroll
for (int l0 = 0; l0 < 8; l0 += 2) {
const int2 grid_pos = make_int2(iq3xxs_grid[q3[l0 + 0]], iq3xxs_grid[q3[l0 + 1]]);
const int * signs = (const int *)(ksigns64 + ((aux32 >> (7*l0/2)) & 0x7F));
const int grid_l = __vsub4(grid_pos.x ^ signs[0], signs[0]);
const int grid_h = __vsub4(grid_pos.y ^ signs[1], signs[1]);
const int u0 = get_int_b4(bq8_1[iqs/2].qs, l0 + 0);
const int u1 = get_int_b4(bq8_1[iqs/2].qs, l0 + 1);
sumi = ggml_cuda_dp4a(grid_l, u0, sumi);
sumi = ggml_cuda_dp4a(grid_h, u1, sumi);
}
const int ls = aux32 >> 28;
sumi = (ls*sumi + sumi/2)/2;
const float d = __half2float(bq3->d) * __low2float(bq8_1[iqs/2].ds);
return d * sumi;
}
#define VDR_IQ3_S_Q8_1_MMVQ 2
#define VDR_IQ3_S_Q8_1_MMQ 2
// TODO: don't use lookup table for signs
static __device__ __forceinline__ float vec_dot_iq3_s_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
const block_iq3_s * bq3 = (const block_iq3_s *) vbq + kbx;
const int2 qs_packed = make_int2(get_int_b2(bq3->qs, iqs + 0), get_int_b2(bq3->qs, iqs + 1));
const uint8_t * qs = (const uint8_t *) &qs_packed;
const int qh = bq3->qh[iqs/2];
const int signs_packed_32 = get_int_b2(bq3->signs, iqs/2);
const uint8_t * signs_packed_8 = (const uint8_t *) &signs_packed_32;
int sumi = 0;
#pragma unroll
for (int l0 = 0; l0 < 8; l0 += 2) {
const int2 grid_pos = make_int2(
iq3s_grid[qs[l0 + 0] | ((qh << (8 - l0)) & 0x100)],
iq3s_grid[qs[l0 + 1] | ((qh << (7 - l0)) & 0x100)]);
const int signs0 = __vcmpne4(((signs_packed_8[l0/2] & 0x03) << 7) | ((signs_packed_8[l0/2] & 0x0C) << 21), 0x00000000);
const int signs1 = __vcmpne4(((signs_packed_8[l0/2] & 0x30) << 3) | ((signs_packed_8[l0/2] & 0xC0) << 17), 0x00000000);
const int grid_l = __vsub4(grid_pos.x ^ signs0, signs0);
const int grid_h = __vsub4(grid_pos.y ^ signs1, signs1);
const int u0 = get_int_b4(bq8_1[iqs/2].qs, l0 + 0);
const int u1 = get_int_b4(bq8_1[iqs/2].qs, l0 + 1);
sumi = ggml_cuda_dp4a(grid_l, u0, sumi);
sumi = ggml_cuda_dp4a(grid_h, u1, sumi);
}
sumi *= 1 + 2*((bq3->scales[iqs/4] >> ((iqs << 1) & 0x04)) & 0x0F);
const float d = __half2float(bq3->d) * __low2float(bq8_1[iqs/2].ds);
return d * sumi;
}
#define VDR_IQ1_S_Q8_1_MMVQ 1
#define VDR_IQ1_S_Q8_1_MMQ 1
static __device__ __forceinline__ float vec_dot_iq1_s_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
const block_iq1_s * bq1 = (const block_iq1_s *) vbq + kbx;
const int qs_packed = get_int_b2(bq1->qs, iqs);
const uint8_t * qs = (const uint8_t *) &qs_packed;
const int qh = bq1->qh[iqs];
int sumi = 0;
#pragma unroll
for (int l0 = 0; l0 < 8; l0 += 2) {
const int grid = iq1s_grid_gpu[qs[l0/2] | (((qh >> 3*(l0/2)) & 0x07) << 8)];
const int grid0 = (grid >> 0) & 0x0F0F0F0F;
const int grid1 = (grid >> 4) & 0x0F0F0F0F;
const int u0 = get_int_b4(bq8_1[iqs].qs, l0 + 0);
const int u1 = get_int_b4(bq8_1[iqs].qs, l0 + 1);
sumi = ggml_cuda_dp4a(grid0, u0, sumi);
sumi = ggml_cuda_dp4a(grid1, u1, sumi);
}
const float d1q = __half2float(bq1->d) * (((qh >> 11) & 0x0E) + 1);
const float delta = -1.0f + IQ1S_DELTA - (qh & 0x8000) * (2.0f*IQ1S_DELTA/0x8000);
const float2 ds = __half22float2(bq8_1[iqs].ds);
return d1q * (ds.x*sumi + ds.y*delta);
}
#define VDR_IQ1_M_Q8_1_MMVQ 1
#define VDR_IQ1_M_Q8_1_MMQ 1
static __device__ __forceinline__ float vec_dot_iq1_m_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
