ollama/server/sched.go
Daniel Hiltgen 354ad9254e Wait for GPU free memory reporting to converge
The GPU drivers take a while to update their free memory reporting, so we need
to wait until the values converge with what we're expecting before proceeding
to start another runner in order to get an accurate picture.
2024-05-09 14:56:01 -07:00

611 lines
21 KiB
Go

package server
import (
"context"
"errors"
"fmt"
"log/slog"
"reflect"
"sort"
"strings"
"sync"
"time"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/gpu"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/server/envconfig"
"golang.org/x/exp/slices"
)
type LlmRequest struct {
ctx context.Context //nolint:containedctx
model *Model
opts api.Options
sessionDuration time.Duration
successCh chan *runnerRef
errCh chan error
}
type Scheduler struct {
pendingReqCh chan *LlmRequest
finishedReqCh chan *LlmRequest
expiredCh chan *runnerRef
unloadedCh chan interface{}
loaded map[string]*runnerRef
loadedMu sync.Mutex
loadFn func(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList)
newServerFn func(gpus gpu.GpuInfoList, model string, ggml *llm.GGML, adapters []string, projectors []string, opts api.Options) (llm.LlamaServer, error)
getGpuFn func() gpu.GpuInfoList
}
var ErrMaxQueue = fmt.Errorf("server busy, please try again. maximum pending requests exceeded")
func InitScheduler(ctx context.Context) *Scheduler {
sched := &Scheduler{
pendingReqCh: make(chan *LlmRequest, envconfig.MaxQueuedRequests),
finishedReqCh: make(chan *LlmRequest, envconfig.MaxQueuedRequests),
expiredCh: make(chan *runnerRef, envconfig.MaxQueuedRequests),
unloadedCh: make(chan interface{}, envconfig.MaxQueuedRequests),
loaded: make(map[string]*runnerRef),
newServerFn: llm.NewLlamaServer,
getGpuFn: gpu.GetGPUInfo,
}
sched.loadFn = sched.load
return sched
}
// context must be canceled to decrement ref count and release the runner
func (s *Scheduler) GetRunner(c context.Context, model *Model, opts api.Options, sessionDuration time.Duration) (chan *runnerRef, chan error) {
// allocate a large enough kv cache for all parallel requests
opts.NumCtx = opts.NumCtx * envconfig.NumParallel
req := &LlmRequest{
ctx: c,
model: model,
opts: opts,
sessionDuration: sessionDuration,
successCh: make(chan *runnerRef),
errCh: make(chan error, 1),
}
select {
case s.pendingReqCh <- req:
default:
req.errCh <- ErrMaxQueue
}
return req.successCh, req.errCh
}
// Returns immediately, spawns go routines for the scheduler which will shutdown when ctx is done
func (s *Scheduler) Run(ctx context.Context) {
slog.Debug("starting llm scheduler")
go func() {
s.processPending(ctx)
}()
go func() {
s.processCompleted(ctx)
}()
}
func (s *Scheduler) processPending(ctx context.Context) {
for {
select {
case <-ctx.Done():
slog.Debug("shutting down scheduler pending loop")
return
case pending := <-s.pendingReqCh:
// Block other requests until we get this pending request running
if pending.ctx.Err() != nil {
slog.Debug("pending request cancelled or timed out, skipping scheduling")
continue
}
for {
var runnerToExpire *runnerRef
s.loadedMu.Lock()
runner := s.loaded[pending.model.ModelPath]
loadedCount := len(s.loaded)
s.loadedMu.Unlock()
if runner != nil {
if runner.needsReload(ctx, pending) {
runnerToExpire = runner
} else {
// Runner is usable, return it
pending.useLoadedRunner(runner, s.finishedReqCh)
break
}
} else if envconfig.MaxRunners > 0 && loadedCount >= envconfig.MaxRunners {
slog.Debug("max runners achieved, unloading one to make room", "runner_count", loadedCount)
runnerToExpire = s.findRunnerToUnload()
} else {
// Either no models are loaded or below envconfig.MaxRunners
// Get a refreshed GPU list
gpus := s.getGpuFn()
// Load model for fitting
ggml, err := llm.LoadModel(pending.model.ModelPath)
if err != nil {
pending.errCh <- err
break
}
// If we're CPU only mode, just limit by envconfig.MaxRunners above
// TODO handle system memory exhaustion
if (len(gpus) == 1 && gpus[0].Library == "cpu") || pending.opts.NumGPU == 0 {
slog.Debug("cpu mode with existing models, loading")
s.loadFn(pending, ggml, gpus)
break
}
// No models loaded. Load the model but prefer the best fit.
