387 lines
8.2 KiB
Go
387 lines
8.2 KiB
Go
package llm
|
|
|
|
import (
|
|
"encoding/binary"
|
|
"errors"
|
|
"fmt"
|
|
"io"
|
|
"strings"
|
|
)
|
|
|
|
type GGML struct {
|
|
container
|
|
model
|
|
}
|
|
|
|
const (
|
|
fileTypeF32 uint32 = iota
|
|
fileTypeF16
|
|
fileTypeQ4_0
|
|
fileTypeQ4_1
|
|
fileTypeQ4_1_F16
|
|
fileTypeQ8_0 uint32 = iota + 2
|
|
fileTypeQ5_0
|
|
fileTypeQ5_1
|
|
fileTypeQ2_K
|
|
fileTypeQ3_K_S
|
|
fileTypeQ3_K_M
|
|
fileTypeQ3_K_L
|
|
fileTypeQ4_K_S
|
|
fileTypeQ4_K_M
|
|
fileTypeQ5_K_S
|
|
fileTypeQ5_K_M
|
|
fileTypeQ6_K
|
|
fileTypeIQ2_XXS
|
|
fileTypeIQ2_XS
|
|
fileTypeQ2_K_S
|
|
fileTypeQ3_K_XS
|
|
fileTypeIQ3_XXS
|
|
)
|
|
|
|
func fileType(fileType uint32) string {
|
|
switch fileType {
|
|
case fileTypeF32:
|
|
return "F32"
|
|
case fileTypeF16:
|
|
return "F16"
|
|
case fileTypeQ4_0:
|
|
return "Q4_0"
|
|
case fileTypeQ4_1:
|
|
return "Q4_1"
|
|
case fileTypeQ4_1_F16:
|
|
return "Q4_1_F16"
|
|
case fileTypeQ8_0:
|
|
return "Q8_0"
|
|
case fileTypeQ5_0:
|
|
return "Q5_0"
|
|
case fileTypeQ5_1:
|
|
return "Q5_1"
|
|
case fileTypeQ2_K:
|
|
return "Q2_K"
|
|
case fileTypeQ3_K_S:
|
|
return "Q3_K_S"
|
|
case fileTypeQ3_K_M:
|
|
return "Q3_K_M"
|
|
case fileTypeQ3_K_L:
|
|
return "Q3_K_L"
|
|
case fileTypeQ4_K_S:
|
|
return "Q4_K_S"
|
|
case fileTypeQ4_K_M:
|
|
return "Q4_K_M"
|
|
case fileTypeQ5_K_S:
|
|
return "Q5_K_S"
|
|
case fileTypeQ5_K_M:
|
|
return "Q5_K_M"
|
|
case fileTypeQ6_K:
|
|
return "Q6_K"
|
|
case fileTypeIQ2_XXS:
|
|
return "IQ2_XXS"
|
|
case fileTypeIQ2_XS:
|
|
return "IQ2_XS"
|
|
case fileTypeQ2_K_S:
|
|
return "Q2_K_S"
|
|
case fileTypeQ3_K_XS:
|
|
return "Q3_K_XS"
|
|
case fileTypeIQ3_XXS:
|
|
return "IQ3_XXS"
|
|
default:
|
|
return "unknown"
|
|
}
|
|
}
|
|
|
|
type model interface {
|
|
KV() KV
|
|
Tensors() Tensors
|
|
}
|
|
|
|
type KV map[string]any
|
|
|
|
func (kv KV) u64(key string) uint64 {
|
|
switch v := kv[key].(type) {
|
|
case uint64:
|
|
return v
|
|
case uint32:
|
|
return uint64(v)
|
|
case float64:
|
|
return uint64(v)
|
|
default:
|
|
return 0
|
|
}
|
|
}
|
|
|
|
func (kv KV) Architecture() string {
|
|
if s, ok := kv["general.architecture"].(string); ok {
|
|
return s
|
|
}
|
|
|
|
return "unknown"
|
|
}
|
|
|
|
func (kv KV) ParameterCount() uint64 {
|
|
return kv.u64("general.parameter_count")
|
|
}
|
|
|
|
func (kv KV) FileType() string {
|
|
if u64 := kv.u64("general.file_type"); u64 > 0 {
|
|
return fileType(uint32(u64))
|
|
}
|
|
|
|
return "unknown"
|
|
}
|
|
|
|
func (kv KV) BlockCount() uint64 {
|
|
return kv.u64(fmt.Sprintf("%s.block_count", kv.Architecture()))
|
|
}
|
|
|
|
func (kv KV) HeadCount() uint64 {
|
|
return kv.u64(fmt.Sprintf("%s.attention.head_count", kv.Architecture()))
|
|
}
|
|
|
|
func (kv KV) HeadCountKV() uint64 {
|
|
if headCountKV := kv.u64(fmt.Sprintf("%s.attention.head_count_kv", kv.Architecture())); headCountKV > 0 {
|
|
return headCountKV
|
|
}
|
|
|
|
return 1
|
|
}
|
|
|
|
func (kv KV) GQA() uint64 {
|
|
return kv.HeadCount() / kv.HeadCountKV()
|
|
}
|
|
|
|
func (kv KV) EmbeddingLength() uint64 {
|
|
return kv.u64(fmt.Sprintf("%s.embedding_length", kv.Architecture()))
|
|
}
|
|
|
|
func (kv KV) ContextLength() uint64 {
|
|
return kv.u64(fmt.Sprintf("%s.context_length", kv.Architecture()))
|
|
}
|
|
|
|
type Tensors []*Tensor
|
|
|
|
func (ts Tensors) Layers() map[string]Layer {
|
|
layers := make(map[string]Layer)
|
|
for _, t := range ts {
|
|
parts := strings.Split(t.Name, ".")
