ollama/llm/ggml_llama.go
2023-09-03 17:01:05 -04:00

704 lines
19 KiB
Go

package llm
import (
"bufio"
"bytes"
"context"
"embed"
"encoding/json"
"errors"
"fmt"
"io"
"io/fs"
"log"
"math/rand"
"net/http"
"os"
"os/exec"
"path"
"path/filepath"
"runtime"
"strconv"
"strings"
"sync"
"time"
"github.com/jmorganca/ollama/api"
)
const ModelFamilyLlama ModelFamily = "llama"
//go:embed llama.cpp/ggml/build/*/bin/*
var llamaCppEmbed embed.FS
var (
ggmlGPU = path.Join("llama.cpp", "ggml", "build", "gpu", "bin")
ggmlCPU = path.Join("llama.cpp", "ggml", "build", "cpu", "bin")
)
var (
ggmlInit sync.Once
ggmlRunnerPath string
)
func osPath(llamaPath string) string {
if runtime.GOOS == "windows" {
return path.Join(llamaPath, "Release")
}
return llamaPath
}
func initGGML() {
ggmlInit.Do(func() {
tmpDir, err := os.MkdirTemp("", "llama-*")
if err != nil {
log.Fatalf("llama.cpp: failed to create temp dir: %v", err)
}
llamaPath := osPath(ggmlGPU)
if _, err := fs.Stat(llamaCppEmbed, llamaPath); err != nil {
llamaPath = osPath(ggmlCPU)
if _, err := fs.Stat(llamaCppEmbed, llamaPath); err != nil {
log.Fatalf("llama.cpp executable not found")
}
}
files := []string{"server"}
switch runtime.GOOS {
case "windows":
files = []string{"server.exe"}
case "darwin":
files = append(files, "ggml-metal.metal")
}
for _, f := range files {
srcPath := path.Join(llamaPath, f)
destPath := filepath.Join(tmpDir, f)
srcFile, err := llamaCppEmbed.Open(srcPath)
if err != nil {
log.Fatalf("read llama.cpp %s: %v", f, err)
}
defer srcFile.Close()
destFile, err := os.OpenFile(destPath, os.O_WRONLY|os.O_CREATE|os.O_TRUNC, 0o755)
if err != nil {
log.Fatalf("write llama.cpp %s: %v", f, err)
}
defer destFile.Close()
if _, err := io.Copy(destFile, srcFile); err != nil {
log.Fatalf("copy llama.cpp %s: %v", f, err)
}
}
ggmlRunnerPath = filepath.Join(tmpDir, "server")
if runtime.GOOS == "windows" {
ggmlRunnerPath = filepath.Join(tmpDir, "server.exe")
}
})
}
type ModelRunner struct {
Path string // path to the model runner executable
}
func ggmlRunner() ModelRunner {
initGGML()
return ModelRunner{Path: ggmlRunnerPath}
}
type llamaModel struct {
hyperparameters llamaHyperparameters
}
func (llm *llamaModel) ModelFamily() ModelFamily {
return ModelFamilyLlama
}
func (llm *llamaModel) ModelType() ModelType {
switch llm.hyperparameters.NumLayer {
case 26:
return ModelType3B
case 32:
return ModelType7B
case 40:
return ModelType13B
case 48:
return ModelType34B
case 60:
return ModelType30B
case 80:
return ModelType65B
}
// TODO: find a better default
return ModelType7B
}
func (llm *llamaModel) FileType() FileType {
return llm.hyperparameters.FileType
}
type llamaHyperparameters struct {
// NumVocab is the size of the model's vocabulary.
NumVocab uint32
// NumEmbd is the size of the model's embedding layer.
NumEmbd uint32
NumMult uint32
NumHead uint32
// NumLayer is the number of layers in the model.
NumLayer uint32
NumRot uint32
// FileType describes the quantization level of the model, e.g. Q4_0, Q5_K, etc.