if loadedCount == 0 {
slog.Debug("loading first model", "model", pending.model.ModelPath)
g := pickBestFitGPUs(pending, ggml, gpus)
if g != nil {
gpus = g
}
s.loadFn(pending, ggml, gpus)
break
}
// More than one loaded model, so we have to see if the new one fits
// Update free memory from currently loaded models
s.updateFreeSpace(gpus)
gpus = pickBestFitGPUs(pending, ggml, gpus)
if gpus != nil {
slog.Debug("new model fits with existing models, loading")
s.loadFn(pending, ggml, gpus)
break
}
runnerToExpire = s.findRunnerToUnload()
}
if runnerToExpire == nil {
// Shouildn't happen
slog.Error("runner to expire was nil!")
continue
}
// Trigger an expiration to unload once it's done
runnerToExpire.refMu.Lock()
slog.Debug("resetting model to expire immediately to make room", "model", runnerToExpire.model, "refCount", runnerToExpire.refCount)
if runnerToExpire.expireTimer != nil {
runnerToExpire.expireTimer.Stop()
runnerToExpire.expireTimer = nil
}
runnerToExpire.sessionDuration = 0
if runnerToExpire.refCount <= 0 {
s.expiredCh <- runnerToExpire
}
runnerToExpire.refMu.Unlock()
// Wait for the unload to happen
// Note: at this point we're queueing up all incoming requests, even if they were for
// a different model that's loaded and not scheduled to be removed.
slog.Debug("waiting for pending requests to complete and unload to occur", "model", runnerToExpire.model)
select {
case <-ctx.Done():
slog.Debug("shutting down scheduler pending loop")
return
case <-s.unloadedCh:
slog.Debug("unload completed", "model", runnerToExpire.model)
continue
}
}
case <-s.unloadedCh:
// An unload request when there are no pending request can be ignored
slog.Debug("ignoring unload event with no pending requests")
}
}
}
func (s *Scheduler) processCompleted(ctx context.Context) {
// Process completed requests, expired timers, and unloading models
for {
select {
case <-ctx.Done():
slog.Debug("shutting down scheduler completed loop")
return
case finished := <-s.finishedReqCh:
s.loadedMu.Lock()
runner := s.loaded[finished.model.ModelPath]
s.loadedMu.Unlock()
if runner == nil {
slog.Error("finished requeset signal received after model unloaded", "model", finished.model.ModelPath)
continue
}
runner.refMu.Lock()
runner.refCount--
if runner.refCount <= 0 {
if runner.sessionDuration <= 0 {
slog.Debug("runner with zero duration has gone idle, expiring to unload", "model", runner.model)
if runner.expireTimer != nil {
runner.expireTimer.Stop()
runner.expireTimer = nil
}
s.expiredCh <- runner
} else if runner.expireTimer == nil {
slog.Debug("runner with non-zero duration has gone idle, adding timer", "model", runner.model, "duration", runner.sessionDuration)
runner.expireTimer = time.AfterFunc(runner.sessionDuration, func() {
slog.Debug("timer expired, expiring to unload", "model", runner.model)
runner.refMu.Lock()
defer runner.refMu.Unlock()
if runner.expireTimer != nil {
runner.expireTimer.Stop()
runner.expireTimer = nil
}
s.expiredCh <- runner
})
} else {
slog.Debug("runner with non-zero duration has gone idle, resetting timer", "model", runner.model, "duration", runner.sessionDuration)
runner.expireTimer.Reset(runner.sessionDuration)
}
}
slog.Debug("after processing request finished event", "model", runner.model, "refCount", runner.refCount)
runner.refMu.Unlock()
case runner := <-s.expiredCh:
slog.Debug("runner expired event received", "model", runner.model)
runner.refMu.Lock()
if runner.refCount > 0 {
// Shouldn't happen, but safeguard to ensure no leaked runners
slog.Debug("expired event with positive ref count, retrying", "model", runner.model, "refCount", runner.refCount)
go func(runner *runnerRef) {
// We can't unload yet, but want to as soon as the current request completes
// So queue up another expired event
time.Sleep(10 * time.Millisecond)
s.expiredCh <- runner
}(runner)
runner.refMu.Unlock()
continue
}
s.loadedMu.Lock()
slog.Debug("got lock to unload", "model", runner.model)
finished := runner.waitForVRAMRecovery()
runner.unload()
delete(s.loaded, runner.model)
s.loadedMu.Unlock()
slog.Debug("runner released", "model", runner.model)
runner.refMu.Unlock()
<-finished
slog.Debug("sending an unloaded event", "model", runner.model)
s.unloadedCh <- struct{}{}
}
}