const block_iq1_m * bq1 = (const block_iq1_m *) vbq + kbx;
const int qs_packed = get_int_b4(bq1->qs, iqs);
const uint8_t * qs = (const uint8_t *) &qs_packed;
int sumi[2] = {0};
float sumf[2] = {0.0f};
#pragma unroll
for (int l0 = 0; l0 < 8; l0 += 2) {
const int qhl = bq1->qh[2*iqs + l0/4] >> (4 * ((l0/2) % 2));
const int grid = iq1s_grid_gpu[qs[l0/2] | ((qhl & 0x07) << 8)];
const int grid0 = (grid >> 0) & 0x0F0F0F0F;
const int grid1 = (grid >> 4) & 0x0F0F0F0F;
const int u0 = get_int_b4(bq8_1[iqs].qs, l0 + 0);
const int u1 = get_int_b4(bq8_1[iqs].qs, l0 + 1);
sumi[l0/4] = ggml_cuda_dp4a(grid0, u0, sumi[l0/4]);
sumi[l0/4] = ggml_cuda_dp4a(grid1, u1, sumi[l0/4]);
const float delta = -1.0f + IQ1M_DELTA - (qhl & 0x08) * (2.0f*IQ1M_DELTA/0x08);
int sumy = 0;
sumy = ggml_cuda_dp4a(u0, 0x01010101, sumy);
sumy = ggml_cuda_dp4a(u1, 0x01010101, sumy);
sumf[l0/4] += delta*sumy;
}
const uint16_t * sc = (const uint16_t *) bq1->scales;
iq1m_scale_t scale;
scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00F0) | ((sc[2] >> 4) & 0x0F00) | (sc[3] & 0xF000);
const float d = __half2float(scale.f16) * __low2float(bq8_1[iqs].ds);
const int tmp = sc[iqs/2] >> (6*(iqs%2));
const int sc0 = 2*((tmp >> 0) & 0x07) + 1;
const int sc1 = 2*((tmp >> 3) & 0x07) + 1;
return d * ((sumi[0] + sumf[0]) * sc0 + (sumi[1] + sumf[1]) * sc1);
}
static __device__ __forceinline__ int2 get_int_from_table_16(const int & q4) {
const int q0_32 = (q4 >> 0) & 0x0F0F0F0F;
const int8_t * q0_8 = (const int8_t *) &q0_32;
const char4 val0_8 = make_char4(
kvalues_iq4nl[q0_8[0]], kvalues_iq4nl[q0_8[1]], kvalues_iq4nl[q0_8[2]], kvalues_iq4nl[q0_8[3]]);
const int q1_32 = (q4 >> 4) & 0x0F0F0F0F;
const int8_t * q1_8 = (const int8_t *) &q1_32;
const char4 val1_8 = make_char4(
kvalues_iq4nl[q1_8[0]], kvalues_iq4nl[q1_8[1]], kvalues_iq4nl[q1_8[2]], kvalues_iq4nl[q1_8[3]]);
return make_int2(*((const int *) &val0_8), *((const int *) &val1_8));
}
#define VDR_IQ4_NL_Q8_1_MMVQ 2
#define VDR_IQ4_NL_Q8_1_MMQ 4
static __device__ __forceinline__ float vec_dot_iq4_nl_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
const block_iq4_nl * bq4 = (const block_iq4_nl *) vbq + kbx;
const int * q8 = (const int *) bq8_1->qs + iqs;
int sumi = 0;
#pragma unroll
for (int l = 0; l < VDR_Q4_0_Q8_1_MMVQ; ++l) {
const int aux_q4 = get_int_b2(bq4->qs, iqs + l);
const int2 v = get_int_from_table_16(aux_q4);
sumi = ggml_cuda_dp4a(v.x, q8[l + 0], sumi);
sumi = ggml_cuda_dp4a(v.y, q8[l + 4], sumi);
}
const float d = __half2float(bq4->d) * __low2float(bq8_1->ds);
return d * sumi;
}
#define VDR_IQ4_XS_Q8_1_MMVQ 4
#define VDR_IQ4_XS_Q8_1_MMQ 4
static __device__ __forceinline__ float vec_dot_iq4_xs_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
const block_iq4_xs * bq4 = (const block_iq4_xs *) vbq + kbx;
int sumi = 0;
#pragma unroll
for (int j = 0; j < 4; ++j) {
const int aux_q4 = get_int_b4(bq4->qs, iqs + j);
const int2 v = get_int_from_table_16(aux_q4);
const int u0 = get_int_b4(bq8_1[iqs/4].qs, j + 0);
const int u1 = get_int_b4(bq8_1[iqs/4].qs, j + 4);
sumi = ggml_cuda_dp4a(v.x, u0, sumi);
sumi = ggml_cuda_dp4a(v.y, u1, sumi);
}
const int ls = ((bq4->scales_l[iqs/8] >> (iqs & 0x04)) & 0x0F) | (((bq4->scales_h >> (iqs/2)) & 0x03) << 4);
sumi *= ls - 32;
const float d = __half2float(bq4->d) * __low2float(bq8_1[iqs/4].ds);
return d * sumi;
}