|
|
if parts[0] == "blk" {
|
|
// join first and second part, e.g. blk.%d
|
|
parts = append([]string{fmt.Sprintf("%s.%s", parts[0], parts[1])}, parts[2:]...)
|
|
}
|
|
|
|
if _, ok := layers[parts[0]]; !ok {
|
|
layers[parts[0]] = make(Layer)
|
|
}
|
|
|
|
layers[parts[0]][strings.Join(parts[1:], ".")] = t
|
|
}
|
|
|
|
return layers
|
|
}
|
|
|
|
type Layer map[string]*Tensor
|
|
|
|
func (l Layer) size() (size uint64) {
|
|
for _, t := range l {
|
|
size += t.size()
|
|
}
|
|
|
|
return size
|
|
}
|
|
|
|
type Tensor struct {
|
|
Name string `json:"name"`
|
|
Kind uint32 `json:"kind"`
|
|
Offset uint64 `json:"-"`
|
|
|
|
// Shape is the number of elements in each dimension
|
|
Shape []uint64 `json:"shape"`
|
|
|
|
io.WriterTo `json:"-"`
|
|
}
|
|
|
|
func (t Tensor) blockSize() uint64 {
|
|
switch {
|
|
case t.Kind < 2:
|
|
return 1
|
|
case t.Kind < 10:
|
|
return 32
|
|
default:
|
|
return 256
|
|
}
|
|
}
|
|
|
|
func (t Tensor) typeSize() uint64 {
|
|
blockSize := t.blockSize()
|
|
|
|
switch t.Kind {
|
|
case 0: // FP32
|
|
return 4
|
|
case 1: // FP16
|
|
return 2
|
|
case 2: // Q4_0
|
|
return 2 + blockSize/2
|
|
case 3: // Q4_1
|
|
return 2 + 2 + blockSize/2
|
|
case 6: // Q5_0
|
|
return 2 + 4 + blockSize/2
|
|
case 7: // Q5_1
|
|
return 2 + 2 + 4 + blockSize/2
|
|
case 8: // Q8_0
|
|
return 2 + blockSize
|
|
case 9: // Q8_1
|
|
return 4 + 4 + blockSize
|
|
case 10: // Q2_K
|
|
return blockSize/16 + blockSize/4 + 2 + 2
|
|
case 11: // Q3_K
|
|
return blockSize/8 + blockSize/4 + 12 + 2
|
|
case 12: // Q4_K
|
|
return 2 + 2 + 12 + blockSize/2
|
|
case 13: // Q5_K
|
|
return 2 + 2 + 12 + blockSize/8 + blockSize/2
|
|
case 14: // Q6_K
|
|
return blockSize/2 + blockSize/4 + blockSize/16 + 2
|
|
case 15: // Q8_K
|
|
return 2 + blockSize + 2*blockSize/16
|
|
case 16: // IQ2_XXS
|
|
return 2 + 2*blockSize/8
|
|
case 17: // IQ2_XS
|
|
return 2 + 2*blockSize/8 + blockSize/32
|
|
case 18: // IQ3_XXS
|
|
return 2 + 3*blockSize/8
|
|
default:
|
|
return 0
|
|
}
|
|
}
|
|
|
|
func (t Tensor) parameters() uint64 {
|
|
var count uint64 = 1
|
|
for _, n := range t.Shape {
|
|
count *= n
|
|
}
|
|
return count
|
|
}
|
|
|
|
func (t Tensor) size() uint64 {
|
|
return t.parameters() * t.typeSize() / t.blockSize()
|
|
}
|
|
|
|
type container interface {
|
|
Name() string
|
|
Decode(io.ReadSeeker) (model, error)
|
|
}
|
|
|
|
const (
|
|
// Magic constant for `ggml` files (unversioned).
|
|
FILE_MAGIC_GGML = 0x67676d6c
|
|
// Magic constant for `ggml` files (versioned, ggmf).
|
|
FILE_MAGIC_GGMF = 0x67676d66
|
|
// Magic constant for `ggml` files (versioned, ggjt).
|
|
FILE_MAGIC_GGJT = 0x67676a74
|
|
// Magic constant for `ggla` files (LoRA adapter).