}
// Complete the pending request and send the runner back to the requester
// Wires up a finished event after the request context is completed
// Updates session duration, and resets expiration timer
func (pending *LlmRequest) useLoadedRunner(runner *runnerRef, finished chan *LlmRequest) {
runner.refMu.Lock()
defer runner.refMu.Unlock()
runner.refCount++
if runner.expireTimer != nil {
runner.expireTimer.Stop()
runner.expireTimer = nil
}
runner.sessionDuration = pending.sessionDuration
pending.successCh <- runner
go func() {
<-pending.ctx.Done()
slog.Debug("context for request finished")
finished <- pending
}()
}
func (s *Scheduler) load(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList) {
llama, err := s.newServerFn(gpus, req.model.ModelPath, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts)
if err != nil {
// some older models are not compatible with newer versions of llama.cpp
// show a generalized compatibility error until there is a better way to
// check for model compatibility
if errors.Is(llm.ErrUnsupportedFormat, err) || strings.Contains(err.Error(), "failed to load model") {
err = fmt.Errorf("%v: this model may be incompatible with your version of Ollama. If you previously pulled this model, try updating it by running `ollama pull %s`", err, req.model.ShortName)
}
slog.Info("NewLlamaServer failed", "model", req.model.ModelPath, "error", err)
req.errCh <- err
return
}
runner := &runnerRef{}
runner.model = req.model.ModelPath
runner.adapters = req.model.AdapterPaths
runner.projectors = req.model.ProjectorPaths
runner.llama = llama
runner.Options = &req.opts
runner.sessionDuration = req.sessionDuration
runner.gpus = gpus
runner.estimatedVRAM = llama.EstimatedVRAM()
runner.loading = true
runner.refCount = 1
runner.refMu.Lock()
s.loadedMu.Lock()
s.loaded[req.model.ModelPath] = runner
slog.Info("loaded runners", "count", len(s.loaded))
s.loadedMu.Unlock()
go func() {
defer runner.refMu.Unlock()
if err = llama.WaitUntilRunning(req.ctx); err != nil {
slog.Error("error loading llama server", "error", err)
runner.refCount--
req.errCh <- err
slog.Debug("triggering expiration for failed load", "model", runner.model)
s.expiredCh <- runner
return
}
slog.Debug("finished setting up runner", "model", req.model.ModelPath)
runner.loading = false
go func() {
<-req.ctx.Done()
slog.Debug("context for request finished")
s.finishedReqCh <- req
}()
req.successCh <- runner
}()
}
func (s *Scheduler) updateFreeSpace(allGpus gpu.GpuInfoList) {
type predKey struct {
Library string
ID string
}
predMap := map[predKey]uint64{} // Sum up the total predicted usage per GPU for all runners
s.loadedMu.Lock()
for _, r := range s.loaded {
r.refMu.Lock()
gpuIDs := make([]string, 0, len(r.gpus))
if r.llama != nil {
// TODO this should be broken down by GPU instead of assuming uniform spread
estimatedVRAMPerGPU := r.llama.EstimatedVRAM() / uint64(len(r.gpus))
for _, gpu := range r.gpus {
gpuIDs = append(gpuIDs, gpu.ID)
}
for _, gpu := range allGpus {
if slices.Contains(gpuIDs, gpu.ID) {
predMap[predKey{gpu.Library, gpu.ID}] += estimatedVRAMPerGPU
}
}
} else {
slog.Warn("unexpected nil runner reference, memory prediction may be incorrect")
}
r.refMu.Unlock()
}
s.loadedMu.Unlock()
// Now that we've summed up all the GPU usage predictions across all the loaded runners, update the gpu list
for i := range allGpus {
if p, ok := predMap[predKey{allGpus[i].Library, allGpus[i].ID}]; ok {
slog.Debug("gpu reported", "gpu", allGpus[i].ID, "library", allGpus[i].Library, "available", format.HumanBytes2(allGpus[i].FreeMemory))
if p > allGpus[i].TotalMemory {
// Shouldn't happen
slog.Warn("predicted usage exceeds VRAM", "gpu", allGpus[i].ID, "totalMemory", allGpus[i].TotalMemory, "predicted", p)
allGpus[i].FreeMemory = 0
} else if (allGpus[i].TotalMemory - p) < allGpus[i].FreeMemory { // predicted free is smaller than reported free, use it
// TODO maybe we should just always trust our numbers, since cuda's free memory reporting is laggy
// and we might unload models we didn't actually need to. The risk is if some other GPU intensive app is loaded
// after we start our first runner, then we'll never acount for that, so picking the smallest free value seems prudent.
