No description
Find a file
Matt Williams 4e07941b1e
Merge pull request #329 from jmorganca/matt/tutorials
Add tutorials for using Langchain with ollama
2023-08-11 15:19:39 -07:00
api s/parmeter/parameter/ 2023-08-10 16:26:06 -07:00
app guard around id() 2023-08-10 14:11:54 -07:00
cmd Generate private/public keypair for use w/ auth (#324) 2023-08-11 10:58:23 -07:00
docs resolving bmacd comment 2023-08-11 13:51:44 -07:00
examples Merge branch 'new-syntax' of https://github.com/jmorganca/ollama into new-syntax 2023-08-11 09:00:43 -07:00
format Generate private/public keypair for use w/ auth (#324) 2023-08-11 10:58:23 -07:00
llm ggml: fix off by one error 2023-08-11 10:45:22 -07:00
parser Merge pull request #290 from jmorganca/add-adapter-layers 2023-08-10 17:23:01 -07:00
progressbar vendor in progress bar and change to bytes instead of bibytes (#130) 2023-07-19 17:24:03 -07:00
scripts make ollama binary executable on build 2023-08-07 18:10:37 -04:00
server Merge pull request #290 from jmorganca/add-adapter-layers 2023-08-10 17:23:01 -07:00
vector embed text document in modelfile 2023-08-08 11:27:17 -04:00
.dockerignore update Dockerfile 2023-07-06 16:34:44 -04:00
.gitignore add ggml-metal.metal to .gitignore 2023-07-28 11:04:21 -04:00
.prettierrc.json move .prettierrc.json to root 2023-07-02 17:34:46 -04:00
Dockerfile fix compilation issue in Dockerfile, remove from README.md until ready 2023-07-11 19:51:08 -07:00
go.mod check memory requirements before loading 2023-08-10 09:23:11 -07:00
go.sum check memory requirements before loading 2023-08-10 09:23:11 -07:00
LICENSE proto -> ollama 2023-06-26 15:57:13 -04:00
main.go continue conversation 2023-07-13 17:13:00 -07:00
README.md add example 2023-08-10 20:13:47 -07:00

logo

Ollama

Discord

Run, create, and share large language models (LLMs).

Note: Ollama is in early preview. Please report any issues you find.

Download

Quickstart

To run and chat with Llama 2, the new model by Meta:

ollama run llama2

Model library

ollama includes a library of open-source models:

Model Parameters Size Download
Llama2 7B 3.8GB ollama pull llama2
Llama2 13B 13B 7.3GB ollama pull llama2:13b
Llama2 70B 70B 39GB ollama pull llama2:70b
Llama2 Uncensored 7B 3.8GB ollama pull llama2-uncensored
Orca Mini 3B 1.9GB ollama pull orca
Vicuna 7B 3.8GB ollama pull vicuna
Nous-Hermes 13B 7.3GB ollama pull nous-hermes
Wizard Vicuna Uncensored 13B 7.3GB ollama pull wizard-vicuna

Note: You should have at least 8 GB of RAM to run the 3B models, 16 GB to run the 7B models, and 32 GB to run the 13B models.

Examples

Run a model

ollama run llama2
>>> hi
Hello! How can I help you today?

For multiline input, you can wrap text with """:

>>> """Hello,
... world!
... """
I'm a basic program that prints the famous "Hello, world!" message to the console.

Create a custom model

Pull a base model:

ollama pull llama2

To update a model to the latest version, run ollama pull llama2 again. The model will be updated (if necessary).

Create a Modelfile:

FROM llama2

# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1

# set the system prompt
SYSTEM """
You are Mario from Super Mario Bros. Answer as Mario, the assistant, only.
"""

Next, create and run the model:

ollama create mario -f ./Modelfile
ollama run mario
>>> hi
Hello! It's your friend Mario.

For more examples, see the examples directory. For more information on creating a Modelfile, see the Modelfile documentation.

Pull a model from the registry

ollama pull orca

Listing local models

ollama list

Model packages

Overview

Ollama bundles model weights, configuration, and data into a single package, defined by a Modelfile.

logo

Building

go build .

To run it start the server:

./ollama serve &

Finally, run a model!

./ollama run llama2

REST API

See the API documentation for all endpoints.

Ollama has an API for running and managing models. For example to generate text from a model:

curl -X POST http://localhost:11434/api/generate -d '{
  "model": "llama2",
  "prompt":"Why is the sky blue?"
}'

Tools using Ollama