|
|
FILE_MAGIC_GGLA = 0x67676C61
|
|
// Magic constant for `gguf` files (versioned, gguf)
|
|
FILE_MAGIC_GGUF_LE = 0x46554747
|
|
FILE_MAGIC_GGUF_BE = 0x47475546
|
|
)
|
|
|
|
var ErrUnsupportedFormat = errors.New("unsupported model format")
|
|
|
|
func DecodeGGML(rs io.ReadSeeker) (*GGML, int64, error) {
|
|
var magic uint32
|
|
if err := binary.Read(rs, binary.LittleEndian, &magic); err != nil {
|
|
return nil, 0, err
|
|
}
|
|
|
|
var c container
|
|
switch magic {
|
|
case FILE_MAGIC_GGML, FILE_MAGIC_GGMF, FILE_MAGIC_GGJT:
|
|
return nil, 0, ErrUnsupportedFormat
|
|
case FILE_MAGIC_GGLA:
|
|
c = &containerGGLA{}
|
|
case FILE_MAGIC_GGUF_LE:
|
|
c = &containerGGUF{ByteOrder: binary.LittleEndian}
|
|
case FILE_MAGIC_GGUF_BE:
|
|
c = &containerGGUF{ByteOrder: binary.BigEndian}
|
|
default:
|
|
return nil, 0, errors.New("invalid file magic")
|
|
}
|
|
|
|
model, err := c.Decode(rs)
|
|
if errors.Is(err, io.EOF) {
|
|
// noop
|
|
} else if err != nil {
|
|
return nil, 0, err
|
|
}
|
|
|
|
offset, err := rs.Seek(0, io.SeekCurrent)
|
|
if err != nil {
|
|
return nil, 0, err
|
|
}
|
|
|
|
// final model type
|
|
return &GGML{
|
|
container: c,
|
|
model: model,
|
|
}, offset, nil
|
|
}
|
|
|
|
func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload uint64) {
|
|
embedding := llm.KV().EmbeddingLength()
|
|
heads := llm.KV().HeadCount()
|
|
headsKV := llm.KV().HeadCountKV()
|
|
vocab := uint64(len(llm.KV()["tokenizer.ggml.tokens"].([]any)))
|
|
|
|
layers := llm.Tensors().Layers()
|
|
|
|
switch llm.KV().Architecture() {
|
|
case "llama":
|
|
fullOffload = 4 * batch * (1 + 4*embedding + context*(1+heads))
|
|
|
|
partialOffload = 4 * batch * embedding
|
|
partialOffload += max(
|
|
4*batch*(1+embedding+max(context, embedding))+embedding*embedding*9/16+4*context*(batch*heads+embedding/heads*headsKV),
|
|
4*batch*(embedding+vocab)+embedding*vocab*105/128,
|
|
)
|
|
|
|
if ffnGateWeight, ok := layers["0"]["ffn_gate.0.weight"]; ok {
|
|
ffnGateWeight1 := ffnGateWeight.Shape[1]
|
|
fullOffload = 4 * batch * (2 + 3*embedding + context*(1+heads) + 2*headsKV + ffnGateWeight1)
|
|
partialOffload = max(
|
|
4*batch*(3+embedding/heads*headsKV+embedding+context*(1+heads)+ffnGateWeight1)+(embedding*embedding+3*embedding*headsKV*ffnGateWeight1)*9/16,
|
|
4*batch*(1+2*embedding+context*(1+heads))+embedding*(6*context*headsKV/heads+embedding*9/16),
|
|
)
|
|
}
|
|
case "gemma":
|
|
fullOffload = 4 * batch * (embedding + vocab)
|
|
partialOffload = 4*batch*(2*embedding+vocab+1) + embedding*vocab*105/128
|
|
case "command-r":
|
|
fullOffload = max(
|
|
4*batch*(embedding+vocab),
|
|
4*batch*(2+4*embedding+context*(1+heads)),
|
|
)
|
|
|
|
partialOffload = max(
|
|
4*batch*(embedding+vocab)+embedding*vocab*105/128,
|
|
4*batch*(1+2*embedding+context*(1+heads))+4*embedding*context+embedding*embedding*9/16,
|
|
)
|
|
case "qwen2":
|
|
fullOffload = max(
|
|
4*batch*(embedding+vocab),
|
|
4*batch*(1+2*embedding+context+context*heads),
|
|
)
|
|
|
|
partialOffload = max(
|
|
4*batch*(embedding+vocab)+embedding*vocab*105/128,
|
|
4*(batch*(1+2*embedding+context*(1+heads))+embedding*(1+context)),
|
|
)
|
|
case "phi2":
|
|
fullOffload = max(
|
|
4*batch*(embedding+vocab),
|
|
4*batch*(1+4*embedding+context+context*heads),
|
|
)
|
|
|
|
partialOffload = 4*batch*(2*embedding+vocab) + embedding*vocab*105/128
|
|
}
|
|
|
|
return
|
|
}
|