ollama/proto.py
2023-06-25 14:22:07 -04:00

85 lines
2.3 KiB
Python

import json
import os
from llama_cpp import Llama
from flask import Flask, Response, stream_with_context, request
from flask_cors import CORS
app = Flask(__name__)
CORS(app) # enable CORS for all routes
# llms tracks which models are loaded
llms = {}
@app.route("/load", methods=["POST"])
def load():
data = request.get_json()
model = data.get("model")
if not model:
return Response("Model is required", status=400)
if not os.path.exists(f"../models/{model}.bin"):
return {"error": "The model does not exist."}, 400
if model not in llms:
llms[model] = Llama(model_path=f"../models/{model}.bin")
return Response(status=204)
@app.route("/unload", methods=["POST"])
def unload():
data = request.get_json()
model = data.get("model")
if not model:
return Response("Model is required", status=400)
if not os.path.exists(f"../models/{model}.bin"):
return {"error": "The model does not exist."}, 400
llms.pop(model, None)
return Response(status=204)
@app.route("/generate", methods=["POST"])
def generate():
data = request.get_json()
model = data.get("model")
prompt = data.get("prompt")
if not model:
return Response("Model is required", status=400)
if not prompt:
return Response("Prompt is required", status=400)
if not os.path.exists(f"./models/{model}.bin"):
return {"error": "The model does not exist."}, 400
if model not in llms:
# auto load
llms[model] = Llama(model_path=f"../models/{model}.bin")
def stream_response():
stream = llms[model](
str(prompt), # TODO: optimize prompt based on model
max_tokens=4096,
stop=["Q:", "\n"],
echo=True,
stream=True,
)
for output in stream:
yield json.dumps(output)
return Response(
stream_with_context(stream_response()), mimetype="text/event-stream"
)
@app.route("/models", methods=["GET"])
def models():
all_files = os.listdir("./models")
bin_files = [file.replace(".bin", "") for file in all_files if file.endswith(".bin")]
return Response(json.dumps(bin_files), mimetype="application/json")
if __name__ == "__main__":
app.run(debug=True, threaded=True, port=5001)
app.run()