No description
Find a file
2024-07-30 21:01:12 -07:00
.github Bump Go patch version 2024-07-22 16:16:28 -07:00
api Add Metrics to api\embed response () 2024-07-30 13:12:21 -07:00
app upate to llama3.1 elsewhere in repo () 2024-07-28 19:56:02 -07:00
auth prompt to display and add local ollama keys to account () 2024-04-30 11:02:08 -07:00
cmd Merge pull request from dhiltgen/sched_faq 2024-07-29 14:25:41 -07:00
convert convert: capture head_dim for mistral () 2024-07-22 16:16:22 -04:00
docs Merge pull request from dhiltgen/sched_faq 2024-07-29 14:25:41 -07:00
envconfig Remove no longer supported max vram var 2024-07-22 09:08:11 -07:00
examples Update and Fix example models () 2024-07-29 23:56:37 -07:00
format lint 2024-06-04 11:13:30 -07:00
gpu Ensure amd gpu nodes are numerically sorted 2024-07-24 13:43:26 -07:00
integration Add Metrics to api\embed response () 2024-07-30 13:12:21 -07:00
llm patch gemma support 2024-07-30 18:07:29 -07:00
macapp upate to llama3.1 elsewhere in repo () 2024-07-28 19:56:02 -07:00
openai return tool calls finish reason for openai () 2024-07-29 13:56:57 -07:00
parser feat: add support for min_p (resolve ) () 2024-07-27 14:37:40 -07:00
progress lint 2024-06-04 11:13:30 -07:00
readline more lint 2024-06-04 11:13:30 -07:00
scripts Report better error on cuda unsupported os/arch 2024-07-24 17:09:20 -07:00
server Add Metrics to api\embed response () 2024-07-30 13:12:21 -07:00
template Merge pull request from ollama/mxyng/detect-stop 2024-07-26 13:48:23 -07:00
types types/model: remove knowledge of digest () 2024-07-05 13:42:30 -07:00
util/bufioutil llm: speed up gguf decoding by a lot () 2024-06-24 21:47:52 -07:00
version add version 2023-08-22 09:40:58 -07:00
.dockerignore add macapp to .dockerignore 2024-03-09 16:07:06 -08:00
.gitattributes Update .gitattributes 2024-05-07 09:50:19 -07:00
.gitignore ignore debug bin files 2024-05-01 18:51:10 +00:00
.gitmodules Init submodule with new path 2024-01-04 13:00:13 -08:00
.golangci.yaml gofmt, goimports 2024-06-04 13:20:24 -07:00
.prettierrc.json move .prettierrc.json to root 2023-07-02 17:34:46 -04:00
Dockerfile Bump Go patch version 2024-07-22 16:16:28 -07:00
go.mod update named templates 2024-07-05 16:29:32 -07:00
go.sum detect chat template from KV 2024-06-06 16:03:47 -07:00
LICENSE proto -> ollama 2023-06-26 15:57:13 -04:00
main.go change github.com/jmorganca/ollama to github.com/ollama/ollama () 2024-03-26 13:04:17 -07:00
README.md Update README to include Firebase Genkit () 2024-07-30 18:40:09 -07:00
SECURITY.md Create SECURITY.md 2024-07-30 21:01:12 -07:00

 ollama

Ollama

Discord

Get up and running with large language models.

macOS

Download

Windows preview

Download

Linux

curl -fsSL https://ollama.com/install.sh | sh

Manual install instructions

Docker

The official Ollama Docker image ollama/ollama is available on Docker Hub.

Libraries

Quickstart

To run and chat with Llama 3.1:

ollama run llama3.1

Model library

Ollama supports a list of models available on ollama.com/library

Here are some example models that can be downloaded:

Model Parameters Size Download
Llama 3.1 8B 4.7GB ollama run llama3.1
Llama 3.1 70B 40GB ollama run llama3.1:70b
Llama 3.1 405B 231GB ollama run llama3.1:405b
Phi 3 Mini 3.8B 2.3GB ollama run phi3
Phi 3 Medium 14B 7.9GB ollama run phi3:medium
Gemma 2 9B 5.5GB ollama run gemma2
Gemma 2 27B 16GB ollama run gemma2:27b
Mistral 7B 4.1GB ollama run mistral
Moondream 2 1.4B 829MB ollama run moondream
Neural Chat 7B 4.1GB ollama run neural-chat
Starling 7B 4.1GB ollama run starling-lm
Code Llama 7B 3.8GB ollama run codellama
Llama 2 Uncensored 7B 3.8GB ollama run llama2-uncensored
LLaVA 7B 4.5GB ollama run llava
Solar 10.7B 6.1GB ollama run solar

Note

You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.

Customize a model

Import from GGUF

Ollama supports importing GGUF models in the Modelfile:

  1. Create a file named Modelfile, with a FROM instruction with the local filepath to the model you want to import.

    FROM ./vicuna-33b.Q4_0.gguf
    
  2. Create the model in Ollama

    ollama create example -f Modelfile
    
  3. Run the model

    ollama run example
    

Import from PyTorch or Safetensors

See the guide on importing models for more information.

Customize a prompt

Models from the Ollama library can be customized with a prompt. For example, to customize the llama3.1 model:

ollama pull llama3.1

Create a Modelfile:

FROM llama3.1

# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1

# set the system message
SYSTEM """
You are Mario from Super Mario Bros. Answer as Mario, the assistant, only.
"""

Next, create and run the model:

ollama create mario -f ./Modelfile
ollama run mario
>>> hi
Hello! It's your friend Mario.

For more examples, see the examples directory. For more information on working with a Modelfile, see the Modelfile documentation.

CLI Reference

Create a model

ollama create is used to create a model from a Modelfile.

ollama create mymodel -f ./Modelfile

Pull a model

ollama pull llama3.1

This command can also be used to update a local model. Only the diff will be pulled.

Remove a model

ollama rm llama3.1

Copy a model

ollama cp llama3.1 my-model

Multiline input

For multiline input, you can wrap text with """:

>>> """Hello,
... world!
... """
I'm a basic program that prints the famous "Hello, world!" message to the console.

Multimodal models

ollama run llava "What's in this image? /Users/jmorgan/Desktop/smile.png"
The image features a yellow smiley face, which is likely the central focus of the picture.

Pass the prompt as an argument

$ ollama run llama3.1 "Summarize this file: $(cat README.md)"
 Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.

Show model information

ollama show llama3.1

List models on your computer

ollama list

Start Ollama

ollama serve is used when you want to start ollama without running the desktop application.

Building

See the developer guide

Running local builds

Next, start the server:

./ollama serve

Finally, in a separate shell, run a model:

./ollama run llama3.1

REST API

Ollama has a REST API for running and managing models.

Generate a response

curl http://localhost:11434/api/generate -d '{
  "model": "llama3.1",
  "prompt":"Why is the sky blue?"
}'

Chat with a model

curl http://localhost:11434/api/chat -d '{
  "model": "llama3.1",
  "messages": [
    { "role": "user", "content": "why is the sky blue?" }
  ]
}'

See the API documentation for all endpoints.

Community Integrations

Web & Desktop

Terminal

Database

Package managers

Libraries

Mobile

Extensions & Plugins

Supported backends

  • llama.cpp project founded by Georgi Gerganov.