allGpus[i].FreeMemory = allGpus[i].TotalMemory - p
}
slog.Info("updated VRAM", "gpu", allGpus[i].ID, "library", allGpus[i].Library, "total", format.HumanBytes2(allGpus[i].TotalMemory), "available", format.HumanBytes2(allGpus[i].FreeMemory))
}
}
}
type runnerRef struct {
refMu sync.Mutex
// refCond sync.Cond // Signaled on transition from 1 -> 0 refCount
refCount uint // prevent unloading if > 0
// unloading bool // set to true when we are trying to unload the runner
llama llm.LlamaServer
loading bool // True only during initial load, then false forever
gpus gpu.GpuInfoList // Recorded at time of provisioning
estimatedVRAM uint64
sessionDuration time.Duration
expireTimer *time.Timer
model string
adapters []string
projectors []string
*api.Options
}
// The refMu must already be held when calling unload
func (runner *runnerRef) unload() {
if runner.expireTimer != nil {
runner.expireTimer.Stop()
runner.expireTimer = nil
}
if runner.llama != nil {
runner.llama.Close()
}
runner.llama = nil
runner.adapters = nil
runner.projectors = nil
runner.Options = nil
runner.gpus = nil
}
func (runner *runnerRef) needsReload(ctx context.Context, req *LlmRequest) bool {
slog.Debug("evaluating already loaded", "model", req.model.ModelPath)
runner.refMu.Lock()
defer runner.refMu.Unlock()
timeout := 10 * time.Second
if runner.loading {
timeout = 2 * time.Minute // Initial load can take a long time for big models on slow systems...
}
if runner.Options == nil {
return true
}
// Don't reload runner if num_gpu=-1 was provided
optsExisting := runner.Options.Runner
optsNew := req.opts.Runner
if optsNew.NumGPU < 0 {
optsExisting.NumGPU = -1
optsNew.NumGPU = -1
}
ctx, cancel := context.WithTimeout(ctx, timeout)
defer cancel()
if !reflect.DeepEqual(runner.adapters, req.model.AdapterPaths) || // have the adapters changed?
!reflect.DeepEqual(runner.projectors, req.model.ProjectorPaths) || // have the projectors changed?
!reflect.DeepEqual(optsExisting, optsNew) || // have the runner options changed?
runner.llama.Ping(ctx) != nil {
return true
}
return false
}
// Free memory reporting on GPUs can lag for a while even after the runner
// exits, so we have to keep checking until we see the available memory recover,
// otherwise subsequent model loads will get far less layers loaded or worse
// case, may completely fall back to CPU mode.
