ollama/llm/llama.go
Daniel Hiltgen 7555ea44f8 Revamp the dynamic library shim
This switches the default llama.cpp to be CPU based, and builds the GPU variants
as dynamically loaded libraries which we can select at runtime.

This also bumps the ROCm library to version 6 given 5.7 builds don't work
on the latest ROCm library that just shipped.
2023-12-20 14:45:57 -08:00

246 lines
5.4 KiB
Go

package llm
import (
"bytes"
"context"
_ "embed"
"errors"
"fmt"
"io"
"io/fs"
"os"
"os/exec"
"path/filepath"
"sync"
"time"
"github.com/jmorganca/ollama/api"
"github.com/jmorganca/ollama/format"
)
const jsonGrammar = `
root ::= object
value ::= object | array | string | number | ("true" | "false" | "null") ws
object ::=
"{" ws (
string ":" ws value
("," ws string ":" ws value)*
)? "}" ws
array ::=
"[" ws (
value
("," ws value)*
)? "]" ws
string ::=
"\"" (
[^"\\] |
"\\" (["\\/bfnrt] | "u" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F]) # escapes
)* "\"" ws
number ::= ("-"? ([0-9] | [1-9] [0-9]*)) ("." [0-9]+)? ([eE] [-+]? [0-9]+)? ws
# Optional space: by convention, applied in this grammar after literal chars when allowed
ws ::= ([ \t\n] ws)?
`
type llamaModel struct {
hyperparameters llamaHyperparameters
}
func (llm *llamaModel) ModelFamily() string {
return "llama"
}
func llamaModelType(numLayer uint32) string {
switch numLayer {
case 26:
return "3B"
case 32:
return "7B"
case 40:
return "13B"
case 48:
return "34B"
case 60:
return "30B"
case 80:
return "65B"
default:
return "unknown"
}
}
func (llm *llamaModel) ModelType() string {
return llamaModelType(llm.hyperparameters.NumLayer)
}
func (llm *llamaModel) FileType() string {
return fileType(llm.hyperparameters.FileType)
}
func (llm *llamaModel) NumLayers() int64 {
return int64(llm.hyperparameters.NumLayer)
}
type llamaHyperparameters struct {
// NumVocab is the size of the model's vocabulary.
NumVocab uint32
// NumEmbd is the size of the model's embedding layer.
NumEmbd uint32
NumMult uint32
NumHead uint32
// NumLayer is the number of layers in the model.
NumLayer uint32
NumRot uint32
// FileType describes the quantization level of the model, e.g. Q4_0, Q5_K, etc.
FileType uint32
}
type Running struct {
Port int
Cmd *exec.Cmd
Cancel context.CancelFunc
exitOnce sync.Once
exitCh chan error // channel to receive the exit status of the subprocess
*StatusWriter // captures error messages from the llama runner process
}
type ImageData struct {
Data []byte `json:"data"`
ID int `json:"id"`
}
var (
errNvidiaSMI = errors.New("warning: gpu support may not be enabled, check that you have installed GPU drivers: nvidia-smi command failed")
errAvailableVRAM = errors.New("not enough VRAM available, falling back to CPU only")
payloadMissing = fmt.Errorf("expected dynamic library payloads not included in this build of ollama")
)
// StatusWriter is a writer that captures error messages from the llama runner process
type StatusWriter struct {
ErrCh chan error
LastErrMsg string
}
func NewStatusWriter() *StatusWriter {
return &StatusWriter{
ErrCh: make(chan error, 1),
}
}
func (w *StatusWriter) Write(b []byte) (int, error) {
var errMsg string
if _, after, ok := bytes.Cut(b, []byte("error:")); ok {
errMsg = string(bytes.TrimSpace(after))
} else if _, after, ok := bytes.Cut(b, []byte("CUDA error")); ok {
errMsg = string(bytes.TrimSpace(after))
}
if errMsg != "" {
w.LastErrMsg = errMsg
w.ErrCh <- fmt.Errorf("llama runner: %s", errMsg)
}
return os.Stderr.Write(b)
}
type prediction struct {
Content string `json:"content"`
Model string `json:"model"`
Prompt string `json:"prompt"`
Stop bool `json:"stop"`
Timings struct {
PredictedN int `json:"predicted_n"`
PredictedMS float64 `json:"predicted_ms"`
PromptN int `json:"prompt_n"`
PromptMS float64 `json:"prompt_ms"`
}
}
const maxBufferSize = 512 * format.KiloByte
const maxRetries = 3
const retryDelay = 1 * time.Second
type PredictOpts struct {
Prompt string
Format string
Images []api.ImageData
}
type PredictResult struct {
Content string
Done bool
PromptEvalCount int
PromptEvalDuration time.Duration
EvalCount int
EvalDuration time.Duration
}
type TokenizeRequest struct {
Content string `json:"content"`
}
type TokenizeResponse struct {
Tokens []int `json:"tokens"`
}
type DetokenizeRequest struct {
Tokens []int `json:"tokens"`
}
type DetokenizeResponse struct {
Content string `json:"content"`
}
type EmbeddingRequest struct {
Content string `json:"content"`
}
type EmbeddingResponse struct {
Embedding []float64 `json:"embedding"`
}
func extractDynamicLibs(workDir, glob string) ([]string, error) {
files, err := fs.Glob(libEmbed, glob)
if err != nil || len(files) == 0 {
return nil, payloadMissing
}
libs := make([]string, len(files))
for i, file := range files {
srcFile, err := libEmbed.Open(file)
if err != nil {
return nil, fmt.Errorf("read payload %s: %v", file, err)
}
defer srcFile.Close()
if err := os.MkdirAll(workDir, 0o755); err != nil {
return nil, fmt.Errorf("create payload temp dir %s: %v", workDir, err)
}
destFile := filepath.Join(workDir, filepath.Base(file))
libs[i] = destFile
_, err = os.Stat(destFile)
switch {
case errors.Is(err, os.ErrNotExist):
destFile, err := os.OpenFile(destFile, os.O_WRONLY|os.O_CREATE|os.O_TRUNC, 0o755)
if err != nil {
return nil, fmt.Errorf("write payload %s: %v", file, err)
}
defer destFile.Close()
if _, err := io.Copy(destFile, srcFile); err != nil {
return nil, fmt.Errorf("copy payload %s: %v", file, err)
}
case err != nil:
return nil, fmt.Errorf("stat payload %s: %v", file, err)
}
}
return libs, nil
}