ollama/llm/llm.go
2023-08-14 16:08:06 -07:00

74 lines
1.7 KiB
Go

package llm
import (
"fmt"
"log"
"os"
"github.com/pbnjay/memory"
"github.com/jmorganca/ollama/api"
)
type LLM interface {
Predict([]int, string, func(api.GenerateResponse)) error
Embedding(string) ([]float64, error)
Encode(string) []int
Decode(...int) string
SetOptions(api.Options)
Close()
}
func New(model string, adapters []string, opts api.Options) (LLM, error) {
if _, err := os.Stat(model); err != nil {
return nil, err
}
f, err := os.Open(model)
if err != nil {
return nil, err
}
defer f.Close()
ggml, err := DecodeGGML(f, ModelFamilyLlama)
if err != nil {
return nil, err
}
switch ggml.FileType {
case FileTypeF32, FileTypeF16, FileTypeQ5_0, FileTypeQ5_1, FileTypeQ8_0:
if opts.NumGPU != 0 {
// Q5_0, Q5_1, and Q8_0 do not support Metal API and will
// cause the runner to segmentation fault so disable GPU
log.Printf("WARNING: GPU disabled for F32, F16, Q5_0, Q5_1, and Q8_0")
opts.NumGPU = 0
}
}
totalResidentMemory := memory.TotalMemory()
switch ggml.ModelType {
case ModelType3B, ModelType7B:
if totalResidentMemory < 8*1024*1024 {
return nil, fmt.Errorf("model requires at least 8GB of memory")
}
case ModelType13B:
if totalResidentMemory < 16*1024*1024 {
return nil, fmt.Errorf("model requires at least 16GB of memory")
}
case ModelType30B:
if totalResidentMemory < 32*1024*1024 {
return nil, fmt.Errorf("model requires at least 32GB of memory")
}
case ModelType65B:
if totalResidentMemory < 64*1024*1024 {
return nil, fmt.Errorf("model requires at least 64GB of memory")
}
}
switch ggml.ModelFamily {
case ModelFamilyLlama:
return newLlama(model, adapters, opts)
default:
return nil, fmt.Errorf("unknown ggml type: %s", ggml.ModelFamily)
}
}