FileType llamaFileType
}
type llamaFileType uint32
const (
llamaFileTypeF32 llamaFileType = iota
llamaFileTypeF16
llamaFileTypeQ4_0
llamaFileTypeQ4_1
llamaFileTypeQ4_1_F16
llamaFileTypeQ8_0 llamaFileType = iota + 2
llamaFileTypeQ5_0
llamaFileTypeQ5_1
llamaFileTypeQ2_K
llamaFileTypeQ3_K_S
llamaFileTypeQ3_K_M
llamaFileTypeQ3_K_L
llamaFileTypeQ4_K_S
llamaFileTypeQ4_K_M
llamaFileTypeQ5_K_S
llamaFileTypeQ5_K_M
llamaFileTypeQ6_K
)
func (ft llamaFileType) String() string {
switch ft {
case llamaFileTypeF32:
return "F32"
case llamaFileTypeF16:
return "F16"
case llamaFileTypeQ4_0:
return "Q4_0"
case llamaFileTypeQ4_1:
return "Q4_1"
case llamaFileTypeQ4_1_F16:
return "Q4_1_F16"
case llamaFileTypeQ8_0:
return "Q8_0"
case llamaFileTypeQ5_0:
return "Q5_0"
case llamaFileTypeQ5_1:
return "Q5_1"
case llamaFileTypeQ2_K:
return "Q2_K"
case llamaFileTypeQ3_K_S:
return "Q3_K_S"
case llamaFileTypeQ3_K_M:
return "Q3_K_M"
case llamaFileTypeQ3_K_L:
return "Q3_K_L"
case llamaFileTypeQ4_K_S:
return "Q4_K_S"
case llamaFileTypeQ4_K_M:
return "Q4_K_M"
case llamaFileTypeQ5_K_S:
return "Q5_K_S"
case llamaFileTypeQ5_K_M:
return "Q5_K_M"
case llamaFileTypeQ6_K:
return "Q6_K"
default:
return "Unknown"
}
}
type Running struct {
Port int
Cmd *exec.Cmd
Cancel context.CancelFunc
}
type llama struct {
api.Options
Running
}
func newLlama(model string, adapters []string, runner ModelRunner, opts api.Options) (*llama, error) {
if _, err := os.Stat(model); err != nil {
return nil, err
}
if _, err := os.Stat(runner.Path); err != nil {
return nil, err
}
if len(adapters) > 1 {
return nil, errors.New("ollama supports only one lora adapter, but multiple were provided")
}
params := []string{
"--model", model,
"--ctx-size", fmt.Sprintf("%d", opts.NumCtx),
"--gqa", fmt.Sprintf("%d", opts.NumGQA),
"--rope-freq-base", fmt.Sprintf("%f", opts.RopeFrequencyBase),
"--rope-freq-scale", fmt.Sprintf("%f", opts.RopeFrequencyScale),
"--batch-size", fmt.Sprintf("%d", opts.NumBatch),
"--n-gpu-layers", fmt.Sprintf("%d", opts.NumGPU),
"--embedding",
}
if len(adapters) > 0 {
// TODO: applying multiple adapters is not supported by the llama.cpp server yet
params = append(params, "--lora", adapters[0])
}
if opts.NumThread > 0 {
params = append(params, "--threads", fmt.Sprintf("%d", opts.NumThread))
}
if !opts.F16KV {
params = append(params, "--memory-f32")
}
if opts.UseMLock {
params = append(params, "--mlock")
}
if !opts.UseMMap {
params = append(params, "--no-mmap")
}
if opts.UseNUMA {
params = append(params, "--numa")
}
// start the llama.cpp server with a retry in case the port is already in use
for try := 0; try < 3; try++ {
port := rand.Intn(65535-49152) + 49152 // get a random port in the ephemeral range
ctx, cancel := context.WithCancel(context.Background())
cmd := exec.CommandContext(
ctx,
runner.Path,
append(params, "--port", strconv.Itoa(port))...,
)
cmd.Stdout = os.Stderr
cmd.Stderr = os.Stderr
llm := &llama{Options: opts, Running: Running{Port: port, Cmd: cmd, Cancel: cancel}}
if err := waitForServer(llm); err != nil {
log.Printf("error starting llama.cpp server: %v", err)
llm.Close()
// try again
continue
}
// server started successfully
return llm, nil
}
return nil, fmt.Errorf("max retry exceeded starting llama.cpp")
}
func waitForServer(llm *llama) error {
log.Print("starting llama.cpp server")
var stderr bytes.Buffer
llm.Cmd.Stderr = &stderr
err := llm.Cmd.Start()
if err != nil {
return fmt.Errorf("error starting the external llama.cpp server: %w", err)
}
exitChan := make(chan error, 1)