// This routine must be called before the runner unloads so it can establish
// a before and after GPU memory allocation. The returned channel
// will be notified when we're done waiting, or have timed out and should
// proceed anyway
func (runner *runnerRef) waitForVRAMRecovery() chan interface{} {
finished := make(chan interface{}, 1)
// CPU or Metal don't need checking, so no waiting required
if len(runner.gpus) == 1 && (runner.gpus[0].Library == "cpu" || runner.gpus[0].Library == "metal") {
finished <- struct{}{}
return finished
}
start := time.Now()
// Establish a baseline before we unload
gpusBefore := gpu.GetGPUInfo()
var totalMemoryBefore, freeMemoryBefore uint64
for _, gpu := range gpusBefore {
totalMemoryBefore += gpu.TotalMemory
freeMemoryBefore += gpu.FreeMemory
}
go func() {
expiresAt := start.Add(5 * time.Second) // typical convergence is 0.5-1.5s
ticker := time.NewTicker(250 * time.Millisecond)
defer ticker.Stop()
for {
<-ticker.C
if time.Now().After(expiresAt) {
slog.Warn("gpu VRAM usage didn't recover within timeout", "seconds", time.Since(start).Seconds())
finished <- struct{}{}
}
// Query GPUs, look for free to go back up
gpusNow := gpu.GetGPUInfo()
var totalMemoryNow, freeMemoryNow uint64
for _, gpu := range gpusNow {
totalMemoryNow += gpu.TotalMemory
freeMemoryNow += gpu.FreeMemory
}
// If we're within ~80% of the estimated memory usage recovered, bail out
if float32(freeMemoryNow-freeMemoryBefore) > float32(runner.estimatedVRAM)*0.8 {
slog.Debug(fmt.Sprintf("gpu VRAM free memory converged after %0.2f seconds", time.Since(start).Seconds()))
finished <- struct{}{}
return
}
}
}()
return finished
}
type ByDuration []*runnerRef
func (a ByDuration) Len() int { return len(a) }
func (a ByDuration) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func (a ByDuration) Less(i, j int) bool {
// uint64 to turn negative time (never unload) to largest
return uint64(a[i].sessionDuration) < uint64(a[j].sessionDuration)
}
// TODO - future consideration to pick runners based on size
// type BySize []*runnerRef
// func (a BySize) Len() int { return len(a) }
// func (a BySize) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
// func (a BySize) Less(i, j int) bool { return a[i].estimatedVRAM < a[j].estimatedVRAM }
// pickBestFitGPUs will try to find the optimal placement of the model in the available GPUs where the model fully fits
// If the model can not be fit fully within the available GPU(s) nil is returned
func pickBestFitGPUs(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList) gpu.GpuInfoList {
var estimatedVRAM uint64
for _, gl := range gpus.ByLibrary() {
var ok bool
sgl := append(make(gpu.GpuInfoList, 0, len(gl)), gl...)
// TODO - potentially sort by performance capability, existing models loaded, etc.
// Note: at present, this will favor more VRAM over faster GPU speed in mixed setups
sort.Sort(sort.Reverse(gpu.ByFreeMemory(sgl)))
// First attempt to fit the model into a single GPU
for _, g := range sgl {
if ok, estimatedVRAM = llm.PredictServerFit([]gpu.GpuInfo{g}, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts); ok {
slog.Debug("new model will fit in available VRAM in single GPU, loading", "model", req.model.ModelPath, "gpu", g.ID, "available", g.FreeMemory, "required", format.HumanBytes2(estimatedVRAM))
return []gpu.GpuInfo{g}
}
}
// TODO future refinements
// - if multiple Libraries, see if any single GPU in any Library will fit
// - try subsets of GPUs instead of just falling back to 1 or all in a family
// Now try all the GPUs
if ok, estimatedVRAM = llm.PredictServerFit(gl, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts); ok {
slog.Debug("new model will fit in available VRAM, loading", "model", req.model.ModelPath, "library", gl[0].Library, "required", format.HumanBytes2(estimatedVRAM))
return gl
}
}
return nil
}
// findRunnerToUnload finds a runner to unload to make room for a new model
func (s *Scheduler) findRunnerToUnload() *runnerRef {
s.loadedMu.Lock()
runnerList := make([]*runnerRef, 0, len(s.loaded))
for _, r := range s.loaded {
runnerList = append(runnerList, r)
}
s.loadedMu.Unlock()
// In the future we can enhance the algorithm to be smarter about picking the optimal runner to unload
// e.g., if we have multiple options, will one make room for the request?
sort.Sort(ByDuration(runnerList))
// First try to find a runner that's already idle
for _, runner := range runnerList {
runner.refMu.Lock()
rc := runner.refCount
runner.refMu.Unlock()
if rc == 0 {
slog.Debug("found an idle runner to unload")
return runner
}
}
// None appear idle, just wait for the one with the shortest duration
slog.Debug("no idle runners, picking the shortest duration", "count", len(runnerList))
return runnerList[0]
}
func (s *Scheduler) unloadAllRunners() {
s.loadedMu.Lock()
defer s.loadedMu.Unlock()
for model, runner := range s.loaded {
if runner.llama != nil {
slog.Debug("shutting down runner", "model", model)
runner.llama.Close()
}
}
}