// the server is a long running process, watch for it exiting to keep track of something going wrong
go func() {
err := llm.Cmd.Wait()
log.Print(stderr.String())
exitChan <- err
}()
// wait for the server to start responding
start := time.Now()
expiresAt := time.Now().Add(30 * time.Second)
ticker := time.NewTicker(100 * time.Millisecond)
log.Print("waiting for llama.cpp server to start responding")
for {
select {
case <-ticker.C:
if time.Now().After(expiresAt) {
return fmt.Errorf("llama.cpp server did not start responding within 30 seconds, retrying")
}
if err := llm.Ping(context.Background()); err == nil {
log.Printf("llama.cpp server started in %f seconds", time.Since(start).Seconds())
return nil
}
case err := <-exitChan:
return fmt.Errorf("llama.cpp server exited unexpectedly: %w", err)
}
}
}
func (llm *llama) Close() {
llm.Running.Cmd.Cancel()
}
func (llm *llama) SetOptions(opts api.Options) {
llm.Options = opts
}
type Prediction struct {
Content string `json:"content"`
Stop bool `json:"stop"`
}
type GenerationSettings struct {
FrequencyPenalty float64 `json:"frequency_penalty"`
IgnoreEOS bool `json:"ignore_eos"`
LogitBias []interface{} `json:"logit_bias"`
Mirostat int `json:"mirostat"`
MirostatEta float64 `json:"mirostat_eta"`
MirostatTau float64 `json:"mirostat_tau"`
Model string `json:"model"`
NCtx int `json:"n_ctx"`
NKeep int `json:"n_keep"`
NPredict int `json:"n_predict"`
NProbs int `json:"n_probs"`
PenalizeNl bool `json:"penalize_nl"`
PresencePenalty float64 `json:"presence_penalty"`
RepeatLastN int `json:"repeat_last_n"`
RepeatPenalty float64 `json:"repeat_penalty"`
Seed uint32 `json:"seed"`
Stop []string `json:"stop"`
Stream bool `json:"stream"`
Temp float64 `json:"temp"`
TfsZ float64 `json:"tfs_z"`
TopK int `json:"top_k"`
TopP float64 `json:"top_p"`
TypicalP float64 `json:"typical_p"`
}
type Timings struct {
PredictedMS float64 `json:"predicted_ms"`
PredictedN int `json:"predicted_n"`
PredictedPerSecond float64 `json:"predicted_per_second"`
PredictedPerTokenMS float64 `json:"predicted_per_token_ms"`
PromptMS float64 `json:"prompt_ms"`
PromptN int `json:"prompt_n"`
PromptPerSecond float64 `json:"prompt_per_second"`
PromptPerTokenMS float64 `json:"prompt_per_token_ms"`
}
type PredictComplete struct {
Content string `json:"content"`
GenerationSettings GenerationSettings `json:"generation_settings"`
Model string `json:"model"`
Prompt string `json:"prompt"`
Stop bool `json:"stop"`
StoppedEOS bool `json:"stopped_eos"`
StoppedLimit bool `json:"stopped_limit"`
StoppedWord bool `json:"stopped_word"`
StoppingWord string `json:"stopping_word"`
Timings Timings `json:"timings"`
TokensCached int `json:"tokens_cached"`
TokensEvaluated int `json:"tokens_evaluated"`
TokensPredicted int `json:"tokens_predicted"`
Truncated bool `json:"truncated"`
}
type PredictRequest struct {
Stream bool `json:"stream"`
NPredict int `json:"n_predict,omitempty"`
TopK int `json:"top_k,omitempty"`
TopP float32 `json:"top_p,omitempty"`
TfsZ float32 `json:"tfs_z,omitempty"`
TypicalP float32 `json:"typical_p,omitempty"`
RepeatLastN int `json:"repeat_last_n,omitempty"`
Temperature float32 `json:"temperature,omitempty"`
RepeatPenalty float32 `json:"repeat_penalty,omitempty"`
PresencePenalty float32 `json:"presence_penalty,omitempty"`
FrequencyPenalty float32 `json:"frequency_penalty,omitempty"`
Mirostat int `json:"mirostat,omitempty"`
MirostatTau float32 `json:"mirostat_tau,omitempty"`
MirostatEta float32 `json:"mirostat_eta,omitempty"`
PenalizeNl bool `json:"penalize_nl,omitempty"`
NKeep int `json:"n_keep,omitempty"`
Seed int `json:"seed,omitempty"`
Prompt string `json:"prompt,omitempty"`
NProbs int `json:"n_probs,omitempty"`
LogitBias map[int]float32 `json:"logit_bias,omitempty"`
IgnoreEos bool `json:"ignore_eos,omitempty"`
Stop []string `json:"stop,omitempty"`
}
func (llm *llama) Predict(ctx context.Context, prevContext []int, prompt string, fn func(api.GenerateResponse)) error {
prevConvo, err := llm.Decode(ctx, prevContext)
if err != nil {
return err
}
var nextContext strings.Builder
nextContext.WriteString(prevConvo)
nextContext.WriteString(prompt)
endpoint := fmt.Sprintf("http://127.0.0.1:%d/completion", llm.Port)
predReq := PredictRequest{
Prompt: nextContext.String(),
Stream: true,
NPredict: llm.NumPredict,
NKeep: llm.NumKeep,
Temperature: llm.Temperature,
TopK: llm.TopK,
TopP: llm.TopP,
TfsZ: llm.TFSZ,
TypicalP: llm.TypicalP,
RepeatLastN: llm.RepeatLastN,
RepeatPenalty: llm.RepeatPenalty,
PresencePenalty: llm.PresencePenalty,
FrequencyPenalty: llm.FrequencyPenalty,
Mirostat: llm.Mirostat,
MirostatTau: llm.MirostatTau,
MirostatEta: llm.MirostatEta,
PenalizeNl: llm.PenalizeNewline,
Stop: llm.Stop,
}
data, err := json.Marshal(predReq)
if err != nil {
return fmt.Errorf("error marshaling data: %v", err)
}
req, err := http.NewRequestWithContext(ctx, http.MethodPost, endpoint, bytes.NewBuffer(data))
if err != nil {
return fmt.Errorf("error creating POST request: %v", err)
}
req.Header.Set("Content-Type", "application/json")
resp, err := http.DefaultClient.Do(req)
if err != nil {
return fmt.Errorf("POST predict: %v", err)
}
defer resp.Body.Close()
if resp.StatusCode >= 400 {
bodyBytes, err := io.ReadAll(resp.Body)
if err != nil {
return fmt.Errorf("failed reading llm error response: %w", err)
}
log.Printf("llm predict error: %s", bodyBytes)
return fmt.Errorf("%s", bodyBytes)
}
scanner := bufio.NewScanner(resp.Body)
for scanner.Scan() {
select {
case <-ctx.Done():
// This handles the request cancellation
return ctx.Err()
default:
line := scanner.Text()
if line == "" {
continue
}
// Read data from the server-side event stream
if strings.HasPrefix(line, "data: ") {
evt := line[6:]
var complete PredictComplete
if err := json.Unmarshal([]byte(evt), &complete); err != nil {
return fmt.Errorf("error unmarshaling llm complete response: %v", err)
}
if complete.Timings.PredictedMS > 0 {
nextContext.WriteString(complete.Content)
embd, err := llm.Encode(ctx, nextContext.String())
if err != nil {
return fmt.Errorf("encoding context: %v", err)
}
fn(api.GenerateResponse{
Done: true,
Context: embd,
PromptEvalCount: int(complete.Timings.PromptN),
PromptEvalDuration: parseDurationMs(float64(complete.Timings.PromptMS)),
EvalCount: int(complete.Timings.PredictedN),
EvalDuration: parseDurationMs(float64(complete.Timings.PredictedMS)),
})
return nil
}
var p Prediction
if err := json.Unmarshal([]byte(evt), &p); err != nil {
return fmt.Errorf("error unmarshaling llm prediction response: %v", err)
}
fn(api.GenerateResponse{Response: p.Content})
nextContext.WriteString(p.Content)
}
}
}
if err := scanner.Err(); err != nil {
return fmt.Errorf("error reading llm response: %v", err)
}
return nil
}
type TokenizeRequest struct {
Content string `json:"content"`
}
type TokenizeResponse struct {
Tokens []int `json:"tokens"`
}
func (llm *llama) Encode(ctx context.Context, prompt string) ([]int, error) {
endpoint := fmt.Sprintf("http://127.0.0.1:%d/tokenize", llm.Port)
data, err := json.Marshal(TokenizeRequest{Content: prompt})
if err != nil {
return nil, fmt.Errorf("marshaling encode data: %w", err)
}
req, err := http.NewRequestWithContext(ctx, http.MethodPost, endpoint, bytes.NewBuffer(data))
if err != nil {
return nil, fmt.Errorf("encode request: %w", err)
}
req.Header.Set("Content-Type", "application/json")
resp, err := http.DefaultClient.Do(req)
if err != nil {
return nil, fmt.Errorf("do encode request: %w", err)
}
defer resp.Body.Close()
body, err := io.ReadAll(resp.Body)
if err != nil {
return nil, fmt.Errorf("read encode request: %w", err)
}
if resp.StatusCode >= 400 {
log.Printf("llm encode error: %s", body)
return nil, fmt.Errorf("%s", body)
}
var encoded TokenizeResponse
if err := json.Unmarshal(body, &encoded); err != nil {
return nil, fmt.Errorf("unmarshal encode response: %w", err)
}
return encoded.Tokens, nil
}
type DetokenizeRequest struct {
Tokens []int `json:"tokens"`
}
type DetokenizeResponse struct {
Content string `json:"content"`
}
func (llm *llama) Decode(ctx context.Context, tokens []int) (string, error) {
if len(tokens) == 0 {
return "", nil
}
endpoint := fmt.Sprintf("http://127.0.0.1:%d/detokenize", llm.Port)
data, err := json.Marshal(DetokenizeRequest{Tokens: tokens})
if err != nil {
return "", fmt.Errorf("marshaling decode data: %w", err)
}
req, err := http.NewRequestWithContext(ctx, http.MethodPost, endpoint, bytes.NewBuffer(data))
if err != nil {
return "", fmt.Errorf("decode request: %w", err)
}
req.Header.Set("Content-Type", "application/json")
resp, err := http.DefaultClient.Do(req)
if err != nil {
return "", fmt.Errorf("do decode request: %w", err)
}
defer resp.Body.Close()
body, err := io.ReadAll(resp.Body)
if err != nil {
return "", fmt.Errorf("read decode request: %w", err)
}
if resp.StatusCode >= 400 {
log.Printf("llm decode error: %s", body)
return "", fmt.Errorf("%s", body)
}
var decoded DetokenizeResponse
if err := json.Unmarshal(body, &decoded); err != nil {
return "", fmt.Errorf("unmarshal encode response: %w", err)
}
// decoded content contains a leading whitespace
decoded.Content, _ = strings.CutPrefix(decoded.Content, "")
return decoded.Content, nil
}
type EmbeddingRequest struct {
Content string `json:"content"`
}
type EmbeddingResponse struct {
Embedding []float64 `json:"embedding"`
}
func (llm *llama) Embedding(ctx context.Context, input string) ([]float64, error) {
endpoint := fmt.Sprintf("http://127.0.0.1:%d/embedding", llm.Port)
data, err := json.Marshal(TokenizeRequest{Content: input})
if err != nil {
return nil, fmt.Errorf("error marshaling embed data: %w", err)
}
req, err := http.NewRequestWithContext(ctx, http.MethodPost, endpoint, bytes.NewBuffer(data))
if err != nil {
return nil, fmt.Errorf("error creating embed request: %w", err)
}
req.Header.Set("Content-Type", "application/json")
resp, err := http.DefaultClient.Do(req)
if err != nil {
return nil, fmt.Errorf("POST embedding: %w", err)
}
defer resp.Body.Close()
body, err := io.ReadAll(resp.Body)
if err != nil {
return nil, fmt.Errorf("error reading embed response: %w", err)
}
if resp.StatusCode >= 400 {
log.Printf("llm encode error: %s", body)
return nil, fmt.Errorf("%s", body)
}
var embedding EmbeddingResponse
if err := json.Unmarshal(body, &embedding); err != nil {
return nil, fmt.Errorf("unmarshal tokenize response: %w", err)
}
return embedding.Embedding, nil
}
// Ping checks that the server subprocess is still running and responding to requests
func (llm *llama) Ping(ctx context.Context) error {
resp, err := http.Head(fmt.Sprintf("http://127.0.0.1:%d", llm.Running.Port))
if err != nil {
return fmt.Errorf("ping resp: %w", err)
}
if resp.StatusCode != http.StatusOK {
return fmt.Errorf("unexpected ping status: %s", resp.Status)
}
return nil
}